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Abstract. The theorem that each derivation of a C*-algebra 2 extends to an
inner derivation of the weak-operator closure ¢ ()~ of 2 in each faithful represen-
tation @ of A is proved in sketch and used to study the automorphism group of 2 in
its norm topology. It is proved that the connected component of the identity ¢ in
this group contains the open ball # of radius 2 with center : and that each auto-
morphism in # extends to an inner automorphism of ¢(2l)".

I. Introduction and preliminaries

Our purpose in this paper is to study the group « () of automorphisms
of a C*.algebra 2 together with and in relation to some of its subgroups.
We note that the mappings ¢ of C*-algebras we consider are assumed
to preserve adjoints (p(4%*) = @(A4)*) throughout; so that “representa-
tion” etc. refer to what is sometimes designated by ‘“*representation’
etc. Our particular concern is with o () provided with the topology it
acquires from (), the bounded linear operators on 2 (in its norm),
taken in its norm (or, uniform) topology. Recall that each element of
() is an isometry of A [10].

In a recent series of papers [16, 18, 24], it is shown that each deriva-
tion of a C*-algebra A extends to an inner derivation of the weak-
operator closure 2~ of U in every faithful representation of . Each such
derivation is a bounded linear operator [23] and, as such, the infinitesimal
generator of a norm-continuous, one-parameter group of automorphisms
of /. The fact that a derivation extends to one which is inner is equiv-
alent to the fact that the automorphisms of the one-parameter group
extend to ones which are inner. These considerations as well as an
account of the derivation result, for convenience and completness, are
found in § 2.

The main technical result of this study (Theorem 7) is that each
automorphism of a C*-algebra 2l in the ¢nterior of the ball Z of radius 2
in 4 (AU) with center ¢, the identity automorphism of 2, lies on a norm-
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continuous one-parameter subgroup of «(2) and extends to an inner
automorphism of A~ in each faithful representation by virtue of the one-
parameter group result. It is proved in the following stages. Each such
automorphism ¢ is shown (Lemma 4) to extend to an automorphism &
of A~ leaving each element of the center of 2~ fixed, in each faithful
representation of Q, by C*-algebra representation and von Neumann
algebra methods. (One can go on to show that & is spatial at this point,
though it is not needed, and follows from the final result.) It is proved
(Lemma 5) that each inner automorphism interior to & of a von Neumann
algebra can be implemented by a unitary operator in the algebra with
spectrum in an open right half-plane by a combination of von Neumann
algebra and spectral theoretic techniques. The next fact (Lemma 6),
that each spatial automorphism of a C*-algebra which can be imple-
mented by a unitary operator with spectrum in the open right half-plane
lies on a norm-continuous one-parameter subgroup of «(2!), is proved by
the methods of the theory of analytic operator-valued functions, or [9;
Corollary 3]. The main theorem (Theorem 7), that the connected com-
ponent y () of ¢in & (A) is open, generated (as a group) by one-parameter
subgroups of « (), and consists of automorphisms which extend to inner
automorphism of - in each faithful representation of 2, is an easy
consequence of these considerations, after passing to the reduced atomic
representation. It follows that the various subgroups of « () we consider
(with the exception of the group of inner automorphisms) are also open,
since they contain the connected component of ¢ (by virtue of its “inner”
properties). The results of this section (§ 3) are in sharp contrast to the
situation which obtains if « () is viewed with one of its weaker topologies.
As a result of our information in the case of the norm topology, each
(norm) continuous representation of a connected topological group in
o (A) has image (in yp (2A)) consisting of automorphisms which extend to
inner ones (Corollary 8). On the other hand, BraTrT~ER [1; Corollary]
shows that each locally compact group with a countable base has a
(faithful) strong-operator continuous representation by unitary operators
which induce oufer automorphisms of a (hyperfinite) factor of type II;
(except, of course, for the identity operator I). (N. Suzuxi [30] did the
same thing for a countable discrete group at the same time.) In [28],
SINGER analyzed certain subgroups of « (1), with U a factor of type I1;,
producing numerous groups of outer automorphisms of  in the process.
The existence of outer automorphisms of factors of type II; had been
known for some time [6; Exercise 15, p. 308].

In §4 various special classes of C*-algebras and special C*-algebras
are discussed with regard to their automorphism group and its subgroups
to illustrate that all possibilities not in conflict with the results of §3
can occur for automorphisms on the surface of & (e.g. they can, in certain
3 Commun. math, Phys., Vol. 4
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cases, lie in the connected component of ¢; they can, in certain cases, be
extendable to be inner in all faithful representations without being
either inner or in the connected component of ¢, etc.).

In a number of physical contexts, the bounded observables are
associated with the self-adjoint operators in a C*-algebra . The sym-
metries of the physical system under consideration are expressed in terms
of a representation of the physical symmetry group G by automorphisms
of 2. In general G will be a Lie group. The infinitesimal generators of the
one-parameter subgroups of G often correspond to (unbounded) self-
adjoint operators of special physical significance. It is of importance to
know whether these generators are observable (in some sense) — equiv-
alently, if the automorphisms corresponding to the one-parameter group
are inner. A case in point is the Haag-Araki description of relativistically
invariant local quantum fields in terms of von Neumann algebras of
bounded local observables. The dynamics and relativistic invariance are
expressed in terms of a (strong-operator continuous) unitary representa-
tion g > U, of the inhomogeneous Lorentz group satisfying certain
conditions. The U, induce automorphisms (which are the physically
significant entities associated with the U,) of 2, the C*-algebra of
(bounded) global observables. The infinitesimal generators of the trans-
lation part of G correspond to the energy and momenta of the field. Given
the “spectrum condition” (tantamount to ‘“‘positive energy”), i.e. that
the spectral measure decomposing the representation of the 4-space
translation subgroup of G on its dual group (energy-momentum space)
has support in the future light cone of that space; H. BorCHERS [3]
proves that the automorphisms of 2 corresponding to this subgroup
extend to inner automorphisms by reducing the unbounded generator
case to the bounded one and then applying the norm-continuous re-
presentation results. G. DELr’AnTONIO [5], dealing directly with a
representation of G by automorphisms satisfying the appropriate
analogue of the “positive energy” condition, proves the automorphisms
extend to inner ones by making the same reduction to the norm-con-
tinuous case. The results of BLATTNER, SINGER, SUZUKI [1, 28, 30] make
it amply clear that something in the nature of the spectrum condition is
required to replace norm continuity if “inner” (or “‘observability”) are
to be concluded.

We wish to record our gratitude to H. BorcHERS, G. DELL’ANTONIO and S.
DorricuER for their role in discussions of the interplay between the mathematical
and physical background of the material in this paper; to J. Dixmier for pointing
out the relevance of [1] to the study of the automorphism group in topologies
weaker than the norm topology; and to L. KrisTENSEN for help (specifically noted
in § 4 Example d) with certain applications of algebraic topology to groups of auto-
morphisms. Both authors extend their thanks to Professor SVEND BuNDpGAARD for
the hospitality of the Mathematical Institute in Aarhus during a period of the
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development of these results. The first and second named authors would like to
thank Dr. L. MorcuANE and Professor PavL Harmos for their kind hospitality at
the Institut des Hautes Etudes Scientifiques and at the University of Michigan,
respectively, during the initial stages of this work.

We recall that a C*-algebra 2 is a Banach algebra with an involution
A — A* which is a conjugate -linear anti-automorphism of U satisfying
|A*A| = | 4% - |4]. Bach such C*.algebra has a faithful isometric
representation as a norm-closed self-adjoint subalgebra of % (s#), the
algebra of all bounded operators on a Hilbert space 5# [10, 12]. A state
o of A is a linear functional on U such that o (I) = 1, where [ is the unit
element of ¢, and g9(4) = 0 when 4 = 0 (i.e. when the spectrum o (4) of
A consists of real non-negative numbers and 4 = 4%). Each such g gives
rise to a representation @ on the completion of the quotient space 21/
of A by the left kernel 5" of g, the left ideal consisting of those elements 4
in U such that p (4* A) = 0, relative to the inner product (4 + ", B+ ")
= o(B*A4), where @(T) is determined by its action on U/A" as
o(T)(A+A)=TA+ . From [26] one knows that the pure states,
those not expressible as a convex combination of states distinct from it,
are precisely the ones which give rise to irreducible representations. In
particular, the Krein-Milman theorem [21] yields the fact that there is a
separating family of pure states of U and, so, a separating family of
irreducible representations of 2. Choosing one such representation ¢,
from each equivalence class, we form their direct sum ¢ (where ¢(4)
transforms the vector {x,} in the direct sum of the representation Hilbert
spaces onto {@,(4)x,}), and refer to this as the reduced atomic representa-
tion of A (“‘the” since any other such is unitarily equivalent to it).

Definition. An automorphism « of a C*-algebra 2 acting on a Hilbert
space ¢ is said to be: extendable if there is an automorphism of the weak-
operator closure of 2 equal to it on A, spatial if there is a unitary operator
U on 5 such that «(4) = U4 U* for each 4 in A, and weakly-inner if it
is spatial and U can be chosen in the weak-operator closure of 2. If ¢ is
a faithful representation of 2 on a Hilbert space, we denote by &, (),
0p(2A), and ¢, (), the groups of those elements « of the automorphism
group of 2 for which pag~! is extendable, spatial, and weakly-inner,
respectively. We denote by 7 () the intersection of all the subgroups
1z() and refer to its elements as permanently weakly (for brevity, n-)
inner automorphisms of A. We write ¢, () for the group of inner auto-
morphisms of 2 and () for the connected component of ¢ in a(2A)
provided with its norm topology.

The s-inner automorphisms of A would seem to be the “‘eternal”
symmetries of the physical system A represents. We note, especially,
that there are such symmetries (in y ()) which are not inner and such
symmetries which are neither inner nor in ().

3’
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I1. Derivations and inner automorphisms
We present a brief survey of the proof that each derivation of a
von Neumann algebra is inner. To begin with, note that each derivation
6 of a C*-algebra U acting on the Hilbert space 5 is continuous on the
unit ball &%; of U taken in the weak operator topology. For this one
makes use of SARAT’s result that J is norm continuous [23], the equality

1 1 1 1
(6(A4) z, y) = (6(42) A2, y) + (426(42) », y) for A = 0 and the strong-
1

operator continuity of A — A2 on the set of positive bounded operators.
This establishes the continuity of ¢ on the positive elements in &%, at 0
from &, taken in the strong-operator topology to 2 taken in the weak-
operator topology. The strong-operator continuity of 4 — A+ and
A — A~ on the self-adjoint operators together with 4 = A+ — A~ and
this last conclusion yields the same continuity of 6 at 0 on the self-
adjoint operators in #;. The linearity of J yields this continuity on the
self-adjoint operators in &, and this linearity together with the fact
that the weak and strong-operator closures of a convex set of operators
coincide give the continuity of ¢ on the self-adjoint operators in &
taken in the weak-operator topology. The weak-operator continuity of
the adjoint mapping and the decomposition 4 = (4 + A4%)/2 +
+ ¢ (4 — A*)/2¢ give the same continuity for § on &.

It follows, next, that J extends to the weak-operator closure 7 of
&, and then linearly to - the weak-operator closure of 2/, a von Neu-
mann algebra. The extension § so obtained is a derivation of A~. Let &/
be a (self-adjoint) maximal abelian subalgebra of Ql', the commutant of
2l (the existence of such an .7 is easily established by the use of Zorn’s
lemma); and let £ be the lattice of orthogonal projection operators in o7.
With 2, the set {4, B, + -+ + A, E,: 4;,...,4,inU-and By, ..., E,
in 2}, define 9, on 2, by:

So(Ay By 4 -+ -+ A, E,) = O(dy) By + -+ 4 8(4,) B, .

One establishes that d, is well-defined (i.e. independent of the representa-
tion of an operator in the form A, B, + - - -+ 4, E,), is a derivation of
the self-adjoint operator algebra 2l, into 2, and is bounded. From the
boundedness and linearity of §, it extends to a derivation of the norm
closure of 2y, a C*-algebra. From the preceding, this extension has, in
turn, an extension d, to the von Neumann algebra /7. Since QI contains
Q, its commutant 2f; is contained in 2’; and since 2, contains &, Ay
contains 7 and 2l; commutes with 7. But &/ is maximal abelian in ’;
so that 2 is contained in &7 and is abelian. Thus 2/ is a von Neumann
algebra of type I, and from [20; Theorem 9], §, is inner. Say §,(4)
= BA— A B, with B in 2y, for all 4 in 2l . Since §,(¥) = 0(= 6 (I) E)
for each K in 2, B commutes with .&Z. Moreover, since §, is an extension
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of ¢, we have that Jis spatial (i.e. of the form 4~ BA—A B=ad B(4)
for some bounded operator B).

The remainder of the argument consists of showing that B can be
chosen in A~. If §(4) = ByA — 4 B, for each 4 in A then B — B, lies
in A'. Conversely (B+ B') A— A (B + B') = §(A) for each 4 in 2 and
B in A'. If U’ is a unitary operator in ', U'*BU'4A— AU'*BU’
= BA— A B, so that each operator in cog-(B), the convex hull of
{U*BU': U’ a unitary operator in 2('}, and in coy (B), its weak-
operator closure gives rise to § on A. Now cog- (B) is weak-operator com-
pact, convex, non-null and stable under the mappings 7' U'*T U’, U’
a unitary operator in 2/’. Zorn’s lemma provides a minimal such subset ¢~
of cogy(B). One establishes, now, that # consists of a single element
which, by stability under the mappings 7' — U'* T U’, commutes with
all the unitary operators in Q’, hence with all operators in ’; and,
therefore, lies in Q~. Since " is minimal, |B, P| = | B, P|| for each B, and
B, in 2" and each operator P in the center € of A~ (for {B,: B, € # and
|By P|| = a} is convex, weak-operator compact and stable under the
mappings 7' — U'*T U’). Since B commutes with .7 and &/ contains %,
B and hence each B, giving rise to § commutes with %. Thus the argument
may be given assuming A~ to be of pure type. We illustrate the rest of the
argument in the case where 2~ is of type I11. (The other cases involve
some variations of this argument, though one could deal just with the
type I11 case by using a device of Saxa1 [24]. The algebra Q- is ten-
sored with a factor of type I1] and 0 is extended to this product, an
algebra of type I1I by [22], as we did in defining d,. It is easy to show
that the extension is inner if and only if § is.)

Assuming - is of type I1I let 2", be the set of differences of opera-
tors in J¢". Then 2, is a subset of ', is weak-operator compact, convex,
non-null and stable under the mappings 7'— U'*T U’. Of course, we
want to show that ¢, consists of O alone. Since B*A4 — A4 B*
= —(BA4* — A*B)* is in Ql, for each 4 in A, B + B* and B— B*
provide derivations of 2; so that we may assume, at the outset that B is
self-adjoint. Replacing B by B + | B| I, we may assume, moreover, that
B = 0. Then each element of cog (B) is positive. If 4,1in J¢, is not 0, the
lemma following this discussion, which is a slight extension of J. Schwartz’s
slight extension [25; XXII p. 3.33, Lemma 15] of the Dixmier Process
[6: Chapter 3, §5], implies that coy (4,) contains a non-zero central
operator C. Since — A4, lies in £, so does —C. For at least one of ' and
—C, say C, there is an @ > 0 and a central projection P such that
CP >aP. Now C = B, — B,, for some B; and B, in J; and | B, P|
=|ByP| =|B;P + CP| = |B;P + aP| >|B,P| (since B,P =0), a
contradiction. Thus ", contains only 0, 7" has a single element in 2~
inducing ¢, and ¢ on 2~ is inner.
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We may assume, in the foregoing that Q' is countably decomposable,
for if {P,} is an orthogonal family of central projections, d(P,) = 0 as
noted; so that 6 maps A~ P, into itself. If this derivation is inner and
induced by B, with | B,|| < || B, then 2 B, induces § on A~ and lies in
A~. Using projections in ¥ cyclic under ¢, we may assume % is countably
decomposable. In this case U’ has a cyclic projection £’ with central
carrier I. Since 4 - A E’ is an isomorphism of U~ with A~ E’, we may
work with A~ E’, whose commutant £'’ E’ is countably decomposable.
With this in mind, the lemma following is the extension of the Dixmier
Process needed in our argument.

Lemma 1. If Z is a countably decomposable von Neumann algebra of
type L1, then cog(A4) has a non-zero operator from the center € of % in its
norm closure if A is @ non-zero element of X.

Proof. With # a family of operators we say that the positive linear

mapping « defined by «(B) = Z’ a;U¥ BU; with a; 2 0, Xa; =1 and

each U; a unitary operator is from & when each U, lies in &. Note that
[«] = 1 and that, if « is from an algebra of operators with center %,
o (C) = C for each C in ¥.
If we can prove:
for each non-zero 4 in % and each ¢ in (0, 1) there is an o from
(*) Z and Cin % such that ||« (4)—C|| < ¢|C| — if 4 is self-adjoint,
C may be chosen self-adjoint and such that |4 < (1 + ¢) |C];

then, given non-zero 4 in %, we may choose oy, &, . . . from Z and
C;, Cy . .. in € such that

lotnon g+ - o (d) = Coll < (n + 1) ] -
Hence

n(n 4+ 17O = ot - (4)] = 4] 5
and with m > n,
[Cm—Coll € [Crn—ttp« - - &y (A)]| + [t - - - 0 (4) = Cyf| =
£ m+ D7HCull + o - .- o (A) — Gy = m™Y 4] + n7t] 4] <
< 2n74] .
Thus {C,}, and therefore also {a, . . . o, (4)}, converge to some C, in %.
Since
. 1
Co— G = lim [, ...y (4) — G4 = [ou (4) — Ci] <& [,
C, is non-zero and the lemma follows.
It remains to prove (*). Given (*) for self-adjoint operators, if

A = A4, + t A, with, say, 4, non-zero and 4,, 4, self-adjoint, choose C;
and C, self- adjoint in € and oy, &, from Z such that

oy (4;) — G4 <_5”01” fogoy (Ay) — Cf = ‘8"02" .
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Then |eyo, (4) — C| < &|C|, where C = C;+ iC,. We may confine
attention to a non-zero, self-adjoint 4 in Z. Given ¢ > 0, we can find
orthogonal (spectral) projections #,, . . ., B, and real numbers a,, . . ., a,

such that |4 — Xa; B, <—;)—e||A|[ and max|a;| = |4|. If (*) holds for

such a sum of projections, choose C self-adjoint in ¥ and « from %
such that

I+ o) |0 z [ 2a;E;| =]4] and [a(Xa;E;)—C]| <%8“0H .
Then
Joe(4) —C| = |a(4) — a(Za,E))| + | (Xa; B;) — O

< +e(l4] + oD = 2L o) = ey

Note next that there are mutually orthogonal projections @, . . ., @, in
% such that Q. E; and @, — 2;Q,E; have central carrier @, or 0 for each
j and k, @, 2;a;E; = 0 for each k, and (X,Q;) (X;0,E;) = Z;a;E;. If (*)
holds for X;a;E;Q, for each k, choose f, from #£@, and C,Q, self-
adjoint in % @, the center of ZQ, such that |, (Z;a;E;Q,) — CrQ:ll <
< ¢]C4 @il and | Z5a;;@,] < (L + ¢) [C4@y]. Defining cc, on  as the
linear extension of 8, on Z @, and the identity on Z (I — @), o, is from
A, satisfies the same inequality as f; and
oty - oo ot (X0, By) — 23,0, Q| < €] 2301 @] -
In addition,
[Z5a; B = (1 + &) [ 270 Q] -
n
These reductions permit us to assume that 4 =}/ a;E;, that each
j=1
E; has central carrier @, that @ — X' E;(= F,,) is either 0 or has central
carrier @, and that |4| = |a,|. Since Z is of type III and countably
decomposable, all the E; are equivalent. Moreover, E, is the sum of
projections F,,, F,, .4, ..., F,, _,, for m arbitrarily large, each equivalent
to H,. Writing F; for E; with j < n, b; for a; with j < n, b; for a, with
n<j<m, b for 0 andm for m — 1 or m according as F,, is or is not 0,
we have 2 a; B; = Z b;F;. Choosing suitable partial isometries in £
j=1 j=1

between the F;’s, we can construct a unitary operator U, in Z such that
U# ( Z b,F)U, = Z b;F.(;, for each permutation 7 of {1, ..., m'}. With

S the group of all permutatlons of {1,..., m'} and o, from £ defined by

‘xm(B)— ZU*BU,,Wehaveocm(Z‘ b;F)=b0Q, Whereb———- 2 b;
! zin 8 =1 i=1
n—1
= ”11 2 a; + “n With C = a,Q, we have ||4] = |C|. Since n is

fixed, glven £> O we can choose m so large that || e, (Xa,; B;)—C| < ¢|C].
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The result on derivations of C*-algebras can be rephrased in terms of
one-parameter groups of automorphisms. In this form it is the key lemma
of our study, though its conclusion is subsumed in Corollary 8.

Lemma 2. If ¢ > «(f) is a norm-continuous one-parameter group of
(i.e. representation of the additive group of reals by) automorphisms of a
C*-algebra A acting on a Hilbert space S then each «(t) is weakly-inner.

Proof. From [8; Theorem 2, p.614], there is a bounded linear
operator d on 2 such that exptd = o (t) for each real t (4 is the infinitesimal
generator of ¢ — a(t)). The series for exp?d yields

a(t) [AB]= AB +t8(AB) + O () = a(t) [4] «(t) [B]
= AB+t(48(B) + 6(4)B) + 0 (),

so that d is a derivation. The derivation theorem tells us that § = adi 4 |,
with 4 in A~ (and 4 = A*, since §(B*) = §(B)* for each B in ).
Comparing series coefficients o/(t) [B] = (exptd) (B) = U,BU_;, with
U, (= expitA) a unitary operator in .

III. The automorphism group

The principal results are contained in this section.

Lemma 3. If « is an automorphism of a C*-algebra A acting on a
Hilbert space and o is weak-operator bicontinuous on the unit ball of A
(i.e. o is ultra-weakly bicontinuous on ) then o has an extension & which
is an automorphism of U=, & is ultra-weakly bicontinuous on A-, and
Jo—d = la—.

Proof. From [17; Lemma (2.3)], « has an ultra-weakly continuous
extension & to U~ with image 2~. The argument of [17; Lemma (2.4)]
shows that & is a homomorphism. The same considerations applied to
o1 yield an ultra-weakly continuous mapping of 2~ onto 2~ inverse to
& on 2l. By ultra-weak continuity, this mapping is inverse to & on U~;
so that & is an automorphism of 2-. From the Kaplansky density
theorem, the unit ball of U is strong (hence, weak)-operator dense in
that of A~; so that the ultra-weakly continuous mapping & — ¢ maps the
unit ball of - into the weak-operator closure of the image under & — ¢
of the unit ball of 2. This closure is contained in the closed ball of
radius [o—f in A~ Thus |& —¢| < [ —¢|; and, of course, ||&—¢|
= Ja—1.

Lemma 4. If o is an automorphism of a C*-algebra A acting on a
Hilbert space, and o —t| < 2, then o extends to an automorphism & of A,
leaving each element of the center of U~ fixed, such that |& — || = |a—1].

Proof. Suppose that A acts on the Hilbert space 5, that « is an auto-
morphism of A and that |« — ¢ < 2. With £ a projection in 2, and ¢
defined by ¢ (4) = «(4)E’, for Ain ¥, (p @ ¢) (A) acting on ¥ & £’ (H)
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does not have strong-operator closure ¢ ()~ @ 2~. Otherwise there is an
A in the unit ball of 2, with « a unit vector in £’ given, such that

L=y la—d > [[(p® ) () — —F o D] >n
= @A) B'w, A7) — (=, )|
and
[dz—a] <1—yJa—d, |a()e+a] <1—5la—d.
Hence
Joo— ] = o) 2 — A > [20] —2 (1= Ja— el ) =l —1] .

It follows now from [12; Lemma 3] that ¢ and ¢ are not disjoint re-
presentations of 2. Zorn’s lemma provides us with a maximal orthogonal
family {F;} of projections in 2’ such that, for each F, there is a pro-
jection G in 2’ and a partial isometry U, with initial space G, and final
space F, such that «(4)F, = U,AG,U}. Maximality of {F,} and the
fact that ¢ and ¢ are not disjoint no matter which (non-zero) projection
E’ we use in defining ¢, allows us to conclude that X, F, = I. Thus
a(d) =2, U, AG,U¥ for all 4 in 2. With y and z Vectors in S, there is

a finite subset Fy, ..., F,, of {F,} such that |y — 2 Fiy| <1/4|z]. If 4

and B in the unit ball of 2 are such that |([4 — B] G’ Uy, Ufz)| < 1/2m
forj=1,..., m; remembering that « is isometric on Ql

l(“(A—B)% )| = [(x(d— B) (XFjy), 2)| + 2|y — 2Fjy| - |2] =
= 34— BIG;U}y, UFa)| + 5 <1.

Thus « (and, similarly, «—1) is ultra-weakly continuous on 2; and, from
Lemma 3, has an extension & which is an automorphism of A~ satisfying
& —t] = e—1t] <2. With P a central projection in 2A-, &(P) =

since |o(P)— P| = ——”oc(2P I)—2P+1I|<1, and &(P) and P

are commuting projections. (We can go on to show that & is spatial,
though we shall not use this fact. It is sufficient to prove that & pre-
serves the multiplicity function of 2~ [15; Theorem 4.4.2], and since &
acts identically on the center it remains only to show that & preserves
maximal cyclicity of projections in countably decomposable central
portions of A-. Let E be a projection in A~ which is maximal cyclic in
A~ Cg, where Cf is the central carrier of E. With F' = % (E), the argument
used above shows that |F'— E| < 1. Hence |[FF—FEF| <1, and the
self-adjoint operator F' E F is one to one on the range of I, zero on its ortho-
gonal complement, and so has range projection F. Thus F £ has range
projection F; a similar argument shows that EF (= (F E)*) has range
projection K, so B ~ F, and F (= &(F)) is maximal cyclic in 2~Cp).
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Lemma 5. Let o be an inner automorphism of a von Newmann algebra
R, for which ||« — t|| < 2. Then there is a unitary operator U in X, with
spectrum o (U) in the half-plane {z :Rez = »;« 4—lle— al]z)%}, such
that «(4) = UAU* for all 4 in A.

Proof. The argument is divided into three distinct stages. The first
part proves the lemma when Z is the algebra .#,, of all operators on an
n-dimensional Hilbert space, n being an integer. This special case is used,
in the second part, to obtain a weaker form of the lemma in which
o (U) is contained in a slightly larger half-plane. Finally, the full lemma
is deduced from this weaker form.

(a) We assume that #Z = .#,. Let V be a unitary operator in .,
such that «(4) = VA V* for each A in .#,, and let a be the point in the
convex hull of ¢(V) which is nearest to 0. There are distinct points

ay, . . ., a,in ¢ (V), positive real numbers cy, . . ., ¢, with sum 1 such that

@ =ca; + * 4 ¢, and unit vectors xy, . . ., x, such that Va; = a;z;

G=1,...,9). Since Zy, . . ., %, are pairwise orthogonal, the unit vector
1

T = c:'fac1 4ot 02 x, satisfies (V&, ) = a. Let £ and I' be the 1-dimen-
s1onal prOJectlons “with « and Vx, respectively, in their ranges. Then
F=VEV* = qx(E), so
lo—i = |0@E—I)—2E +I|

=2|F— E” 2| Vx—EVx[{ =2|Vae— (Va,x)z| =2(1 —|al?) %

Thus |a] = & (4 — [le—¢||?) 2 > 0. With U = (@/|a|)V, U is a unitary
element of .//Zn such that «(4) = U4 U* for all 4 in #,, and ¢(U) lies in
{z:Rezg % 4— ][a—L[IZ)%} .

(b) With Z now a general von Neumann algebra, let V be a unitary
operator in # such that ac(A) VAV* for each A in Z. Choose a real
number & such that 0 <k < (4—fa—1]? 2 We shall show that «

can be implemented by a umtary operator U in # with o(U) <
C {z: Rez = k}. For each non-zero central projection P in £ let d(P)
denote the distance from 0 to the convex hull of the spectrum op (P V)
of PV (considered as a unitary operator on the range of P). We first
prove that each such P contains a non-zero central subprojection @
such that d(@) = k. Suppose, to the contrary, that P contains no such
Q. Given &> 0 such that |a—: + 2¢ <2, we can choose spectral
projections K, ..., E, for V, with sum I, and complex numbers

ay, . . ., &, of modulus 1, such that |V — W| < ¢, where W = Z a; B,
With g the automorphism of % defined by f(4) = WA W*, | — ,8 ][ <2¢
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and so |8 —| < a—¢] + 2& < 2. With P; the central carrier of E;, and
@ the product of a maximal subset of {P, P, ..., P,} containing P
with non-null intersection, ¢ is a non-zero central subprojection of P
for which each @ E; either is 0 or has central carrier . Renumber so that,
for some n < m, QE; is non-zero if and only if 1 < j < n.

By hypothesis, d(@) <k, so we may choose b,...,0, in
0¢(@V) and positive real numbers cl, ..., ¢, with sum 1, such that

leaby 4 =+ + + ¢gb,| < k. Since [|[QV — ZaQEH—][QV W)| < e, each

of by,...,b, is at distance less than e from 0@ W) ={ay, ..., a,}.
(Recall that, if 4 and B are normal operators and A€ o(4), then the
distance d from A to ¢(B) is at most |4 — BJ|. For by spectral theory,
d=|(B—AI)~Y~*; and if d > |4 — B| then ||(4 — AI) — (B — i1)|
< (B — AI)~Y~%, which implies [8; Lemma 1, p. 584] that 4 — A1 has
an inverse, contrary to hypothesis). Replacing b’s by appropriate a’s,
we obtain a convex combination a, of a;, . . ., a, for which |a,| < k + e.

Let Fy, ..., F, be equivalent projections in #Z such that 0 < F; < QFE;
(1 £4 < n), and choose partial isometries F;; (¢,5=1,...,%) in £,
with F;; = F;, which form a set of matrix um‘ts in a *-subalgebra .# of

% which is isomorphic to .#,. With W, = 2 a;F;, W, is unitary when

considered as an element of .#, and W F”W0 = aa;F;; = WF;;W*
= ((#';;). Hence the restriction y of § to .# is an automorphism of .#
which is implemented by W,. Since |y —¢| < |B—¢| <|oe—1] +2e <2,
while a, is a convex combination of a,, . . ., a, and so lies in the convex
hull of the spectrum of W, we deduce from part (a) that

oo = 5 [4— (Je—1] + 2621
This, with our previous estimate for |a,|, gives
k> g [4— (la—1] + 265 —e,
contradicting the assumption that
k< (d—a—d?2
with suitably chosen .

We have now shown that each non-zero central projection P in %
contains a non-zero central subprojection @ for which 4(Q) = k. It
follows that there is an orthogonal family {@,} of central projections,
with sum I, such that d(Q;) = k. With a; the point in the convex hull
of 6q,(Q; V) which is closest to 0, |a;] = & > 0 and (@,/|a,|) @,V has spec-
trum in {z: Rez = k}. Hence U = (X'(@,/|a;])@;) V is a unitary operator
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in £, with spectrum in the same half-plane, such that «(4) = U4 U*
for each 4 in Z.

(¢) For ¢ in [O, % n) define S, = {expit:—c < t < c}, so that S, is
the arc of the unit circle that lies in the half-plane {z: Rez = cosc}. We

can choose b in [O, % n) so that e — ¢ = 2sinb, whence

1
cosbh = (4 — o —¢]?)2
and we have to show that « can be implemented by a unitary operator
U in # with o(U) < S,.

Choose real numbers ¢, d such that b < ¢ < % mand 0 < 6 < % cosc,

and let ¢, = (c—b) (1—)"t(n=1,2,...). We shall construct in-
ductively a sequence {U,} of unitary operators in £, each of which
implements o, such that
(**) o(Un) € Spreps [Unsa— Uyl = [1—exp(ide,)| .

1
Since 0 < cosc < cosb = % (4—la—]?2, it follows from part (b),

with & = cosc, that there is a unitary operator U, in # which implements
o and has ¢(U;) a subset of S, = S8, . Suppose that a unitary operator
U, in % has been constructed, with U,, implementing « and o (U,,) € S .,
Let £ and F be the spectral projections for U, corresponding to the Borel
sets

{expit:b+ (1 —28) e, =t = b+ &}
and

{exp—it:b+ (1—20) e, <t < b+ ¢,},

respectively. Suppose that # contains a non-zero partial isometry W
with initial and final projections dominated by £ and F, respectively.
Then

|EU,—exp(ib+ie,)E| <2de,,

|UF —exp(—ib—ie,)F| < 2de¢,

and
WE=FW=W.
Thus
|WU, —exp(ib+ie,) W| <2d¢,,
U, W —exp(—tb—ig,) W|| < 2de,,
whence

= |lexp(sb + ig,) —exp(—1ib —ig,)| |[W]| —4de,
= 2sin(b + ¢,) —4de,

= 2sinb + 2{sin(b + ¢,) —sinb} —4de¢,

> 2sinb + 2(cosc) ¢, —44d¢,

> 2sind = e —1¢ ,
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a contradiction. Hence no such W exists, and there is a central projection
Q in # such that E< @ and F=I—¢@. Thus 6¢(QU,) and
or-o(({ — Q) U,) are contained in the arcs

{expit: —b—(1—28) e, <t < b+ ¢}
and

{expit: —b—e¢, =t = b+ (1 —20)¢,},

respectively. Since (1 — d) ¢, = ¢, ., the unitary operator
Un+1 = {eXP ('_2687;) Q + eXP(MEn) (I'_' Q)} U,

has spectrum in S, , ., . It is clear that U, , implements « and satis-
fies (**). This completes the inductive construction of the sequence {U,,}.

Since Xe, < o0, {U,} converges in the norm topology to a unitary
operator U in # which implements «. Each point of ¢ (U) is at distance
at most |U — U, from ¢ (U,) (as noted, in part (b), for any two normal
operators), and since ¢(U,) € 8., and |U— U,| — 0, it follows that
a(U) € 8,.

Remark A. The condition on the spectrum of U established in Lemma 5
can be reinterpreted more geometrically as saying that ¢ (U) lies on the
arc of the unit circle symmetric about 1 with endpoints midway between
1 and the points at distance ||« — ¢| from 1. Having proved this under the
assumption e — ¢]| < 2, our operator U is chosen with spectrum in the
‘“open right half-plane” (Rez > 0).

Remark B. Let U be a unitary operator on a Hilbert space 5, for
which the convex hull of ¢(U) contains a neighbourhood of 0, and let
« be the (inner) automorphism induced by U on % (). Every other
unitary operator in % (5) which implements « is a multiple of U by a
complex number of modulus 1; and no such multiple has spectrum in the
right half-plane. It follows from Lemma 5 that ||« —¢| = 2 (a fact that
can easily be proved directly by reasoning as in part (a) of the proof of
Lemma 5, after approximating U by a unitary operator V which is a
finite linear combination of spectral projections for U). This example
shows that the conclusion of Lemma 5 can fail to hold when o — | = 2.

If we restrict U further by requiring in addition that U3 = I, then
o® = ¢, and the spectrum of « as an operator on % () consists of third
roots of unity. Thus &« — ¢ has spectral radius r at most 1/3— . It follows that
the statement obtained from Lemma 5, upon replacing | o — ¢|| through-
out by r, is false. It should be noted that the spectrum of « is a subset of
{ab=1:a, bin ¢(U)}, which is consistent with the possibility of choosing

1
U with o(U) in the closed right half-plane {z ‘RezZ o (4— r2)§} .

Lemma 6. If A is a C*-algebra and U a unitary operator acting on a
Hilbert space S such that a(A) = UAU* lies in A for all 4 in U and
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Rea > 0 for each a in o(U), then « lies on a norm-continuous one-para-
meter subgroup of o(U) and is w-inner.

Proof. By hypothesis on ¢(U), we can choose H self-adjoint with
o (H)in (—z/2, 7/2) such that U = expi H. Asin Lemma 2, & = exp (ad¢ H)
both as a power series and as an analytic function of the bounded linear
operator adiH acting on the Banach space % (), where & is the ex-
tension of « to # () defined by & (B) = U BU*. From GARDNER [9:
Corollary 3], taking # (5#) as the Banach algebra and 2 as the invariant
subspace of that statement, we have that U is invariant under
A — exp(isH) A exp(—isH) for all real s, since there is no difficulty in
identifying ¢H as log U in the sense GARDNER uses for ‘“log U”. Thus &
lies on a norm-continuous one-parameter subgroup of « (). It seems
worthwhile to include our original proof of this both for completeness and
directness.

With T in % (s#), we denote by L(T) and R(T) the (bounded)
operators on % () defined by L(T)(A)=TA and R(T)(4)=AT.
Since L and R are algebraic isomorphism and anti-isomorphism of % ()
into the Banach algebra (% (#)) of bounded operators on % () each
of which maps I onto ¢ the spectra of L(7T') and R (T') are contained in the
spectrum of 7'. Let &7 be a maximal commutative subalgebra of Z (% (o£))
containing L(7T) and R(T). By maximality an element § of 2/ has an
inverse in # (% ()) if and only if it has an inverse in &7, so that the
spectra of § relative to 7 and % (% (5¢)) coincide. Since each element of
the spectrum of fis the image of f under a multiplicative linear functional
on &7, the spectrum of L(T)— R(T) (= adT) is contained in {a — b:
a,b in the spectrum of T}. In particular adsH has spectrum in
{it: |t]| < r}, where 2|H|| = r < 7, by choice of H. From & = exp (adiH)
and the spectral mapping theorem [8; VII. 3.11], & has spectrum in
{expit: [t| < r}.

For each real s, let g, denote the principal value of z - 2° on the plane
of complex numbers slit along the negative axis; and §, multiplication by
s. On the strip S = {z: [Imz| < 7} we have g, 0 exp = exp o 4. Since g,
exp and § are analytic where defined and ad¢H has spectrum in S,
@ (= ¢,(&)) = exp(s adi H) = exp(adisH), for all real s, from [8;
VII. 3.12]. Since ad(¢sH) is a derivation of % () and isH is skew-
adjoint, &° is an automorphism of #Z () (cf. Lemma 2).

Having identified the spectrum of & as a subset of {expi¢: |t| < r < 7}
(= Cy), we can choose a compact set K with C, in its interior K, and a
rectifiable Jordan curve C in the plane slit along the negative axis
having K in its interior such that z - (zy — 2)~* is uniformly approxim-
able on K by polynomials in 2z (from Runge’s theorem) for each z, on C.
Then (2, — &)~ is a uniform limit of polynomials in &, from [8; VII. 3.13],
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for each z, on C'; so that (2 — &)~! leaves U invariant. Now,
_ 1 _
& =57 [ 0.0 (e— @) de;
¢

so that &* leaves ¥ invariant [8, VIIL. 3.9]. Again, g, converges uniformly
to the constant function 1 on K, as s > 0; so that [&*—¢| >0 ass—0
from [8; VIL. 3. 13]. Finally, asaf = a*t+t from [8; VIL. 3.10(b)], since
Js* J: = Js4; S0 that s— &°|2 is a norm-continuous, one-parameter
subgroup of o(A) with « = &|2.

Remark C. With R the (factor) group algebra of the free group on
two generators a and b, the automorphism of the group arising from
interchanging a and b gives rise to an outer automorphism o« of M [6;
Exercise 15, p. 308] and a unitary operator U implementing it. Since U
is of order two, its spectrum consists of —1 and 1; so that ¢ U has spectrum
in the closed right half-plane, and implements . Thus the conclusion of
Lemma 6 above need not hold if the hypothesis is weakened to allow
o(U) to lie in the closed right half-plane.

It is now a simple matter to assemble the preceding lemmas in our
main result.

Theorem 7. If o is an automorphism of & C*-algebra A and | — 1| < 2,
then o lies on a morm-continuous one-parameter subgroup of o(A). Such
subgroups generate vy (2), the connected component of ¢ in a(A) with its
norm topology, as a group; and y () is an open subgroup of «(2). Each
element of v () is m-inner.

Proof. Pass to the reduced atomic representation of A. We assume
that U acting on & is this (faithful) representation of U ; so that U~ is of
type I — in fact, a direct sum of algebras of the form % (s#,) [12:
Corollary 4]. From Lemma 4, there is an automorphism & of 2~ leaving
each element of the center of A~ fixed whose restriction to 2 is &. From
[6; Corollary, p. 256], there is a unitary operator U in U~ implementing
%; and from Lemma 5 U can be chosen with ¢(U) in the half-plane
{a: Rea > 0}. Lemma 6 now tells us that « lies on a norm-continuous
one-parameter subgroup of « (). Each such subgroup is a (norm)
connected subset of «(2) containing ¢, and, therefore, lies in y (A) — as
does the subgroup they generate. However this subgroup contains the
interior of the ball of radius 2 about ¢ in « () (as we have just shown);
so that it is open in «(2), hence, closed, and no larger subset of « (%) is
connected. Thus this subgroup coincides with y (). Since the norm-
continuous one-parameter subgroups of «(2l) consist of s-inner auto-
morphisms of 2 (Lemma 2), each element of o () is z-inner.

Remark D. Note that, after passing to the reduced atomic representa-
tion and by restricting to a minimal central projection, it is necessary to
employ Lemma 5 only in the case where £ is # (o) for the proof of
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Theorem 7. After approximation by spectral theory, the proof of
Lemma 5, in case Z = % () is essentially part (a) of the proof given.

Remark B. Applying Theorem 7 and then Lemma 5, we see that
Lemma 5 holds with “inner” deleted, # a C*-algebra and “Z%~"" replacing
the second occurrence of “%”.

Remark F. The following example shows that the statement obtained
from the first sentence of Theorem 7, upon replacing |« — ]| by the
spectral radius of o — ¢, is false even for von Neumann algebras.

With 0t the (factor) group algebra of the free group on three genera-
tors a, b, ¢, permuting these generators cyclically induces an auto-
morphism « of 9% and a unitary operator U (of order three) with o (U)
the third roots of unity and implementing «. By the reasoning used at
the end of Remark B, « —: has spectral radius at most /3. A slight
extension of [6; Exercise 15, p. 308] shows that « is an outer auto-
morphism. Since M is weakly closed, « is not z-inner, hence (Lemmas 2
and 6) does not lie on a norm-continuous one-parameter subgroup of
o (M) and cannot be implemented by a unitary operator having spectrum
in the open right half-plane. It follows from Theorem 7 that |je —¢| = 2
(a fact that can be verified directly: for [(a—¢) (U,)| = [U,— Uyl
= |Up-ry—I| = 2, since Uy, leaves the space of functions square
summable on the group and vanishing on positive powers of a~1b in-
variant, while U#., does not; so that ¢(U,-,) is the entire unit circle
and, in particular, —2 is in o(Uj-1, — I)).

Since each norm- continuous representation of a connected topological
group by automorphisms of a C*-algebra 2[ has range in y (), we have:

Corollary 8. Each norm-continuous representation of a connected topo-
logical group by automorphisms of a C*-algebra has range consisting of
z-inner automorphisms.

In the case of von Neumann algebras, we have:

Corollary 9. If 2 is a C*-algebra which has a faithful representation ¢ as
a von Neumann algebra then 1y () = 7 (A) = 7 (A) = 1,(A) ; and each element
of y () lies on some norm-continuous one-parameter subgroup of o ().

Remark G. Let 2 be a C*-algebra, ¢ a faithful representation of 2I.
It follows at once from Definition that 7 () S t,(A) < 0,(A) < &,(A) <
€ a(2l). Theorem 7 provides the additional information that () <
¢ 7(20), and hence that each of the groups listed above contains the open
ball, with center ¢ and radius 2, in « (). It follows that each of these
groups is open, hence closed, and that the quotient of any one of them by
a smaller one is discrete.

The subgroups y () and 7 (A) of «(2A) are normal. For suppose that
a€a() and B€xn(A). Given any faithful representation p of A,
plafa)yl= (pa) f(pe)~* and, since pu is a faithful representation
of A, y(xfat)ptis a weakly-inner automorphism of (pa) (A) = p (2A).
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Hence o o € (), so 7z(A) is a normal subgroup of «(¥); the same
is true of (%) since it is the connected component of the identity in
a ().

We now exhibit a C*-algebra 2 and a faithful representation ¢ of
2 for which the subgroups ¢, (), 0,(A) and &, (2A) of «(2A) are not normal.
For this purpose we make use of Example @, in which an automorphism
f of a C*-algebra Z is produced, as well as faithful representations p and
0 of # for which y Sy~ is weakly-inner while § 56~ is not extendable.
Let A be Z & &, ¢ the faithful representation (B;, By) — (y(By), 0(By))
of 2, « and 7 the automorphisms of 2l for which o ((B,, B,)) = (8 (By), By),
y((By, By)) = (By, By). Then ¢ () = »(#) ® 0(%), and since
(yay™) ((By, By) = (By, B(By)), it is readily verified that pag-! is
weakly-inner, while @(yoy~1) ¢~ is not extendable. Thus o € ¢,(2l),
yay~ ¢ g,(AU), whence the subgroups ¢, (), 0,(A) and ¢, () of «(A) are
not normal.

For each C*-algebra A the subgroup ¢, (2) of &,(2A) is normal. With
o in ¢, (), B in &,(A), U a unitary operator in ¢ (2A)~ which implements
o~ and y an automorphism of ¢ (A)~ which extends ¢ f¢~1, ¥ (U) is
a unitary operator in ¢(2)~ which implements ¢ (S« )¢t Thus
Bapt€ 1, (A) and ¢, (A) is a normal subgroup of ¢, (2A).

We now give an example in which 2l is an abelian C*-algebra with a
faithful representation ¢(Q) acting on a finite-dimensional Hilbert
space, and the subgroup o, (%) of &,() is not normal (of course, &,(A)
= ¢(?) in this case, since ¢ () is finite-dimensional and so weakly
closed). Let A be the algebra of all complex 4 x 4 diagonal matrices of the
form diag(a, a, b, ), ¢ a representation in which U acts in the obvious
way on a 4-dimensional Hilbert space. With « (respectively, o) the auto-
morphism of 2 corresponding to interchange of a and b (respectively, b
and c), it is clear that ¢ € ¢, (). However, co o~ is the automorphism of
Q corresponding to interchange of a and ¢, and consideration of the multi-
plicities of the eigenvalues of 4 (in A) and of (xoa~?) (4) shows that
agot ¢ o, (A).

The group ¢, () of inner automorphisms of a general C*-algebra 2 is
contained in 7z (), and is a normal subgroup of « (). For if f is the inner
automorphism implemented by a unitary element U of U, and o € (21),
then « fa~! is the inner automorphism induced by «(U).

Suppose now that A is a C*-algebra having a faithful representation
@ for which ¢(2) is weakly closed. By Corollary 9, y () = 7 () = ¢, ()
= ¢, (), and of course &,(YU) = «(2A). Hence there are now only three
(possibly) distinct groups under consideration, and ¢, (2) < 0, () < « ().
We have already noted that ¢,(2l) is a normal subgroup of «(2l), and the
finite dimensional example described above shows that the subgroup
0 () of o () is not necessarily normal.

4 Commun. math. Phys., Vol. 4
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IV. Special cases

In this section, we illustrate by example that various possibilities
not ruled out by the results of §3 do occur. Notably, in the example
which follows, we locate an automorphism weakly-inner in one faithful
representation and not extendable in another — completing the normality
discussion of Remark G. Some examples taking advantage of special
properties of the ideal of compact operators follow this; and examples,
making use of the detailed knowledge of the higher connectivity proper-
ties of certain compact spaces to allow us to compute, specifically, some
automorphism subgroups, conclude this section.

Example a. We use the fermion algebra (cf. [27] and [11]) to establish
that () need not coincide with ¢,(2) for some faithful representation
@ of A. Our algebra A is characterised as a C*-algebra by having a dense
self-adjoint subalgebra which is the union of an ascending sequence of
self-adjoint subalgebras .#,, n = 1, 2, . . . each isomorphic to the algebra
of complex 27 x 2" matrices and all having the same unit. We shall
exhibit an automorphism of 9 and two faithful representations of 2, in
one of which the automorphism is weakly-inner and in the other of which
it is not — indeed in which it is not extendable. Both representations are
irreducible. It follows that this automorphism is not in the connected
component of the identity y () in «(2) ,since each element of y () is
weakly-inner in all faithful representations. For this purpose, we choose
matrix units {E{}, j,k=1,...,2" in 4, with B, j=1,...,2",
orthogonal projections and E}’};)* = E%;), such that

Bp=V=ER 15 1+ B,
B = BV ER,
By, = B0 B,
forn=1,2,...and j=1,..., 27! (#,is the algebra of scalars and
EQ is I).

Let o be the automorphism of 21 which on each .#, transposes a
matrix about each diagonal, i.e. o (E}’,})) =E® j+12n—k +1,50that aisthe
automorphism induced by the permutation matrix U, with entry I at
each position on the secondary diagonal. Since U, ., (in 4, ) induces
the same automorphism on .#,, there is an automorphism on the union
of the .#,’s defined by this process. Since the automorphism on each
M, is isometric it has a unique extension to 9 which is the desired auto-
morphism «. For our first representation, let 5 be £, (0, 1) relative to

Lebesgue measure and let E’}’,;) be the isometric mapping of functions in
Z,(0, 1) vanishing outside of [%, —zk;;] to those vanishing outside

-1 3 . .
[ ! G 2?—,,] induced by translating the second interval onto the first (and,
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of course, consistent with E(”) being a partial isometry, let it map

functions vanishing on [ k- o 1 , ;]m‘co 0).Inparticular E(”) isthe operator
which multiplies functions in %,(0, 1) by the characteristic function of

-1 j . . . . . .
[7 o s én—] - Since each continuous function on [0, 1]is a uniform limit of

finite linear combinations of such characteristic functions, the operators
which are multiplication by such functions lie in Y. An operator com-
muting with 2 commutes with multiplications by continuous functions
hence with multiplications by all bounded measurable functions and is,
therefore, itself multiplication by a bounded measurable function (such
multiplications forming a maximal abelian algebra). With M, multi-
plication by f, M, E(”) = E’(”) M; if and only if f is invariant under the

7;, , ;,,] , translates

mapping which translates [k—;tl—, 2—16,1] onto [

[+
271, s 2n
onto []innl , —2167] and leaves the other points of [0, 1]fixed. For this to hold

for allj, k, n, f must be almost constant and M ; a scalar. In fact, denoting
by U the unitary operator E{Y + E + I— EW —E®, URf=f
(note that f is also in Z,(0, 1)). Let g,, be a continuous func’olon on

[0, 1] with [[f—g.] < 771; (in 5) and choose n such that if |p — p'| < 1/27

then|g,, (p)—g. ()| < 71— Each permutation of the intervals [7——1— L] ,

on b omn
7 =1, , 27 corresponds to a unitary operator U, which is a product of
-1 9 — k
the U(") (these correspond to a transposition of [ o ;n]and [JC—?—I, W]) ;

so that U,f = f. With § the (symmetric) group of all such permutations
and 4 the operator—z—];;r Z U, |4| £ land Af = f. Thus|f—Ag,| < L .
Since U.4¢,, = A9 and the oscillation of Ag,, over each mterva.l

—1
[? o 2n] is not greater than that of g,, over such intervals, 4g¢,, differs
1 .
from some constant C,, by at most-—at each point of [0, 1]; and

[Agn—Cyl € . Thus [ — O] < — " ,for each m and f is almost

constant. It follows that Q' is the scalars and the given representation,
which we refer to as the Lebesgue measure representation of 2, is irreducible.

We note next that o is weakly-inner in this representation. Let f{¥
be the characteristic function of [ o —1 s 2”] Then
UnG) = (X B () = U (5)

j+k=2m+
4
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for all m = n. Thus (U,,) converges on all finite linear combinations of the
f. Since such combinations lie dense in %,(0, 1) and ||U,,| = 1 for all
m, the U, converge strongly to some operator U on #. Now U2, = I and
multiplication is jointly continuous on bounded sets of operators in the
strong-operator topology. Thus U? = I and since each U,, is isometric
U is. It follows that U is a unitary operator. Again, since U, E®U,,
= U,EpU, = «(BY) for all m = n and all j, k, n, UER U = «(EP)
for all§, k, n. Thus « is induced by the unitary operator U in the Lebesgue
measure representation of 2, and, since this is an irreducible representa-
tion, « is weakly inner. It can be verified readily that U is the unitary
operator defined by (Uf) (t) = f(1 — ) for each f in Z,(0, 1).

For our representation in which « is not extendable, we choose as our
Hilbert space 5, the space Z,([0, 1), u) where the measure y on [0, 1)
is defined by assigning to each Borel subset the number of dyadic
rational points it contains. (In this way we make each dyadic rational
point in [0, 1) an atom for y with measure 1.) The matrix units B are
defined in precisely the same way as in the Lebesgue measure representa-

. —1 7 .
tion except that the half-open intervals 7———, —7; are used in place of the

closed intervals [J;Tl, —2?7] . The functions 1 at a dyadic rational in [0, 1)

and O off it form an orthonormal basis for £, and the one-dimensional
projections with these in their range are intersections of diagonal matrix
units of A in the given representation. Moreover, the partial isometries
between these one-dimensional projections induced by mapping one
dyadic rational onto another are the weak-operator limits of the matrix
units mapping the ranges of these diagonal matrix units on to one
another. It follows that 9 has weak-operator closure all bounded opera-
tors in this representation and that this representation is, accordingly,
irreducible. Now « (E$Y) = E{,, for each n; and while n E{ is the one-

dimensional projection with the function 1 at 0 and 0 elsewhere in its
range, Q E{,, = 0 in this representation. Thus ¢ is not extendable.

In the example which follows, we illustrate the fact that there are
automorphisms of C*-algebras which are s-inner without being actual
inner automorphisms of the algebra.

Example b. Let A be the C*-algebra of compact operators on sepa-
rable Hilbert space with the identity I adjoined, so that each operator
in A has the form al + C with @ some scalar and C a compact operator.
The abstract C*-algebra associated with 2 has just two irreducible
representations — the given one through which we have defined 2 and
the one-dimensional representation, al + C — a. Any other representa-
tion ¢ of 2 is a direct sum of copies of these two representations, for if ¢
is not faithful @ (AU) is the scalars. Thus, for general ¢, there is a maximal
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projection E’ in ¢ ()" such that ¢ (A)E’ = {AE'}; and each non-zero
subprojection F' of I — E’ is such that 4 — ¢ (4)F’ is a faithful re-
presentation of . Combining this with the fact that each faithful
representation y of 2 has the faithful irreducible representation as a
subrepresentation and using Zorn’s lemma establishes the assertion
about ¢@. For this, note that w(F) is minimal in ¢ ()~ since
w(E)p(4) w(E) = alE with a a scalar for all 4 in U if ¥ is a one-dimen-
sional projection in QA, so that ¢ (2)’ contains minimal projections.
Choosing a maximal orthogonal family of such projections, if (%)
restricts to scalars on each then the restriction of g () to the complement
of their union is faithful since o is; so that this complement contains a
minimal projection — contradicting maximality of the family chosen.
Thus y has the faithful irreducible representation of 2 as a subrepresenta-
tion.

It follows that g (A)~ has a central projection @ such that y (A)~(I—@)
= {A(I — @)} and y ()~ Q acting on Q(+#,) is a factor of type I . Since
a state of o (A)Q is normal if and only if it does not annihilate all the
compact operators, each automorphism « of y(2) transforms normal
states onto normal states and extends to an automorphism & of y ().
Of course, & maps p(A)~Q, a factor of type I, onto itself and
()~ (I — @), scalars, onto itself, so that & is inner. Now each unitary
U on & induces an automorphism of 2(; and since 2 acts irreducibly on
S, this automorphism is not inner unless U is in 2. Thus 2 admits non
inner, permanently weakly-inner automorphisms.

In the example just discussed, with 2 in its faithful irreducible
representation, each automorphism is induced by a unitary operator U
and each unitary operator induces such an automorphism of 2. With
U = expi H, the automorphism induced by U lies on the one-parameter
group of automorphisms of 2l induced by the unitary operators expitH,
¢t real. Thus y () = «(2), in this case. In the example to follow we discuss
a (C*.algebra which is not GCR (not “‘post-liminaire” c.f. [7; § 4.2, 4.3,
pp. 86—87]) and use the results of Theorem 7 to produce z-inner auto-
morphisms that are not inner in a situation where there are automorphisms
that are not m-inner yet weakly-inner in some faithful representation.

Example c. Let A be a factor of type II; acting on a (separable)
Hilbert space ## and having coupling 1 (e.g. the von Neumann algebra
generated by the left regular representation of the free group on two
generators). Let & be the algebra (ideal in % (#)) of compact operators.
Then the set {4 + C: 4 in #, C in €} is a self-adjoint operator algebra.
Moreover it is a C*-algebra 2 since it is norm closed. We see this by
noting that the “angle” between the closed linear subspaces € and .# of
B (H) is greater than 0; for if 4 in .# has norm 1, one of (4 + 4%)/2
and (4 — A*)/2¢ has norm at least 1/2. Let g, be a pure state of 4
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" . 1
assigning @ with |a| = - to one of these operators and let o be a pure

state extension of p, to # (). Since no pure state of .# (a I, factor) is
a vector state, p is not a vector state; and, therefore, annihilates €. Thus,
for each O in %, 5 = |o(d— O)| = |o(4)] = |4 —C; and A + € is
closed.

Since .#, as represented, has coupling 1, each automorphism « is
implemented by a unitary operator U; and «y(4 + O) defined as
U*(4 + C)U makes o, an automorphism of 2 (of course, weakly inner,
since A~ = F(H)). Now «/|¥ is M ; so that the given representation of
M combined with this quotient mapping, provides a representation ¢ of
21 on 4. The faithful representation (@ ¢ of 2 on J @ H carries «,
on A onto the automorphism f defined by

ﬂ({A + 0’ A}) = {“o(A) + “0(0)7 OCO(A)} ’

for each 4 in .# and C'in %. Since ¢ and ¢ are disjoint (: being irreducible
has no proper subrepresentations and ¢ being a I, factor representation
hasnoirreducible — indeed, no type I — subrepresentations), (¢ & ¢) (%)~
=% (K)o M. If § (that is, &, in the representation ¢ & @) were weakly
inner the unitary operator implementing it would have a (unitary)
component in .# which implements «. For an example of an auto-
morphism o, of 2 which, while weakly-inner in the given representation
of 2, is not weakly-inner in that given by ¢ & ¢, we have only to choose
for o one of the (many) outer automorphisms of .# (compare [6; Exercise
15, p. 308]).

To construct s-inner automorphisms of 2 which are not inner, let
U be a unitary operator on 5 in .#’ with |[U—1I| <1 and U not a
scalar. Then U induces an automorphism o of U such that |« —| < 2;
so that o is zz-inner (see Theorem 7). However « is not inner since 2 acts
irreducibly and U is not in 2. For suppose U = 4 + C is in 2, with 4
in 4 and C in €. For each A’ in A4', CA’'—A'C=UA"—A'U, so
CA'— A’'C is a compact operator in .#’ and is therefore zero. Hence,
Uc M A and U is a scalar, contrary to our choice of U.

With some slight additional effort we can analyze a faithful represen-
tation ¢ of U sufficiently to establish that each automorphism « of 2
which is the identity on .# is m-inner. In fact, as in Example b, ¢ ()~
has minimal projections, so that ¢ ()’ also has minimal projections
restrictions to which produce the faithful irreducible representation of
A (cf. [7; Corollary 4.1.10, p. 85]). Such a minimal projection E’ has
central carrier @, a minimal central projection. Now, restriction of
@ () to I — @ cannot be a faithful representation of 2l for then, as just
noted, it would have a faithful irreducible subrepresentation inequi-
valent to ¢ (A)E’, since they are separated by the orthogonal central
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projections @ and I — @, contradicting the uniqueness of the faithful
irreducible representation of 2. Thus ¢ (%) (I — @) = (0), since % is the
unique proper closed two sided ideal in Q. Hence g o ¢~ is the identity
on @(A) (I — Q) after composition with restriction to I — @; and is
induced by the unitary operator (in ¢ (2)~) which acts as the identity on
(I — @)y and which induces the restriction of pag=! to ¢(A)Q on
Q o, where 5, is the representation space of ¢.

By use of Lemma 2 one can give a shorter proof of the same result.
For any automorphism « of  which is the identity on .# is implemented
by a unitary operator U = expiH, with H = H* in .4'. With «, the
automorphism induced on U by expitH, ¢ — «, is a norm-continuous
one-parameter group in «(2) which contains o, whence o is z-inner
(Lemma 2).

In the class of examples which follow, we exhibit instances in which
all possible equalities and inequalities consistent with the inclusion
P (A) € 6o(A) S 7(A) occur among the groups y(A), ¢ (), #(A) — the
first inclusion being a special feature of this class of examples (c.f.
Example b and the remarks following).

Example d. Throughout this discussion &/ is an abelian C*-algebra
isomorphic to C(X) with X a compact-Hausdorff space (the pure state
space of &7); A, is the algebra of operators (n X n complex matrices)
acting on n-dimensional complex Hilbert space and 2l is the C*-algebra
o @ M,. There are two convenient ways of viewing 2, as n X n matrices
with entries in &/ (or C'(X)) and as continuous functions on X with
values in .#,. The center € of U is the set of matrices whose only non-
zero entries consist of a single 4 in .o/ at each diagonal position (equivent-
ly, the continuous mappings of X into scalars in .#,). We denote by
oo (YU) those automorphisms of 21 which leave each element of € fixed.

We prove first that «,(A) and 7 () coincide. Since in each faithful
representation of A an element of 7(2) leaves the center of the weak
operator closure of 2 and a fortiori € elementwise fixed, we have
7 (A) < o, (2A). Suppose that aisin «,(A). With E,;,7, k=1, ..., n matrix
units of #, and «(I ® Ej;) = Bj;; we have «(2; ,4;.® Ej;;)
=2 (4, ® I) B, since a(4A® I) = A4 ® I. Since multiplication by
B;,and 4;;, — 4;, ® I are strong-operator continuous; « (and, similarly,
o~1) is strong-operator continuous, has an extension & to the weak-
operator closure &/~ ® .#, of 2, and & is an automorphism of 2A~. For
this we note that the faithful representation of Q under consideration is
unitarily equivalent to &/ ® .#, acting on the n-fold direct sum of a
Hilbert space on which 7 is represented faithfully. Now the commutant
of A-is ' @ I, and &(4 ® I) = 4 ® I for A in o/~ since this is true for
A in the strong operator dense subset .7 of 2/~ and & is strong-operator
continuous. Thus & leaves the center of 2~ elementwise fixed, and % is
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inner since A~ is of type I. It follows that « is in 7(). Hence 7(A)
2 o« (), so that 7 (A) = ().

With « in () and g a point of X (i.e. a pure state of /) a homo-
morphism ¢, of o7 ® .#,, onto .#,, is determined by ¢,(4 ® B) = ¢(4) B.
With B in #, and «(p) (B) defined as ¢,(x(I ® B)), «(p) is an isomor-
phism of .#, into .#,; since @,(x(I ® I)) =1 and the closed 2-sided
ideal generated by I ® B is ¥, if B # 0. From the finite dimensionality
of .#,, we conclude that «(g) is an automorphism of .#, and that all
topological linear structures on the (bounded) linear operators over .4,
are equivalent. Thus, in order to establish the norm continuity of
o — a(p) it suffices to establish the continuity of ¢ — e« (p) (B) for each

n
fixed B in A,.If «(I® B)= } 4;,,® E;, with 4;, in &, then

jk=1
n

a(o) (B) = 2 o(4;)E;;; and the continuity in question follows from

75
the definition of the w*-topology on X.
Conversely, if o — a(p) is an arbitrary continuous mapping of X into

n
a(M,), with B in 4, and «(p) (B) = Y A;.(0)E;x, we have
jk=1

0 E;;a(0) (B)Eyw = A;1(0) E;, is continuous; so that each A, is a
continuous complex-valued function on X and corresponds to a (unique)
n
operator 4, in /. Defining « (4 ® B)tobe ) A4 A4;,® E;, determines
k=1

an automorphism « of & in m(A) (= oc:(QI)). The identity («f) (o)
= o (p) B(p) is valid, justifying the notation ‘«(9)’ and proving that the
correspondence between elements of () and continuous mappings of
X into «(.#,) is a group isomorphism when this second set is provided
with pointwise multiplication through the group structure of «(.#,).
Henceforth we pass from the elements of 7 (1) to the continuous mappings
of X into «(#,) without comment.

Since each automorphism of .#,, is inner and the only unitary opera-
tors in .#, inducing the identity automorphism of .#,, are the scalars of
modulus 1, «(A4,) ~ U(n)/T,, where U(n) is the group of unitary
operators in .#, and T, its center, is the circle group. Let p be the natural
mapping of U (n) onto U (n)/T;. If o in 7 (A) is inner there is a unitary
operator U in 2 which implements it. Let &(o) be ¢,(U), an element of
U(n). Again p — &(p) is a continuous mapping of X into U(n) and
p& = «. Conversely, if & is a continuous mapping of X into U(n),
o = pé& is a continuous mapping of X into U (n)/T}, i.e. an element of
7 (), while & is an element U of the unitary group of 2 which implements
. Thus ¢, () is the group of continuous mappings of X into the base
space U (n)/T; which can be “lifted” to the bundle U (n) (with projection
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p, fibre and group T'). From Theorem 7, each element y of the connected
component of the identity y(A) of «(A) is a product y, ... y, where
y;=v;(1) and t— ,;(¢) is a norm continuous one-parameter group in
o (). Thus, with I'(g, t) = (y1 (1) (0) - - - (¥n () (0), I"is a homotopy of
yand p—> y(p,0) =T, ... T, = Ty, ie. of y and the constant mapping
of X onto the identity element of U(n)/T,. Of course this constant
mapping lifts to U(xn); and the Covering Homotopy Theorem [29;
Theorem 11.7, p. 54] tells us that the homotopy under consideration
can be covered by a homotopy of this lifted constant mapping in the
bundle space U (n). This homotopy in the bundle provides a lifting of »
from U(n)/T, to U(n). Thus y is in ¢o(A) and 9y (A) < o(™A) < 7z (A)
= a, ().

From this same argument, if « and  in 7 () are in the same coset of
y (), say o = By with y in y (Y), then a homotopy of ¢ with the constant
mapping of X onto T in U (n)/T} provides a homotopy between o and £.
Conversely, if « and f are homotopic and F: X x [0,1]— U(n)/T},
F(g,0) = a(p), F(o,1) = f(p) is a homotopy, then [-LF defined by
(B~LF) (0, t) = B~ (o) F(p, t) (group product in U (n)/T}) is a homotopy
of f~1o with the constant mapping (onto T9). Hence f~1« lies in y (™)
(it is connected to the identity automorphism by the “arc’ which is the
homotopy just described). Thus sz (A)/y(2) is the group of homotopy
classes of mappings of X into U (n)/T}, the product of two such classes
being formed by multiplying any two representatives pointwise using the
multiplication in U (n)/T, and passing to the class of the result. Since
y(A) ¢, (A), each yp(A)-coset of an element o of ¢,(U) consists of
elements in ¢, (2l). From the foregoing, this coset is the class of mappings
of X into U (n)/T; homotopic to «. Thus each f homotopic to « lies in
1o(A) (can be lifted to U(n) — the Covering Homotopy argument gives
this same result directly), and ¢ (2)/y () is the group of homotopy
classes of continuous mappings of X into U (n)/T; which can be lifted to
U (n).

Applying these general topological identifications of 3 (21), ¢,(2),
7t (A) and their quotients to specific choices of X, we note first that if X
is contractible (to a point) — for example, if X is the unit ball in n-space —
then each continuous mapping of X is homotopic to a constant mapping,
7(A)/y () has a single element, so that y (), ¢, (A) and 7 () coincide
in this case. Specifically, if &7 is C([0,1]) and U is & ® A,, ()
= 4, (A) = ().

At the other extreme, we show that if & is C(U(n)/T;) and A is
I & M,, then y(A) € ¢,(A) € 7 (A). The last inequality is established
by noting that the identity mapping of U (n)/T; onto U (n)/T; cannot
be lifted to U (n); in other words, the bundle {U (), p, U (»)/Ty, Ty, T1}
does not have a cross section. To see this note that U(n) is homeo-
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morphic to T} x SU(n) and has fundamental group o, (U (n)) iso-
morphic to Z, the additive group of integers [4; Proposition 7, p. 61],
where S U (n) the special unitary group is the group of unitary operators
in .#, having determinant 1. Since U (n)is Ty, U SU (n) and T, N SU (n)
is - Z,, the group of multiples of I by nt* roots of unity, the second iso-
morphism theorem of group theory tells us that U (»)/T, is isomorphic
(a8 a topological group) to 8U (n)[Z, (here, Z, is the center of S U (n)).
Now 8 U (n) is simply connected and Z,, is a discrete subgroup in (equal
to) the center of SU(n). Thus 0 - Z, - SU(n)>SU()/Z,—0 is a
covering mapping and m;(SU (n)/Z,) (= m(U ()| Ty)) ~ Z, (cf. [4;
Proposition 7, p. 54 and Proposition 6, p. 60]). If our bundle admits a
cross section then x,(U(n)) (~ Z) has a subgroup isomorphic to
7 (U (n)|Ty) (= Z,) (cf. [29; 17.7, p. 92], actually 7, (U (r)) would be the
direct sum of 7, (U (n)/T,) and 7, (T,) since it is abelian). Of course this
i8, not the case since Z has no torsion. Thus the identity mapping of
Un)[T, onto U (n)/T; does not lift and provides an element o in s7(2)
not in ¢, (2A).

 We exhibit, next, an essential mapping a of U (n) /T1 into U (n)/T,
Whlch lifts to a mapping of U (n)/T} into U (r). Thus « is an element of
N (2[) not in y (). To describe « we use the representation of U (n)/T,
as: S U (n)|Z,, and of U (n) as the product T; x S U(n) noted above. From
the form of the representation T, x SU(n), i: U — (1, U) is just the
mcluslon mapping of SU (n) into U (n). Let ¢ be the natural mapping of
8U (n) onto SU (n)[Z, and s: U - U a mapping of S U (n) into S U ().
Since ¢ is open and s is continuous and maps Z, onto I, the mapping
#2 UZ,— U of 8U (n)[Z, into SU (n) is well-defined, satisfies rq = s
and is continuous. With ¢ = ¢r mapping S U (n)[Z, into U (n), ¢ is con-
tinuous and the diagram

SU ) Z,— U n)—> U@)|T,

q] ~I_ ]i
SU@m) —— SU(n)

is-commutative. We assert that « (= pf) is an essential mapping (i.e.
not homotopic to a constant mapping) of U (»)/T, into U (n)/T,. Suppose
the ccontrary. With f a continuous mapping of X into Y, we denote by
f+ the induced homomorphism of #,, (X) into x,, (¥) (cf. [29; 15.5, p. 75]).
Since pis = ptq and ptis inessential Pyt (= (pf)y)is 0 onx,, (SU (n)/Z,,);
80ithat Pyiesy (= Pefedy) 18 0 on 7, (ST (n)) (cf. [29; 15.6, 2° and 5°,
p:76]). Let f be a mapping of 8%, the 3-sphere, into SU(n). Then
sfi(= f*) is homotopic to nf (in the sense of homotopy addition) [29;
167, p.88]. From [29; 17.8, p. 93, 25.1, p. 131 and 254, p.132],
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Z ~ 75(U(n)) = 73 (Ty) + 75(SU (n)) =~ 75 (SU (n)). With f a represen-
tative of a generator z of 7z, (S U (n)), nf and, hence, sf are representatives
of nz (40 since 75(SU (n)) ~ Z). But sf is a representative of s, (z);
so that s,(z) = nz= 0. On the other hand, 7, is injective since it is
induced by a (trivial) bundle cross section [29; 17.7, p. 92, see the
proof], and p, is injective on 7, (U (n)) from the exactness of the homotopy
sequence of the bundle {U (n), p, U (n)/Ty, T,, Tl} as applied to the por-
tion - -+ — 75 (1) > 75 (U (n) )———>n3(U(n /Tl)—>n2(T (notmg
that 75 (7)) = 7, (T,) = O together with exactness shows that Py is an
isomorphism of 7z5(U (n)) onto 75(U (n)/Ty)) [29; 17.3 and 17.4, p. 91].
Since i,s4(2) is a non-zero element of 75(U (n)), PytsSs(2) &= 0 contra-
dicting the earlier conclusion that p.i,s, is 0 on each 7, (S U (n)). Thus
o (= pt) is essential and provides an element of ¢,(2l) (since it can be
lifted to ¢) not in y ().

For our next illustration, we take X to be 7, and « a continuous
mapping of T, into U (n)/T, (~ SU(n)/ Zn) which represents a non-zero
element in 7, (U (n)/T) (~ . Then « is not in y (A). However each
continuous mapping f of T1 mto U (n)]T; can be lifted to U (n). To see
this choose a fixed triangulation of U(n)/ T, as a complex K. Since the
fibre T, is arcwise connected, the bundle over the 1-skeleton K* of K has
a cross section (cf. [29; last statement, p. 148]), so that each simplicial
mapping of a space X into K* can be lifted. In particular each simplicial
mapping of 7, into K can be lifted. Now f is homotopic to a simplicial
mapping of 7' into K (from the Simplicial Approximation Theorem) so
that the Covering Homotopy Theorem [29; 11.7 p. 54] guarantees a
lifting of f. We conclude that, with &7 taken as C(7T) and A as &/ @ A,
y(QA) € (o) = n(A). In this example ¢(A)/y (@) (=z(A)/y(Q)), the
homotopy classes of mappings of X into U (n)/Ty (= SU (n)/Z,), is just
7, (S U (n)[Z,) which we have identified as isomorphic to Z,,.

To illustrate the possibility that 3 () = ¢(A) with () a proper
subgroup of n(2), we exhibit a compact space X and a (continuous)
mapping of X into U (2)/7; which cannot be lifted to U (2), so that this
mapping is an element of 7z(2A) not in ¢,(A); while each mapping of X
into U(2) is inessential, hence (by projecting the homotopy) each
mapping of X into U (2)/T; which can be lifted to U (2) is inessential —
from which, y () = ¢ (). Recall that U (2)/T,~ SU(2)[Z, and that

each element U of S U (2) has the form (g B 2) , where |a[? + |b|2 = 1. The

mapping U — (a, b) is a homeomorphism of 8§ U (2) with the unit sphere
in complex 2-space, i.e. with the 3-sphere 8% in real 4-space. The natural
mapping of SU (2) onto S U (2)[Z, corresponds to the covering mapping
of 8% onto P3, projective 3-space, which identifies antipodal points of
S§3. Thus U (2)/T, is (homeomorphic to) P2. Choose a triangulation of P3
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and let X be its 2-skeleton. Then, by definition, H*(X, Z), the first
cohomology group of X with integral coefficients, is H* (P2, Z). Since
HY(P3,Z) = 0 (cf. [13; Theorem 3.9.5, p. 1357), H*(X, Z) = 0, and each
mapping of X into T, is inessential (cf. [13; pp. 72—73, Corollary 7.4.4,
p- 302 and remarks following] — we are indebted to LErr KRISTENSEN
for drawing our attention to the identification of H™(K, @) with the
homotopy classes of mappings of K into the Eilenberg-MacLane space
K (G, m) which allowed us to complete the argument that mappings of
X into U (2) are inessential). Now U (2) is homeomorphic to 7} x SU (2)
hence to T, x S3. Each mapping of X into U (2) yields, by projection, a
mapping into 8% which is inessential (since X is a 2-complex) [14;
Theorem VI 6, p. 88]. Covering the homotopy of this mapping of X into
83 establishes that the mapping of X into U (2) (i.e. T x S%) is homotopic
to a mapping into T',. Having just noted that mappings of X into T are
inessential, we conclude that mappings of X into U (2) are inessential; so
that y (A) = ¢, (Y).

We have noted that p: U(2) - U (2)/7; has no cross section. If the
identity mapping of X onto X could be lifted, this cross section over the
2-skeleton X of U(2)/T; could be extended to a cross section for the
total bundle, since the fibre 7', has 7,(7T,) = 0 (cf. [29; pp. 148—149]).
Thus the identity mapping of X onto X cannot be lifted to U (2), and is
an element of () not in ¢, (A).

Let us denote, now, by 2,,, the C*-algebra 27,, ® .#, where &7, is
the algebra C(S™), 8™ the m-sphere. Since U (n) is homeomorphic to
T, x SU(n) and the natural mapping of SU(n) onto SU(n)/Z,
(=~ U (n)/Ty) is a covering mapping

for m = 2 from [29; 17.8, p. 93, 21.2(2), p. 111, 17.6, p. 92]. Using
Bott’s Periodicity Theorem [2; Theorem 5, p. 51], we have =, (U (n)/T;)
(w (U (n))) is 0 for m even and Z for m odd 41 when m < 2n, while
Ton(U )| Ty) ~2 Zyy, Ton 41 (U@)|TY) is Z, for even # = 2 and 0 for
odd 7; 75y, 4 o (U ()| Ty) ~ Zy+ Zy, 1 1y, for even n = 4 and ~Z,, | 1yy0
for odd » = 3 (cf. [31; p. 103, p. 117]). We have noted that

%(Q[mn)/}’ (len) ~ ﬂm (U(n)/Tl) >
so that the list preceding identifies this quotient for the given m and n.
In particular, for even m < 20, 77 (U n)/y (Umn) i8 0,16 7 (Upn) = ¥ (i)
Hence in this case, each mapping of S, into U (n)/T} lifts to U(n) and
7 () = to(Umn) = ¥ (yy). For odd m 4= 1 and m < 2,

so that y(¥,,) € #(,,,). We shall note that ¢(U,,) = 7(,,,) for
m,n=1,2,..., by universal bundle techniques. (We are indebted,
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once again, to L. KrRISTENSEN for pointing out the use of universal
bundle methods in providing a detailed description of mappings which
lift.)

We begin by identifying ¢, () more carefully, with A = &/ ® .#,, and
& = C(X). Suppose that X is a (compact) k-dimensional complex. Let
B be an m-universal bundle with base B, fibre and group 7} and pro-
jection ¢ (cf. [29; 19.2, p. 101, 19.6, p. 103]), where m is taken very large
relative to k£ and n. Note that each simplicial mapping g of X into B is
inessential, for @, defined on the subcomplex X x {0}y X x {1} of
X x [0,1] by Gy(x, 1) = b, (a fixed point of B) and G,(x, 0) = g(x) can
be extended to a homotopy @, mapping X x [0, 1] into B, of g with the
constant mapping of X into b, since the high connectivity of B (cf. [29;
19.4, p. 102]) guarantees that there is no obstruction to the stepwise
extension of G over a simplex of X x [0, 1] of a certain dimension from
its value on the boundary of that simplex in the skeleton of X x [0, 1]
of one lower dimension.

Since each mapping g of X into B is homotopic to a simplicial
mapping (Simplicial Approximation Theorem [13;1.7.10 to 1.8.1, p . 37]),
¢ is inessential. Thus a mapping of X into B, which lifts to B is seen to
be inessential by projecting the homotopy of the lifted mapping to a
constant mapping into B. Conversely if a mapping of X into B, is in-
essential the Covering Homotopy Theorem [29; 11.7, p. 54] provides a
lifting of it to B; so that the mappings of X into B, which can be lifted
are precisely the inessential ones.

From the universal property of B, there is a bundle mapping % of
U (n) into B inducing a mapping & of U (»)/T, into B, (cf. [29; 2.5, p. 9]).
Moreover [29; §10, pp.47—49] the bundle B’ induced by % over
U n)|T, is equivalent to U(n) over U (n)/T,. Thus the possibility of
lifting a mapping f from X into U (n)/T to U (n) is equivalent to that of
lifting f from U (n)/T, to B’. Now B’ is the set of points (u,b) in
(U (n)|Ty) x B such that k(u) = q(b) (cf. [29; 10.2, p. 47]); so that if g is
a lifting of Af from B, to B, then [ defined by f(z) = (f(z), g(x)) is a
lifting of f from U (n)/T, to B’ since hf(z) = qg(x). Conversely, if f lifts
f from U (n)/Ty to B’, then f(x) = (f (%), g (x)) for each z in X and some
mapping g of X into B, since the projection of B’ onto U (n)/T, is, by
construction, projection onto the first coordinate; and g lifts 2f from B,
to B since kf(x) = qg (x). Thus f lifts to U (n) if and only if Af lifts to B,
that is, if and only if Zf is homotopic to a constant mapping into B;.
With U = &7 ® A4, and & = C(X), ¢,(2) is the group (under pointwise
multiplication in U (n)/T,) of mappings f of X into U (n)/T} such that A is
inessential. In particular, taking S* for X with £ = 3, we see that all
mappings f e in ¢, (A) (= t,(Agn)) for 7, (By) ~ 7, (B) = 0 (recall that
B is m-universal, so, m — 1 connected, with & < m), from the exactness
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of the bundle homotopy sequence [29; 17.4, p.91], - — 7, (7))
— 713, (B) - 713, (By) - 75,1 (T4) and the fact that m,_{(7Ty) = 7 (T})
= 7, (B) = 0 with & = 3. Since 7,(U (n)/T,) = 0 and the arcwise con-
nectedness of T allows us to lift mappings of a 1-complex into U (n)/T,
to U(n) (as noted earlier when we discussed the case X = T), we see
that 1y (Upy) = T @,,) forallm,n=1,2,... .

We can show that ¢ (U,,) = 7 (Y,,,) without universal bundle

techniques by a more special analysis. From the homotopy sequence of
the bundle,

o> 0 (Ty) = 70, (U (m)) Ji’nm(U(n)/Tl) > Ty g (T) >+

so that p,, is an isomorphism of z,, (U (n)) onto ,,(U (n)/T,) for m = 3.
For m = 2, 7,(U (»)/T;) = 0 as noted earlier. For m = 1, 7y(T) = 0, so
that p, is surjective for all m. Thus each mapping of S™ into U (n)/T} is
homotopic to the projection of some mapping of 8™ into U (n), i.e.
homotopic to a mapping which lifts, and hence lifts itself. It follows that
to( ) = 7(Y,,,) for all m and n.
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