
Commun. math. Phys. 4, 32—63 (1967)

Derivations and Automorphisms
of Operator Algebras

R I C H A R D V. K A D I S O N *

University of Pennsylvania, Philadelphia, Pennsylvania

and

J O H N R. R I N G R O S E

University of Newcastle, Newcastle upon Tyne, England

Received July 15, 1966

Abstract. The theorem that each derivation of a (7*-algebra 21 extends to an
inner derivation of the weak-operator closure φ (2l)~ of 21 in each faithful represen-
tation φ of 21 is proved in sketch and used to study the automorphism group of 21 in
its norm topology. It is proved that the connected component of the identity i in
this group contains the open ball & of radius 2 with center i and that each auto-
morphism in && extends to an inner automorphism of

I. Introduction and preliminaries

Our purpose in this paper is to study the group α (21) of automorphisms
of a C*-algebra 2t together with and in relation to some of its subgroups.
We note that the mappings φ of 0*-algebras we consider are assumed
to preserve ad joints (99 pi*) = φ(A)*) throughout; so that "representa-
tion" etc. refer to what is sometimes designated by '^representation"
etc. Our particular concern is with α(2ί) provided with the topology it
acquires from ^(21), the bounded linear operators on 21 (in its norm),
taken in its norm (or, uniform) topology. Recall that each element of
α(2l) is an isometry of 21 [10].

In a recent series of papers [16, 18, 24], it is shown that each deriva-
tion of a 0*-algebra 21 extends to an inner derivation of the weak-
operator closure 2l~ of 21 in every faithful representation of 21. Each such
derivation is a bounded linear operator [23] and, as such, the infinitesimal
generator of a norm-continuous, one-parameter group of automorphisms
of 21. The fact that a derivation extends to one which is inner is equiv-
alent to the fact that the automorphisms of the one-φarameter group
extend to ones which are inner. These considerations as well as an
account of the derivation result, for convenience and completness, are
found in § 2.

The main technical result of this study (Theorem 7) is that each
automorphism of a (7*-algebra 21 in the interior of the ball US of radius 2
in £8 (21) with center t, the identity automorphism of 21, lies on a norm-
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continuous one-parameter subgroup of α(2l) and extends to an inner
automorphism of 2l~ in each faithful representation by virtue of the one-
parameter group result. It is proved in the following stages. Each such
automorphism α is shown (Lemma 4) to extend to an automorphism δc
of 2l~~ leaving each element of the center of 2l~ fixed, in each faithful
representation of 21, by 0*-algebra representation and von Neumann
algebra methods. (One can go on to show that α is spatial at this point,
though it is not needed, and follows from the final result.) It is proved
(Lemma 5) that each inner automorphism interior to 08 of a von Neumann
algebra can be implemented by a unitary operator in the algebra with
spectrum in an open right half-plane by a combination of von Neumann
algebra and spectral theoretic techniques. The next fact (Lemma 6),
that each spatial automorphism of a 0*-algebra which can be imple-
mented by a unitary operator with spectrum in the open right half-plane
lies on a norm-continuous one-parameter subgroup of α(2l), is proved by
the methods of the theory of analytic operator-valued functions, or [9;
Corollary 3]. The main theorem (Theorem 7), that the connected com-
ponent γ (21) of i in α (21) is open, generated (as a group) by one-parameter
subgroups of α(2l), and consists of automorphisms which extend to inner
automorphism of 21 ~ in each faithful representation of 21, is an easy
consequence of these considerations, after passing to the reduced atomic
representation. I t follows that the various subgroups of α (21) we consider
(with the exception of the group of inner automorphisms) are also open,
since they contain the connected component of i (by virtue of its "inner"
properties). The results of this section (§ 3) are in sharp contrast to the
situation which obtains if α (21) is viewed with one of its weaker topologies.
As a result of our information in the case of the norm topology, each
(norm) continuous representation of a connected topological group in
α(2l) has image (in y(2l)) consisting of automorphisms which extend to
inner ones (Corollary 8). On the other hand, BLATTNER [1 Corollary]
shows that each locally compact group with a countable base has a
(faithful) strong-operator continuous representation by unitary operators
which induce outer automorphisms of a (hyperfinite) factor of type IIλ

(except, of course, for the identity operator /). (N. SUZUKI [30] did the
same thing for a countable discrete group at the same time.) In [28],
SINGER analyzed certain subgroups of α(2l), with 21 a factor of type IIl9

producing numerous groups of outer automorphisms of 21 in the process.
The existence of outer automorphisms of factors of type IIX had been
known for some time [6; Exercise 15, p. 308].

In § 4 various special classes of (7*-algebras and special (7*-algebras
are discussed with regard to their automorphism group and its subgroups
to illustrate that all possibilities not in conflict with the results of § 3
can occur for automorphisms on the surface of 38 (e.g. they can, in certain
3 Commun. math. Phys., Vol. 4



34 R. V. KADISON and J. R. RINGROSE :

cases, lie in the connected component of t; they can, in certain cases, be
extendable to be inner in all faithful representations without being
either inner or in the connected component of i, etc.).

In a number of physical contexts, the bounded observables are
associated with the self-adjoint operators in a (7*-algebra 21. The sym-
metries of the physical system under consideration are expressed in terms
of a representation of the physical symmetry group G by automorphisms
of 21. In general G will be a Lie group. The infinitesimal generators of the
one-parameter subgroups of G often correspond to (unbounded) self-
adjoint operators of special physical significance. It is of importance to
know whether these generators are observable (in some sense) — equiv-
alently, if the automorphisms corresponding to the one-parameter group
are inner. A case in point is the Haag-Araki description of relativistically
invariant local quantum fields in terms of von Neumann algebras of
bounded local observables. The dynamics and relativistic invariance are
expressed in terms of a (strong-operator continuous) unitary representa-
tion g -> Ug of the inhomogeneous Lorentz group satisfying certain
conditions. The Ug induce automorphisms (which are the physically
significant entities associated with the Ug) of 21, the (7*-algebra of
(bounded) global observables. The infinitesimal generators of the trans-
lation part of G correspond to the energy and momenta of the field. Given
the "spectrum condition" (tantamount to "positive energy"), i.e. that
the spectral measure decomposing the representation of the 4-space
translation subgroup of G on its dual group (energy-momentum space)
has support in the future light cone of that space; H. BOUCHERS [3]
proves that the automorphisms of 21 corresponding to this subgroup
extend to inner automorphisms by reducing the unbounded generator
case to the bounded one and then applying the norm-continuous re-
presentation results. G. DELL'ANTONIO [5], dealing directly with a
representation of G by automorphisms satisfying the appropriate
analogue of the "positive energy" condition, proves the automorphisms
extend to inner ones by making the same reduction to the norm-con-
tinuous case. The results of BLATTNER, SINGER, SUZUKI [1, 28, 30] make
it amply clear that something in the nature of the spectrum condition is
required to replace norm continuity if "inner" (or "observability") are
to be concluded.

We wish to record our gratitude to H. BOBCHEKS, G. DELL ANTONIO and S.
DOPLICHER for their role in discussions of the interplay between the mathematical
and physical background of the material in this paper; to J. DIXMIER for pointing
out the relevance of [1] to the study of the automorphism group in topologies
weaker than the norm topology; and to L. KRISTENSEN for help (specifically noted
in § 4 Example d) with certain applications of algebraic topology to groups of auto-
morphisms. Both authors extend their thanks to Professor SVEND BUNDGAARD for
the hospitality of the Mathematical Institute in Aarhus during a period of the
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development of these results. The first and second named authors would like to
thank Dr. L. MOTOHANE and Professor PAUL HALMOS for their kind hospitality at
the Institut des Hautes Etudes Scientifiques and at the University of Michigan,
respectively, during the initial stages of this work.

We recall that a C*-algebra 21 is a Banach algebra with an involution
A ~> A* which is a conjugate-linear anti-automorphism of 21 satisfying
U-4*-41| = ||̂ 4*|| # ||-4| Each such O*-algebra has a faithful isometric
representation as a norm-closed self-adjoint subalgebra of «^(^), the
algebra of all bounded operators on a Hubert space ffl [10, 12]. A state
ρ of 21 is a linear functional on 21 such that ρ (/) = 1, where I is the unit
element of 21, and ρ(A) ^ 0 when 4̂ >̂ 0 (i.e. when the spectrum σ(A) of
A consists of real non-negative numbers and A = A*). Each such ρ gives
rise to a representation φ on the completion of the quotient space 21/ Jf
of 21 by the left kernel Jf of ρ, the left ideal consisting of those elements A
in 21 such that ρ (A* A) = 0, relative to the inner product (A + Jf, B + Jf)
= ρ(B*A), where φ(T) is determined by its action on 21/Jf as
φ{T) (A + JίT)=TA + X. From [26] one knows that the pure states,
those not expressible as a convex combination of states distinct from it,
are precisely the ones which give rise to irreducible representations. In
particular, the Krein-Milman theorem [21] yields the fact that there is a
separating family of pure states of 21 and, so, a separating family of
irreducible representations of 21. Choosing one such representation φs

from each equivalence class, we form their direct sum φ (where φ(A)
transforms the vector {xs} in the direct sum of the representation Hubert
spaces onto {φs(A)xs}), and refer to this as the reduced atomic representa-
tion of 21 ("the" since any other such is unitarily equivalent to it).

Definition, An automorphism α of a (7*-algebra 21 acting on a Hubert
space ffl is said to be: extendable if there is an automorphism of the weak-
operator closure of 21 equal to it on 21, spatial if there is a unitary operator
U on 3? such that oc(A) = UA £7* for each A in 21, and weakly-inner if it
is spatial and U can be chosen in the weak-operator closure of 21. If φ is
a faithful representation of 21 on a Hilbert space, we denote by εφ(^i),
σV(2l), and ^(21), the groups of those elements α of the automorphism
group of 21 for which φocφ*1 is extendable, spatial, and weakly-inner,
respectively. We denote by π(2ί) the intersection of all the subgroups

(̂21) and refer to its elements as permanently weakly (for brevity, π-)
inner automorphisms of 21. We write ιQ(Ql) for the group of inner auto-
morphisms of 21 and y(2l) for the connected component of i in α(2l)
provided with its norm topology.

The π-inner automorphisms of 21 would seem to be the "eternal"
symmetries of the physical system 21 represents. We note, especially,
that there are such symmetries (in y(2t)) which are not inner and such
symmetries which are neither inner nor in y(2l).
3*
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II. Derivations and inner automorphisms
We present a brief survey of the proof that each derivation of a

von Neumann algebra is inner. To begin with, note that each derivation
δ of a C*-algebra 21 acting on the Hubert space 34? is continuous on the
unit ball £fx of 21 taken in the weak operator topology. For this one
makes use of SAKAI'S result that δ is norm continuous [23], the equality

(δ (A) x, y) = (δ (A*) A*x, y) + (A^δ{A^) x, y) for A ^ 0 and the strong-
operator continuity of A -> A^ on the set of positive bounded operators.
This establishes the continuity of δ on the positive elements in ^ at 0
from £fΎ taken in the strong-operator topology to 21 taken in the weak-
operator topology. The strong-operator continuity of A -> A+ and
A -> A~ on the self-adjoint operators together with A = A+ — A~ and
this last conclusion yields the same continuity of δ at 0 on the self-
adjoint operators in Sfv The linearity of δ yields this continuity on the
self-adjoint operators in Sfx, and this linearity together with the fact
that the weak and strong-operator closures of a convex set of operators
coincide give the continuity of δ on the self-adjoint operators in Sfx

taken in the weak-operator topology. The weak-operator continuity of
the adjoint mapping and the decomposition A = (A + A*)/2 -f
+ %{A —A*)/2i give the same continuity for δ on S?v

It follows, next, that δ extends to the weak-operator closure Sf± of
6^1 and then linearly to 2l~ the weak-operator closure of 21, a von Neu-
mann algebra. The extension δ so obtained is a derivation of 2ί~. Let srf
be a (self-adjoint) maximal abelian subalgebra of 2Γ, the commutant of
21 (the existence of such an stf is easily established by the use of Zorn's
lemma) and let SP be the lattice of orthogonal projection operators in stf.
With 2l0 the set {A^ + + AnEn : Al9 . . ., An in 2t~ and El9...,En

in ^} , define δQ on 2l0 by:

One establishes that δ0 is well-defined (i.e. independent of the representa-
tion of an operator in the form A1E1+ + AnEn), is a derivation of
the self-adjoint operator algebra 2ί0 into 2ί0 and is bounded. From the
boundedness and linearity of δ0 it extends to a derivation of the norm
closure of 2ί0, a (7*-algebra. From the preceding, this extension has, in
turn, an extension δ0 to the von Neumann algebra 2ί̂ ". Since 2lό" contains
21, its commutant 21Q is contained in 2Γ; and since 2l0 contains &, 2l<7
contains jtf and 2lό commutes with j / . But stf is maximal abelian in 2Γ
so that 2lό is contained in &0 and is abelian. Thus 2l̂ ~ is a von Neumann
algebra of type /, and from [20; Theorem 9], δ0 is inner. Say δo(A)
= BA — AB, with B in 21^, for all A in 21^. Since SQ(E) = 0(= δ(I)E)
for each E in ^ , B commutes with s/. Moreover, since δ0 is an extension
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of <5, we have that δ is spatial (i.e. of the form A -> BA—A B = &ά B(A)
for some bounded operator B).

The remainder of the argument consists of showing that B can be
chosen in 2l~. If δ (A) = B0A — A Bo for each A in 21 then B — Bo lies
in 21'. Conversely (B + B') A — A (B + B') = δ {A) for each A in 21 and
5' in 21'. If 17' is a unitary operator in SI', U'*BΌΆ — AΌ'*BΌ'
= BA—^4J5, so that each operator in co^(B)9 the convex hull of
{U'*BUr: U' a unitary operator in 21'}, and in co^B), its weak-
operator closure gives rise to δ on 31. Now cogi'(jδ) is weak-operator com-
pact, convex, non-null and stable under the mappings T-> £7'* T Uf, V
a unitary operator in 21'. Zorn's lemma provides a minimal such subset Jf*
of cθ2i'(2?). One establishes, now, that C^ consists of a single element
which, by stability under the mappings T -> U'*TU'', commutes with
all the unitary operators in 21', hence with all operators in 2Γ; and,
therefore, lies in 31". Since Jf is minimal, ll^Pf = H -̂̂ ΊI ^ o r e a c n ^i a n d
B2 in Jf and each operator P in the center <$ of 2ί~ (for {Bo : Boζ J>Γ and
ll-̂ ô ll = α} *s c o n v e χ j weak-operator compact and stable under the
mappings T ->- Ur*TU'). Since J5 commutes with JS/ and j / contains ίί,
i? and hence each Bo giving rise to δ commutes with ^. Thus the argument
may be given assuming 2l~ to be of pure type. We illustrate the rest of the
argument in the case where 2l~ is of type ///. (The other cases involve
some variations of this argument, though one could deal just with the
type /// case by using a device of SAKAI [24]. The algebra 2l~ is ten-
sored with a factor of type III and δ is extended to this product, an
algebra of type /// by [22], as we did in defining δQ. It is easy to show
that the extension is inner if and only if δ is.)

Assuming 2ί~ is of type /// let Jf0 be the set of differences of opera-
tors in Jf\ Then Jf 0 is a subset of 21', is weak-operator compact, convex,
non-null and stable under the mappings T -> £7'* T U'. Of course, we
want to show that Jf0 consists of 0 alone. Since B*A — AB*
= —(BA* — A*B)* is in 21, for each A in 21, B + 5* and B—B*
provide derivations of 21 so that we may assume, at the outset that B is
self-adjoint. Replacing B by B + |i-δ||̂ > we may assume, moreover, that
B ^ 0. Then each element of ccV (B) is positive. If Ao in Jf 0 is not 0, the
lemma following this discussion, which is a slight extension of J. Schwartz's
slight extension [25; XXII p. 3.33, Lemma 15] of the Dixmier Process
[6: Chapter 3, §5], implies that CO^^Q) contains a non-zero central
operator C. Since — A o lies in JΓO so does —C. For at least one of C and
— C, say C, there is an a > 0 and a central projection P such that
CP > aP. Now G = B1 —B2, for some Bx and B2 in JΓ; and \\B1P\\
= | |£ 2 P| | = ||J32P + CP\\ ̂  ||J52P + aP\\ > \\B2P\\ (since B2P ^ 0), a
contradiction. Thus JΓO contains only 0, Jf has a single element in 21~~
inducing δ, and δ on 21~ is inner.



38 R. V. KADISON and J. R. RINGROSE :

We may assume, in the foregoing that 2Γ is countably decomposable,
for if {Pα} is a n orthogonal family of central projections, δ (Pα) = 0 as
noted; so that δ maps 2l~Pα into itself. If this derivation is inner and
induced by Bx with ||J5α|| ^ ||JB||, then ΣBX induces δ on 2l~ and lies in
2t~. Using projections in ίί cyclic under Ή', we may assume ^ is countably
decomposable. In this case 2Γ has a cyclic projection Er with central
carrier I. Since A-> AEr is an isomorphism of 2l~ with %~E', we may
work with Ql~E\ whose commutant E'Qί'E' is countably decomposable.
With this in mind, the lemma following is the extension of the Dixmier
Process needed in our argument.

Lemma 1. If & is a countably decomposable von Neumann algebra of
type III, then co^(^4) has a non-zero operator from the center ̂  of 01 in its
norm closure if A is a non-zero element of &.

Proof. With J^ a family of operators, we say that the positive linear
n

mapping α defined by α (B) = Σ aj Uf B Us with a3- ^ 0, Σa^ = 1 and
? = i

each Uj a unitary operator is from J^ when each Όj lies in ϊF. Note that
||α|| ^ 1 and that, if α is from an algebra of operators with center ΐί,
α(C) = C for each C in <€.

If we can prove:
for each non-zero AΎsxM and each ε in (0, 1) there is an α from

(*) 01 and G in # such that || α (̂ 4) — C\ < ε \\ C\\ — if A is self-adjoint,
C may be chosen self-adjoint and such that \\A\\ g (1 + ε) ||C||

then, given non-zero 4̂ in ^ , we may choose α l 3 α2, . . from 01 and
CΊ, (72. . . in ̂  such that

Hence

and with m> n,

\\Om-Cn\\ < \\Cm-ocm...oc1(A)\\ + \\ccm...cc1(A)-Cn\\ <

£ (m + l)-i IIOJ + IK

Thus {Cn}, and therefore also {ocn . .. α ^ ) } , converge to some Co in
Since

(70 is non-zero and the lemma follows.
It remains to prove (*). Given (*) for self-adjoint operators, if

A = Aί + iA2 with, say, ̂  non-zero and Av A2 self-adjoint, choose C1

and C2 self-adjoint in ̂  and α1? α2 from 01 such that

0» <
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Then \\oc2oc1(A) — C\\<ε\\C\\, where C=G1 + iC2. We may confine

attention to a non-zero, self-adjoint A in έ%. Given ε > 0, we can find
orthogonal (spectral) projections Ev . . ., En and real numbers av . . ., an

such that lA — Σaβjl <~ε\A\ and max|α3 | = |μ | | . If (*) holds for

such a sum of projections, choose G self-adjoint in ίί and α from &
such that

(1 + ε) \\G\\ S ||27α^,|| = μ | | and ^{Σaβ^-Cl < y ε\\C\\ .

Then

\\oc(A) - C\\ < \\X(A) - «(ΣaiE,)l

Note next that there are mutually orthogonal projections Qlf . . ., Qm in
^ such that QkEj and Qk— ΣjQkEj have central carrier Qk or 0 for each
j and ft, QjcΣjdjEj =μ 0 for each ft, and {ΣkQk) (Σ^aβ,) = Σj^Ej. If (*)
holds for ΣjajEjQk for each ft, choose /3fc from &Qk and CfcQ7c self-
adjoint in ΉQk, the center of 8%Qk such that WβidΣjajEjQ^ — CkQk\\ <
< ε\\GkQk\\ and WΣ^E^l ^ (1 + ε) \\GkQk\\. Defining ock on 0t as the
linear extension of βk on 0tQk and the identity on M{I — Qk), ock is from
0t, satisfies the same inequality as βk and

! « ! . . . α m ( Σ > 3 ^ ) - ΣkCkQk\ < ε\\ΣkCkQk\\ .
In addition,

WΣ^Ei <(l + ε) \\ΣkCkQk\\ .
n

These reductions permit us to assume that A=Σ aj^v ^ n a ^ e a c n

1 1
Ej has central carrier Q, that Q — ΣEό (= Fm) is either 0 or has central
carrier Q, and that ||^4|| = \an\. Since M is of type III and countably
decomposable, all the E3> are equivalent. Moreover, En is the sum of
projections Fn, Fn+l9 . . ., Fm_1, for m arbitrarily large, each equivalent
to Ev Writing Fό for Eί with '̂ < w, bj for α5 with ^ ^ ^, &3 for αw with
n <j <m,bm for 0 and m' for m — 1 or m according as Fm is or is not 0,

n m'

we have Σ ajΉj = ^ ^-^i Choosing suitable partial isometries in £%
9 = 1 ? = 1

between the Ffs, we can construct a unitary operator Uτ in & such that
m' m'

C7* (Σ bjFj) Ur = Σ hiFτϋ)> f o r e a c i l permutation τ of {1, . . ., m'}. With
j = 1 ί = 1

/S the group of all permutations of {1, . . ., ra'} and ocm from ^ defined by
1 m' -x m'

*™ ( 5 ) = H7T Σ ϋΐ B ϋτ, we have «m ( Σ h?,) = δ Q. where δ = - ^ £ δ,
r in JS ? == 1 ? = 1

2 %—1 m — n

= τ^- Σ aj + w / αw. With C = αnQ, we have ||^4|| = ||O||. Since w is
? = l

fixed, given ε > 0, we can choose m so large that || ocm {Σa^Ej) — G\ < ε \\G\\.
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The result on derivations of (7*-algebras can be rephrased in terms of
one-parameter groups of automorphisms. In this form it is the key lemma
of our study, though its conclusion is subsumed in Corollary 8.

Lemma 2. // t -» oc (t) is a norm-continuous one-parameter group of
(i.e. representation of the additive group of reals by) automorphisms of a
C*-algebra 21 acting on a Hilbert space </f then each oc{t) is weakly-inner.

Proof. From [8; Theorem 2, p. 614], there is a bounded linear
operator δ on 2ί such that exp t δ = a (t) for each real t (δ is the infinitesimal
generator of t -> oc(t)). The series for exp£<5 yields

0 (ί2) = oc{t) [A] oc(t) [B]

= A B + t(Aδ(B) + δ{A)B) + 0 (t2) ,

so that δ is a derivation. The derivation theorem tells us that δ = &aiA 121,
with A in 2l~ (and A = A*, since δ(B*) = δ(B)* for each B in 21).
Comparing series coefficients oc(t) [B] = (expίό) (B) = UtBU_t, with
Ut (= exp it A) a unitary operator in 21".

III. The automorphism group

The principal results are contained in this section.
Lemma 3. If oc is an automorphism of a C*-algebra 21 acting on a

Hilbert space and oc is weak-operator bicontinuous on the unit ball of 21
(i.e. oc is ultra-weakly bicontinuous on Qί) then oc has an extension α which
is an automorphism of 2ί~, α is ultra-weakly bicontinuous on 2l~, and
lα-ίl-flα-tll.

Proof. From [17; Lemma (2.3)], α has an ultra-weakly continuous
extension α to 2l~ with image 2l~. The argument of [17; Lemma (2.4)]
shows that α is a homomorphism. The same considerations applied to
α" 1 yield an ultra-weakly continuous mapping of 2l~ onto 2ί~ inverse to
α on 21. By ultra-weak continuity, this mapping is inverse to α on 2t~;
so that α is an automorphism of 2l~. From the Kaplansky density
theorem, the unit ball of 2ί is strong (hence, weak)-operator dense in
that of 2l~ so that the ultra-weakly continuous mapping α — i maps the
unit ball of 21" into the weak-operator closure of the image under α — i
of the unit ball of 21. This closure is contained in the closed ball of
radius ||α —1\\ in 2l~. Thus ||α — ί|| ^ ||α —1\\ and, of course, ||£ — i||

= II«-Φ
Lemma 4. // α is an automorphism of a C*-algebra 21 acting on a

Hilbert space, and ||α —1\ < 2, then α extends to an automorphism ά of 21",
leaving each element of the center of 21~ fixed, such that ||α —1\ — ||α —1\\.

Proof. Suppose that 21 acts on the Hilbert space ffl, that oc is an auto-
morphism of 21 and that ||α —1\\ < 2. With Ef a projection in 2Γ, and φ
defined by φ(A) = oc(A)E'} for A in 21, {φ Θ 0 (21) acting on tf Θ W{
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does not have strong-operator closure φ(Qί)~ θ 21". Otherwise there is an
A in the unit ball of 2ί, with x a unit vector in Er given, such that

1 -\|[α-1\\ > \\[(φ φ i) (A) - (-E' φ /)] (a, x)\\

= \\(oc(A)E'x,Ax)-(-x,x)\\
and

μx-a:| | < l—Lflα-tll, \\oc(A)x + x\\ < l _ i - | | α - t | .
Hence

It follows now from [12; Lemma 3] that φ and i are not disjoint re-
presentations of 21. Zorn's lemma provides us with a maximal orthogonal
family {Ff

a} of projections in 2Γ such that, for each F'a there is a pro-
jection G'a in 2Γ and a partial isometry Ua with initial space O'a and final
space F'a such that oc{A)F'a = UaAO'aϋ*. Maximality of {F'a} and the
fact that φ and i are not disjoint no matter which (non-zero) projection
Ef we use in defining φ, allows us to conclude that ΣaF'a — I. Thus
oc{A) = Σa UaA Q'a U% for all A in 21. With y and z vectors in Jf, there is

m

a finite subset F'l9...,F'm of {^} such that \\y — Σ F'jVW < VHA\ I f ^

and B in the unit ball of SI are such that \([A — B] Q) Ufy, Ufz)\ < 1/2m
for = 1, . . ., m remembering that α is isometric on 31,

\(*{A - B)y, z)\ g | ( «μ - 5) (Γ^y), 2 ) | + 2\\y-ΣF>

jy\\ • \\z\\ <ϊ

5 ] GJ E7f y, Vf z)\ + \ < 1.

Thus α (and, similarly, α"1) is ultra-weakly continuous on 31; and, from
Lemma 3, has an extension oc which is an automorphism of 3l~ satisfying
||ά — ι\ = ||α —ι| | < 2. With P a central projection in Sl~, ά(P) = P,

since | |ά(P) — P | | = y | | ά ( 2 P —7) — 2 P + 7|| < 1 , and ά(P) and P

are commuting projections. (We can go on to show that ά is spatial,
though we shall not use this fact. I t is sufficient to prove that ά pre-
serves the multiplicity function of 2ί~ [15; Theorem 4.4.2], and since ά
acts identically on the center it remains only to show that α preserves
maximal cyclicity of projections in countably decomposable central
portions of 2l~. Let E be a projection in 2l~ which is maximal cyclic in
^ί~CE, where CE is the central carrier of E. With F = α (E), the argument
used above shows that \\F — E\\ < 1. Hence \\F~FEF\\ < 1, and the
self-adjoint operator FEF is one to one on the range of F, zero on its ortho-
gonal complement, and so has range projection F. Thus FE has range
projection F; a similar argument shows that EF (= (FE)*) has range
projection E, so E ~ .F, and F (= α(2£)) is maximal cyclic in 21"C^).



42 R. V. KADISON and J. R. RINGROSE :

Lemma 5. Let α be an inner automorphism of a von Neumann algebra
0t, for which ||α — ι\ < 2. Then there is a unitary operator U in 3$, with

spectrum a(U) in the half-plane Iz : Re 2 ^ ~o~(4—IIα — ^il2)^!* suc^

that oc(A) = UA Ϊ7* for all A in St.
Proof. The argument is divided into three distinct stages. The first

part proves the lemma when & is the algebra Jίn of all operators on an
w-dimensional Hubert space, n being an integer. This special case is used,
in the second part, to obtain a weaker form of the lemma in which
a(U) is contained in a slightly larger half-plane. Finally, the full lemma
is deduced from this weaker form.

(a) We assume that & = *Jίn. Let F be a unitary operator in Λn

such that oc(A) = VAV* for each A in Jίn, and let a be the point in the
convex hull of σ(V) which is nearest to 0. There are distinct points
αl5 . . ., aq in σ(F), positive real numbers cl9 . . ., cq with sum 1 such that
a = c1a1 + + cqaq, and unit vectors xlt . . ., xq such that VXJ — ajXj
[j = l5 . . . 5 q). Since xl9 . . ., xq are pairwise orthogonal, the unit vector

x — c^xΎ + + c2xQ satisfies (Vx, x) = a. Let E and F be the 1-dimen-
sional projections with x and Vx, respectively, in their ranges. Then

\\oc~t\\ ^ \\oc{2E-I)-2E + I\\

= 2\\F — E\\ ^ 2\\Vx — EVx\\ = 2\\Vx—(Vx,x)x\\ = 2(1 — \a\ψ .

Thus \a\ ^ ~ (4 — ||α — t\\ψ > 0. With ϋ - (α/|α|) F, Ϊ7 is a unitary

element of Jίn such that a {A) = C7 J. C7* for all 1̂ in ^ n , and σ(?7) lies in

(z Rez^y (4-||α~^||2)i} .
(b) With 01 now a general von Neumann algebra, let F be a unitary

operator in ^ such that oc(A) = F̂ L F* for each 4̂ in ^ . Choose a real

number & such that 0 < h <γ (4— ||α —ί||2)2". We shall show that α

can be implemented by a unitary operator Ϊ7 in & with σ(U) Q
Q {z: Rez ^ ^}. For each non-zero central projection P in £$ let ί̂ (P)
denote the distance from 0 to the convex hull of the spectrum σP (P F)
of PV (considered as a unitary operator on the range of P). We first
prove that each such P contains a non-zero central subprojection Q
such that d(Q) ^ k. Suppose, to the contrary, that P contains no such
Q. Given ε > 0 such that ||α — t|| + 2 ε < 2 , we can choose spectral
projections El9 . . ., Em for F, with sum /, and complex numbers

m

av . . .,am of modulus 1, such that \\V— W\\ < ε, where W = Σ aj^j
7 = 1

With β the automorphism of 0ί defined bγβ{A)= WA W*, ||α — β\\ < 2 ε
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and so ||/3 — t\\ < ||α — ι\\ + 2ε < 2. With Pi the central carrier of Eh and
Q the product of a maximal subset of {P, Pv . . ., Pm} containing P
with non-null intersection, Q is a non-zero central subprojection of P
for which each QEό either is 0 or has central carrier Q. Renumber so that,
for some n ^ m, QEό is non-zero if and only if 1 < j < n.

By hypothesis, d(Q) < Jc, so we may choose bv . . ., bq in
UQ(QV) and positive real numbers cv . . ., cq with sum 1, such that

M i + + cΛI < *. Since ||Q V-JJ «, W = | | β ( F - TF )|| < ε, each

of δ1? . . ., δG is at distance less than ε from (TQ(QPF) = {α1? . . ., αn}.
(Recall that, if A and B are normal operators and λζσ(A), then the
distance c£ from λ to σ(J5) is at most \\A — JB||. For by spectral theory,
d = \\(B- λiyψ1; and if d > \\A - B|| then \\(A - λl) - (B - λ/)|j
< | | ( ^ ~ A/)-1!"1, which implies [8; Lemma 1, p. 584] that 4̂ — λl has
an inverse, contrary to hypothesis). Replacing δ's by appropriate α's,
Λve obtain a convex combination α0 of av . . ., an for which |αo| < Jc + ε.

Let ^ 1 ? . . ., i^n be equivalent projections in ^ such that 0 <F3^ QE3

(1 ^ j ^ ^), and choose partial isometries .F^ (i, ̂ ' = 1, . . ., n) in ̂ ,
with i ^ = Fj, which form a set of matrix units in a *-subalgebra ^# of

& which is isomorphic to <J(n. With WQ = 27 α Λ> TFo ̂ s unitary when

considered as an element of «jf, and l^o^i^o = aiaj^ij =

= β(Fij). Hence the restriction γ of β to ̂  is an automorphism of ^
Λvhich is implemented by WQ. Since || γ — c\\ ^ || β —1\\ < || α — J|| + 2 ε < 2,
while α0 is a convex combination of <zl5 . . ., an and so lies in the convex
hull of the spectrum of Wo, we deduce from part (a) that

Kl^γ[*-(ll«-ί|| + 2ε)2p.

This, with our previous estimate for \ao\, gives

& > y [ 4 - ( | | α - < | | + 2ε

contradicting the assumption that

with suitably chosen ε.

We have now shown that each non-zero central projection P in 0t
contains a non-zero central subprojection Q for which d(Q) ^ Jc. It
follows that there is an orthogonal family {Qj} of central projections,
with sum /, such that d(Q0) ^ Jc. With a5 the point in the convex hull
of σQj(Qj V) which is closest to 0, 1̂ 1 ̂  Jc > 0 and {aJl\aj\)Qs V has spec-
trum in {z : Rez JΞ> k}. Hence U = (Σ(aj/\aj\)Qj) V is a unitary operator
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in 0t, with spectrum in the same half-plane, such that oc(A) = UA U*
for each Ain 0%.

(c) For c in 0, y π) define $ c = {exp^£: — c < t < c}, so that Sc is

the arc of the unit circle that lies in the half-plane {z : Re z ^ cose}. We

can choose b in 0, y π) so that ||α — c\\ = 2sinδ, whence

cosδ = (4 — || α — *| | 2)^

and we have to show that α can be implemented by a unitary operator
C 7 i n ^ with σ( 17) Q Sb.

Choose real numbers c, δ such that b < c <γ π and 0 < δ < y cose,

and let εn = (c— &) (1 — ό)*1"1 (w = 1, 2, . . .). We shall construct in-
ductively a sequence {Un} of unitary operators in 0ty each of which
implements α, such that

(••) ( T ( P , ) C S 4 + V | | f f « + i - P«i ^ [l-exp(i,5ε r e) | .

Since 0 < cose < cosδ = y (4 — ||α — ί||2)^, it follows from part (b),

with h = cose, that there is a unitary operator U1 in £% which implements
α and has a^ϋ^) a subset of 8C = Sb+εi. Suppose that a unitary operator
Un in & has been constructed, with Un implementing α and a(C/n) Q Sb+εn.
Let i£ and i^ be the spectral projections for Un corresponding to the Borel
sets

{expiί: b + (1 — 2δ) en ^ t < b + εn}
and

{exp— it: 6 + (1 — 2δ) εn ^ ί < b + εn} ,

respectively. Suppose that ^ contains a non-zero partial isometry TΓ
with initial and final projections dominated by E and F, respectively.
Then

and
WE=FW=W.

Thus
lWUn-exp(ib + iεn)W\\<2δεn,
\\UnW-exV(-ib-iεn)W\\<2δεn,

whence

= 2sin(6 + εn) —4όε Λ

= 2sinδ + 2{sin(6 + εn) — sinδ} —
> 2sinδ + 2 (cose) εn — 4όε n

> 2sinδ = ||α —1\\ ,
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a contradiction. Hence no such W exists, and there is a central projection

Q in 0t such t h a t E^Q and F^I — Q. Thus σQ{QUn) and

— Q) Uγΐ) are contained in the arcs

{expit:— b — (1 — 2(5) εn ^ t ^ b + εn)
and

{expit:— b — εn ^ t ^ b + (l — 2δ)εn}9

respectively. Since (1 — δ)εn = εn+1, the unitary operator

ϋn+1 = {βxpί-iόO Q + exV(iδεn) (I-Q)}ϋn

has spectrum in Sb + Sn + i. I t is clear that Un+1 implements α and satis-
fies (**). This completes the inductive construction of the sequence {Un}.

Since Σεn < oo, {J7W} converges in the norm topology to a unitary
operator U in ^ which implements α. Each point of σ (U) is at distance
at most || U— Un\\ from σ(Un) (as noted, in part (b), for any two normal
operators), and since σ(Un) Q Sb + εn and \\U— Un\\ -> 0, it follows that
σ(U)Q8b.

Remark A. The condition on the spectrum of U established in Lemma 5
can be reinterpreted more geometrically as saying that σ(U) lies on the
arc of the unit circle symmetric about 1 with endpoints midway between
1 and the points at distance |(α — ι\\ from 1. Having proved this under the
assumption ||α —1\\ < 2, our operator U is chosen with spectrum in the
"open right half-plane" (Rez > 0).

Remark B. Let U be a unitary operator on a Hubert space J^ίf, for
which the convex hull of σ(Ό) contains a neighbourhood of 0, and let
α be the (inner) automorphism induced by U on ^(Jίf). Every other
unitary operator in έ%(Jti?) which implements α is a multiple of U by a
complex number of modulus 1 and no such multiple has spectrum in the
right half-plane. I t follows from Lemma 5 that ||α — 1 | | =2 (a fact that
can easily be proved directly by reasoning as in part (a) of the proof of
Lemma 5, after approximating U by a unitary operator V which is a
finite linear combination of spectral projections for U). This example
shows that the conclusion of Lemma 5 can fail to hold when ||α —1\\ = 2.

If we restrict U further by requiring in addition that U3 — I, then
α3 = i, and the spectrum of α as an operator on & (J^) consists of third
roots of unity. Thus α — i has spectral radius r at most y3 . I t follows that
the statement obtained from Lemma 5, upon replacing ||α —1\\ through-
out by r, is false. I t should be noted that the spectrum of α is a subset of
{ab"1: a, b in σ(U)}, which is consistent with the possibility of choosing

U with a(ϋ) in the closed right half-plane \z : Res ^ -^ (4 — r2)2j .

Lemma 6. If 21 is a C*-algebra and U a unitary operator acting on a
Hilbert space Jf such that a (A) = UAU* lies in 21 for all A in 21 and
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Reα > 0 for each a in σ(U), then α lies on a norm-continuous one-para-
meter subgroup of α (21) and is π-inner.

Proof. By hypothesis on o(ϋ), we can choose H self-adjoint with
σ(H) in (—π/2, π/2) such that U — exipiH. As in Lemma 2, δc — exp(adi//)
both as a power series and as an analytic function of the bounded linear
operator &άiH acting on the Banach space «^(Jf), where δc is the ex-
tension of α to &l{2tf) defined by &(B) = UBU*. From GARDNER [9:
Corollary 3], taking £%(£?) as the Banach algebra and 21 as the invariant
subspace of that statement, we have that 21 is invariant under
A -> exj)(isH) A exiρ(—isH) for all real s, since there is no difficulty in
identifying iH as log U in the sense GARDNER uses for "log U". Thus δc
lies on a norm-continuous one-parameter subgroup of α(2t). It seems
worthwhile to include our original proof of this both for completeness and
directness.

With T in 3i(2tf), we denote by L(T) and R{T) the (bounded)
operators on &(£?) defined by L(T) (A) = TA and R(T) (A) = AT.
Since L and R are algebraic isomorphism and anti-isomorphism of £8 (Jf)
into the Banach algebra ^{β{^)) of bounded operators on 31(34?) each
of which maps / onto i the spectra of L(T) and R(T) are contained in the
spectrum of T. Let stf be a maximal commutative subalgebra of έ% (β (3?))
containing L(T) and R(T). By maximality an element β of J / has an
inverse in &(β {£?)) if and only if it has an inverse in J/ , so that the
spectra of β relative to J / and £%(β(£ί?)) coincide. Since each element of
the spectrum of β is the image of β under a multiplicative linear functional
on j / , the spectrum of L(T) — R(T) (= adT) is contained in {α — b:
a, b in the spectrum of T}. In particular a,diH has spectrum in
{it: \t\ ^ r}, where 2\\H\\ = r < π, by choice of H. From δc = exp(adiiϊ)
and the spectral mapping theorem [8; VII. 3.11], α has spectrum in
{expiί: \t\ ^ r).

For each real s, let gs denote the principal value of z -> zs on the plane
of complex numbers slit along the negative axis and s, multiplication by
s. On the strip S = {z: \Ίmz\ < π} we have gs o exp = exp o s. Since gs,
exp and s are analytic where defined and a,άiH has spectrum in 8,
oίs (= ŝ(όc)) == exp(θ &άiH) — exp(adi5^Γ), for all real s, from [8;
VII. 3.12]. Since ad(^si7) is a derivation of J pf) and isH is skew-
adjoint, άs is an automorphism of £%(<#?) (cf. Lemma 2).

Having identified the spectrum of δc as a subset of {ex^it: |έ| ^ r < π}
{= O0)9 we can choose a compact set iΓ with Co in its interior iΓ0 and a
rectifiable Jordan curve C in the plane slit along the negative axis
having K in its interior such that z -> (z0 — z)-1 is uniformly approxim-
able on i£ by polynomials in z (from Runge's theorem) for each z0 on (7.
Then (z0 — ά)"1 is a uniform limit of polynomials in δc, from [8 VII. 3.13],
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for each zQ on C; so that (z0 — oc)"1 leaves 21 invariant. Now,

so that δcs leaves 21 invariant [8, VII. 3.9]. Again, gs converges uniformly
to the constant function 1 on Ko as s -> 0 so that || αs — i \\ -> 0 as s -> 0
from [8; VII. 3. 13]. Finally, 5 ^ = α s + ί from [8; VII. 3.10(b)], since
gs gt = gs+t; so that s->α s |2 l is a norm-continuous, one-parameter
subgroup of α (21) with α = α1121.

Remark G. With 911 the (factor) group algebra of the free group on
two generators α and b, the automorphism of the group arising from
interchanging α and b gives rise to an outer automorphism α of 97ΐ [6;
Exercise 15, p. 308] and a unitary operator U implementing it. Since U
is of order two, its spectrum consists of — 1 and 1 so that i U has spectrum
in the closed right half-plane, and implements α. Thus the conclusion of
Lemma 6 above need not hold if the hypothesis is weakened to allow
σ(U) to lie in the closed right half-plane.

It is now a simple matter to assemble the preceding lemmas in our
main result.

Theorem 7. // oc is an automorphism of a C*-algebra 21 and ||α —1\ < 2,
then α lies on a norm-continuous one-parameter subgroup of α(2l). Such
subgroups generate y(2l), the connected component of i in α(2t) with its
norm topology, as a group; and y (21) is an open subgroup of α(2l). Each
element of γ (21) is π-inner.

Proof. Pass to the reduced atomic representation of 21. We assume
that 21 acting on ffl is this (faithful) representation of 21 so that 2l~ is of
t y p e / — in fact, a direct sum of algebras of the form ^ ( J f 0 ) [12:
Corollary 4]. From Lemma 4, there is an automorphism α of 2l~ leaving
each element of the center of 2l~ fixed whose restriction to 21 is α. From
[6; Corollary, p. 256], there is a unitary operator U in 2l~ implementing
α and from Lemma 5 U can be chosen with σ (U) in the half-plane
{a: Reα > 0}. Lemma 6 now tells us that α lies on a norm-continuous
one-parameter subgroup of α(2l). Each such subgroup is a (norm)
connected subset of α(2l) containing t, and, therefore, lies in γ (21) — as
does the subgroup they generate. However this subgroup contains the
interior of the ball of radius 2 about i in α(2l) (as we have just shown);
so that it is open in α(2l), hence, closed, and no larger subset of α(2ί) is
connected. Thus this subgroup coincides with y(2l). Since the norm-
continuous one-parameter subgroups of α(2l) consist of π-inner auto-
morphisms of 21 (Lemma 2), each element of γ (21) is π-inner.

Remark D. Note that, after passing to the reduced atomic representa-
tion and by restricting to a minimal central projection, it is necessary to
employ Lemma 5 only in the case where & is 3S (Jf) for the proof of
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Theorem 7. After approximation by spectral theory, the proof of
Lemma 5, in case 0t = gβ (jtf?) is essentially part (a) of the proof given.

Remark E. Applying Theorem 7 and then Lemma 5, we see that
Lemma 5 holds with "inner" deleted, 0t a (7*-algebra and " ^ ~ " replacing
the second occurrence of " ^ " .

Remark F. The following example shows that the statement obtained
from the first sentence of Theorem 7, upon replacing ||α —ι\\ by the
spectral radius of α — t, is false even for von Neumann algebras.

With 92ΐ the (factor) group algebra of the free group on three genera-
tors α, b, c, permuting these generators cyclically induces an auto-
morphism α of 271 and a unitary operator U (of order three) with σ(U)
the third roots of unity and implementing α. By the reasoning used at
the end of Remark B, α — i has spectral radius at most J/3 . A slight
extension of [6; Exercise 15, p. 308] shows that α is an outer auto-
morphism. Since Ώl is weakly closed, a is not π-inner, hence (Lemmas 2
and 6) does not lie on a norm-continuous one-parameter subgroup of
α(9ft) and cannot be implemented by a unitary operator having spectrum
in the open right half-plane. It follows from Theorem 7 that ||α — ι\ = 2
(a fact that can be verified directly: for |[(α — i) (ϋa)\\ = || Ua— ϋb\\
— \\Ub-ia — /|| = 2, since Ub-ιa leaves the space of functions square
summable on the group and vanishing on positive powers of a~1b in-
variant, while Uf-ιa does not; so that σ(Ub-ia) is the entire unit circle
and, in particular, —2 is in σ{Ub-ia — /)).

Since each norm- continuous representation of a connected topological
group by automorphisms of a O*-algebra 21 has range in y(2l), we have:

Corollary 8. Each norm-continuous representation of a connected topo-
logical group by automorphisms of a C*-algebra has range consisting of
π-inner automorphisms.

In the case of von Neumann algebras, we have:
Corollary 9. IfQίisa C*-algebra which has a faithful representation φ as

a von Neumann algebra then c0 (21) = y (21) = π (21) = ιφ (21) and each element
of y (21) lies on some norm-continuous one-parameter subgroup of α(2l).

Remark G. Let 21 be a (7*-algebra, φ a faithful representation of 21.
It follows at once from Definition that π(2l) Q ^(2t) Q σφ{Ql) Q εφ(%) Q
Q α(2l). Theorem 7 provides the additional information that y (2t) C
Q π(2l), and hence that each of the groups listed above contains the open
ball, with center i and radius 2, in α(2l). I t follows that each of these
groups is open, hence closed, and that the quotient of any one of them by
a smaller one is discrete.

The subgroups γ (21) and π (21) of α (21) are normal. For suppose that
αζα(2ί) and βζπCΆ). Given any faithful representation ψ of 21,
ψiocβoc-^ψ"1 = (ψoc) βiψoc)-1 and, since ψoc is a faithful representation
of 21, ^(αj8α~1)^~1is a weakly-inner automorphism of (^α) (21) =
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Hence ocβoΓ1^ π(2l), so π(2t) is a normal subgroup of α(2l); the same
is true of γ (21) since it is the connected component of the identity in
α(2l).

We now exhibit a (7*-algebra 21 and a faithful representation φ of
21 for which the subgroups ^(21), σ(?,(2l) and ε^(2l) of α(2ί) are not normal.
For this purpose we make use of Example a, in which an automorphism
β of a 0*-algebra 3& is produced, as well as faithful representations ψ and
θ of ^ for which ^ /S^"1 is weakly-inner while θ βθ~λ is not extendable.
Let 21 be J Θ SS, 9? the faithful representation (# 1 ? £ 2 ) -> ( y ^ ) , 0(52))
of 2t, α and y the automorphisms of 21 for which α((5 l 5 B2)) — (β (B-^, B2),
γ((Bt, B2)) = {B2, BJ. Then <p(2l) = \p[β) Θ 0(^), and since
{γoίγ~x) ({Bv B2)) = (Bv β(B2)), it is readily verified that φocφ~1 is
weakly-inner, while φ(γocγ~~λ) φ~x is not extendable. Thus α ( ^(21),
y α y " 1 $ ε^(2l), whence the subgroups ^(21), σφ(2l) and eφ(2l) of α(2l) are
not normal.

For each O*-algebra 21 the subgroup ^(21) of εφ($l) is normal. With
α in ^(21), β in εφ(%l), U a unitary operator in 99 (2t)~ which implements
φocφ~1 and y an automorphism of φ($l)~ which extends φ βφ~λ, γ(U) is
a unitary operator in ^(21)" which implements φ(βocβ~1)φ~1. Thus
β(xβ~1 ζ iφ($l) and ^(21) is a normal subgroup of εφ(^i).

We now give an example in which 21 is an abelian (7*-algebra with a
faithful representation 99(21) acting on a finite-dimensional Hubert
space, and the subgroup σv(2l) of εφ(Qi) is not normal (of course, εφ(^i)
= α(2l) in this case, since 99(21) is finite-dimensional and so weakly
closed). Let 21 be the algebra of all complex 4 x 4 diagonal matrices of the
form diag(α, α, b, c), φ a representation in which 21 acts in the obvious
way on a 4-dimensional Hubert space. With α (respectively, σ) the auto-
morphism of 21 corresponding to interchange of α and b (respectively, b
and c), it is clear that σ ζ σφ{Qί). However, oca or1 is the automorphism of
21 corresponding to interchange of α and c, and consideration of the multi-
plicities of the eigenvalues of A (in 21) and of (ασα"1) (̂ 4) shows that

The group ίo(2l) of inner automorphisms of a general C*-algebra 21 is
contained in π(2l), and is a normal subgroup of α(2l). For if β is the inner
automorphism implemented by a unitary element U of 21, and α £ α(2l),
then (xβoΓ1 is the inner automorphism induced by α(£7).

Suppose now that 21 is a (7*-algebra having a faithful representation
99 for which 99(21) is weakly closed. By Corollary 9, γ (21) = π(2l) = ^(21)
= ίo(2l), and of course εφ($l) = α(2ί). Hence there are now only three
(possibly) distinct groups under consideration, and £0(2l) Q 0 (̂21) Q α(2l).
We have already noted that £0(2l) is a normal subgroup of α(2l), and the
finite dimensional example described above shows that the subgroup
<yφ (21) of α (21) is not necessarily normal.
4 Commun. math. Phys., Vol. 4
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IV. Special cases

In this section, we illustrate by example that various possibilities
not ruled out by the results of § 3 do occur. Notably, in the example
which follows, we locate an automorphism weakly-inner in one faithful
representation and not extendable in another — completing the normality
discussion of Remark G. Some examples taking advantage of special
properties of the ideal of compact operators follow this; and examples,
making use of the detailed knowledge of the higher connectivity proper-
ties of certain compact spaces to allow us to compute, specifically, some
automorphism subgroups, conclude this section.

Example a. We use the fermion algebra (cf. [27] and [11]) to establish
that γ (2t) need not coincide with ιφ (91) for some faithful representation
ψ of St. Our algebra 21 is characterised as a C*-algebra by having a dense
self-adjoint subalgebra which is the union of an ascending sequence of
self-adjoint subalgebras ~/ίn, n — 1,2, . . . each isomorphic to the algebra
of complex 2n x 2n matrices and all having the same unit. We shall
exhibit an automorphism of 2t and two faithful representations of 2t, in
one of which the automorphism is weakly-inner and in the other of which
it is not — indeed in which it is not extendable. Both representations are
irreducible. It follows that this automorphism is not in the connected
component of the identity γ(Ql) in α(3t) ,since each element of y(St) is
weakly-inner in all faithful representations. For this purpose, we choose
matrix units {E$}, j , k = 1, . . ., 2n in Jίw with E$>, j = 1, . . ., 2n,
orthogonal projections and Effl* = E$, such that

for n = 1, 2, . . . and j = 1, . . .,2n~1 (yM^ is the algebra of scalars and
E^l is /).

Let α be the automorphism of SI which on each *Jίn transposes a
matrix about each diagonal, i.e. oc{EJf) = ^ ) _ ? + 12«_^ + i,sothat αisthe
automorphism induced by the permutation matrix Un with entry / at
each position on the secondary diagonal. Since Un+1 (in *Jtn+1) induces
the same automorphism on Jίn, there is an automorphism on the union
of the Jί^% defined by this process. Since the automorphism on each
Jίn is isometric it has a unique extension to 21 which is the desired auto-
morphism α. For our first representation, let 2tf be ^ ( O * 1) relative to
Lebesgue measure and let Ej$ be the isometric mapping of functions in

2 n , -ψ to those vanishing outside

[ j — 1 j ~\
2 n , —-induced by translating the second interval onto the first (and,
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of course, consistent with E^ being a partial isometry, let it map

[ Jc — \ lc~\
—^— , -~p into 0). In particular Eψ is the operator

which multiplies functions in JδP2 (0, 1) by the characteristic function of

Since each continuous function on [0,1] is a uniform limit of\tzλ ±]
[ 2n * 2n\finite linear combinations of such characteristic functions, the operators
which are multiplication by such functions lie in 21. An operator com-
muting with 21 commutes with multiplications by continuous functions
hence with multiplications by all bounded measurable functions and is,
therefore, itself multiplication by a bounded measurable function (such
multiplications forming a maximal abelian algebra). With Mf multi-
plication by /, MfEffl — Ef$Mf if and only if / is invariant under the

mapping which translates —^— , -^ onto - ^ — , —• , translates

Γ - i Π

[ k— 1 k1
—^— 9 ~ô~ a n d leaves the other points of [0,1 ] fixed. For this to hold

for ally, k, n, f must be almost constant and Mf a scalar. In fact, denoting
by U$ the unitary operator E$ + E$ + I — E$> — E$., ϋjff = /
(note that / is also in Jδf2(0, 1)). Let gm be a continuous function on

1
[0,1] with ||/ — gm\\ <~^ (in $?) and choose n such that if \p — p'\ < 1/2W

j r j 1 7 "I

then\gm(p)—gm(pf)\<-~ .Each permutation τ of the intervals —^-,-^H,
j = 1, . . ., 2n corresponds to a unitary operator Uτ which is a product of

the i7^i these correspond to a transposition of p-^r->^r and —ψ—,-^r )

so that Uτf = /. With S the (symmetric) group of all such permutations

and.4 the operator™ Σ OrAA\\ ^ 1 and4/ = /.Thus ||/ —J.grm|| < — .
' τin£

Since UτΛ gm — A gm and the oscillation of A gm over each interval

[ j — 1 j "j
—2̂ —, -^ is not greater than that of gm over such intervals, A gm differs

from some constant Cm by at most — at each point of [0, 1]; and
1 2

\\Agm~Cm\ ^-^-.Thus | |/—CJI < — , for each m and / is almost
constant. It follows that 2Γ is the scalars and the given representation,
which we refer to as the Lehesgue measure representation of 21, is irreducible.

We note next that α is weakly-inner in this representation. Let ήn)

[ A i j i
—ψ— , -~ . Then

j + k = 2»» + 1
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for all m ^ n. Thus (Um) converges on all finite linear combinations of the
ήn\ Since such combinations lie dense in JS?2(0> 1) a n ( ^ ll̂ mll = 1 f° r a ^
m, the Um converge strongly to some operator U on Jf. Now U^ = I and
multiplication is jointly continuous on bounded sets of operators in the
strong-operator topology. Thus U2 = I and since each Um is isometric
U is. It follows that U is a unitary operator. Again, since UmEf$Um

= UnEJfϋn = oc(E$) for all m ^ w and all ?, jfe, rc, UEJfϋ = <*{E$)
for all ?', k, n. Thus α is induced by the unitary operator U in the Lebesgue
measure representation of 2ί, and, since this is an irreducible representa-
tion, α is weakly inner. I t can be verified readily that U is the unitary
operator defined by (ϋf) (t) = /(I — t) for each / in o^2(0, 1).

For our representation in which α is not extendable, we choose as our
Hubert space J f 0 the space Jδf2([0, 1), μ) where the measure μ on [0, 1)
is defined by assigning to each Borel subset the number of dyadic
rational points it contains. (In this way we make each dyadic rational
point in [0, 1) an atom for μ with measure 1.) The matrix units E^ are
defined in precisely the same way as in the Lebesgue measure representa-

tion except that the half-open intervals —^—, -^ \ are used in place of the

[ j — I j i
—2̂ —> ~2F ' ^ ^ e f u n c t i ° n s 1 a ^ a dyadic rational in [0,1)

and 0 off it form an orthonormal basis for 34? 0, and the one-dimensional
projections with these in their range are intersections of diagonal matrix
units of 21 in the given representation. Moreover, the partial isometries
between these one-dimensional projections induced by mapping one
dyadic rational onto another are the weak-operator limits of the matrix
units mapping the ranges of these diagonal matrix units on to one
another. I t follows that 21 has weak-operator closure all bounded opera-
tors in this representation and that this representation is, accordingly,
irreducible. Now oc(Eψl) = E{$2n for each n; and while Π Eψ\ is the one-
dimensional projection with the function 1 at 0 and 0 elsewhere in its
range, Π Ei$\n = 0 in this representation. Thus α is not extendable.

In the example which follows, we illustrate the fact that there are
automorphisms of (7*-algebras which are τr-inner without being actual
inner automorphisms of the algebra.

Example b. Let 21 be the (7*-algebra of compact operators on sepa-
rable Hubert space with the identity / adjoined, so that each operator
in 21 has the form a I -f C with a some scalar and G a compact operator.
The abstract 0*-algebra associated with 21 has just two irreducible
representations — the given one through which we have defined 21 and
the one-dimensional representation, al + C -> a. Any other representa-
tion φ of 21 is a direct sum of copies of these two representations, for if φ
is not faithful φ (21) is the scalars. Thus, for general 99, there is a maximal
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projection E' in φ(21)' such that φ($ί)E' = {λE'}\ and each non-zero
subprojection Fr of / — E' is such that A -> φ(A)F' is a faithful re-
presentation of 21. Combining this with the fact that each faithful
representation ψ of 21 has the faithful irreducible representation as a
subrepresentation and using Zorn's lemma establishes the assertion
about φ. For this, note that ψ(E) is minimal in ^(2l)~ since
ψ(E) ψ(A) ψ{E) = aE with a a scalar for all A in 21 if E is a one-dimen-
sional projection in 21, so that ψ(Ql)' contains minimal projections.
Choosing a maximal orthogonal family of such projections, if ^(21)
restricts to scalars on each then the restriction of ψ (21) to the complement
of their union is faithful since ψ is so that this complement contains a
minimal projection — contradicting maximality of the family chosen.
Thus ψ has the faithful irreducible representation of 21 as a subrepresenta-
tion.

It follows that ψ (21)~ has a central projection Q such that ψ (21)~ (/—Q)
= {λ(I— Q)} and ψ(Qi)~Q acting on Q(^fΊ) is a factor of type 1^. Since
a state of ψ (21) Q is normal if and only if it does not annihilate all the
compact operators, each automorphism α of -̂ (21) transforms normal
states onto normal states and extends to an automorphism α, of ^(2l)~.
Of course, δc maps ψ(Ql)~Q, a factor of type 1^, onto itself and
ψ($l)-(I— Q), scalars, onto itself, so that ά is inner. Now each unitary
U on J f induces an automorphism of 21 and since 21 acts irreducibly on
Jti?, this automorphism is not inner unless U is in 21. Thus 21 admits non
inner, permanently weakly-inner automorphisms.

In the example just discussed, with 21 in its faithful irreducible
representation, each automorphism is induced by a unitary operator U
and each unitary operator induces such an automorphism of 2ί. With
U = expiH, the automorphism induced by U lies on the one-parameter
group of automorphisms of 21 induced by the unitary operators exφίtH,
t real. Thus γ (21) = α (21), in this case. In the example to follow we discuss
a O*-algebra which is not GCR (not "post-liminaire" c.f. [7; §4.2, 4.3,
pp. 86—87]) and use the results of Theorem 7 to produce π-inner auto-
morphisms that are not inner in a situation where there are automorphisms
that are not π-inner yet weakly-inner in some faithful representation.

Example c. Let j f be a factor of type IIX acting on a (separable)
Hubert space Jf7 and having coupling 1 (e.g. the von Neumann algebra
generated by the left regular representation of the free group on two
generators). Let ^ be the algebra (ideal in 3&{3f)) of compact operators.
Then the set [A + C: A in ^ , C in ^} is a self-adjoint operator algebra.
Moreover it is a (7*-algebra 21 since it is norm closed. We see this by
noting that the "angle" between the closed linear subspaces ^ and Jί of
&($?) is greater than 0; for if A in Jί has norm 1, one of (A + A*)fi
and (A~A*)/2i has norm at least 1/2. Let ρ0 be a pure state of Jί
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assigning a with \a\ ̂  -~ to one of these operators and let ρ be a pure

state extension of ρ0 to &(34?). Since no pure state of Jί (a IIλ factor) is
a vector state, ρ is not a vector state and, therefore, annihilates %'. Thus,

for each C in #, y ^ \ρ(A — C)| = |ρ(^L)| ^ ||̂ 4 ~ C|| and Jί + ^ is

closed.
Since Jί', as represented, has coupling 1, each automorphism α is

implemented by a unitary operator U; and oco(A -f (7) defined as
£7* (J. + 0) C7 makes α0 an automorphism of 21 (of course, weakly inner,
since 2l~ = έ%(34?)). Now stfffi is ^ so that the given representation of
~# combined with this quotient mapping, provides a representation φ of
ζί on 34?. The faithful representation i Θ 9? of 21 on ffi Θ ^f carries α0

on 21 onto the automorphism β defined by

β({A + C, A}) = ( α o μ ) + αo(C), α o μ ) } ,

for each Aiτι~£ and 0 in ^. Since £ and 99 are disjoint (1 being irreducible
has no proper subrepresentations and φ being a / ^ factor representation
has no irreducible — indeed, no type / — subrepresentations), (1 Θ φ) (2t)~
= £§ (34?) Θ - # . If β (that is, α0 in the representation 1 θ φ) were weakly
inner the unitary operator implementing it would have a (unitary)
component in ^# which implements α. For an example of an auto-
morphism α0 of 21 which, while weakly-inner in the given representation
of 21, is not weakly-inner in that given by 1 φ φ, we have only to choose
for α one of the (many) outer automorphisms of J^ (compare [6 Exercise
15, p. 308]).

To construct π-inner automorphisms of 21 which are not inner, let
U be a unitary operator on 34? in Jί' with \\U — /|| < 1 and U not a
scalar. Then U induces an automorphism α of 21 such that ||α —1\\ < 2;
so that α is π-inner (see Theorem 7). However α is not inner since 21 acts
irreducibly and U is not in 21. For suppose U = A + C is in 21, with A
in Jί and C in <g. For each A' in J(\ C A' — A'*C = UA' — A' U, so
CAf — A'C is a compact operator in e^#/ and is therefore zero. Hence,
U ζ Jί r\ Jί' and U is a scalar, contrary to our choice of U.

With some slight additional effort we can analyze a faithful represen-
tation φ of 21 sufficiently to establish that each automorphism α of 21
which is the identity on ^# is π-inner. In fact, as in Example b, 99 (2l)~
has minimal projections, so that gp(2l)' also has minimal projections
restrictions to which produce the faithful irreducible representation of
21 (cf. [7; Corollary 4.1.10, p. 85]). Such a minimal projection E' has
central carrier Q, a minimal central projection. Now, restriction of
φ (21) to / — Q cannot be a faithful representation of 21 for then, as just
noted, it would have a faithful irreducible subrepresentation inequi-
valent to φ($ί)E', since they are separated by the orthogonal central
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projections Q and / — Q, contradicting the uniqueness of the faithful
irreducible representation of 21. Thus φ {Ή) ( I — Q) — (0), since ^ is the
unique proper closed two sided ideal in 21. Hence φocφ'*1 is the identity
on φ (21) (/ — Q) after composition with restriction to / — Q and is
induced by the unitary operator (in 99 (2l)~) which acts as the identity on
(/—Q)<^o and which induces the restriction of φocφ~1 to φ(Qί)Q on
Q J^o, where 34?0 is the representation space of φ.

By use of Lemma 2 one can give a shorter proof of the same result.
For any automorphism α of 21 which is the identity on Ji is implemented
by a unitary operator U = exγiH, with H = H* in Jί*\ With oct the
automorphism induced on 21 by exipitH, t -> oct is a norm-continuous
one-parameter group in α(2l) which contains α, whence α is π-inner
(Lemma 2).

In the class of examples which follow, we exhibit instances in which
all possible equalities and inequalities consistent with the inclusion
γ(Ql) Q ίo(2l) Q π(2l) occur among the groups y(2l), tQ{$l), π(2ί) — the
first inclusion being a special feature of this class of examples (c.f.
Example b and the remarks following).

Example d. Throughout this discussion jsf is an abelian (7*-algebra
isomorphic to C (X) with X a compact-Hausdorff space (the pure state
space of stf)\ <Jίn is the algebra of operators (n x n complex matrices)
acting on ^-dimensional complex Hubert space and 21 is the (7*-algebra
srf Θ *Jίn. There are two convenient ways of viewing 21, as n x n matrices
with entries in sf (or G(X)) and as continuous functions on X with
values in <Jίn. The center *€ of 2ί is the set of matrices whose only non-
zero entries consist of a single A in stf at each diagonal position (equivent-
ly, the continuous mappings of X into scalars in <y#̂ ). We denote by
αc(2l) those automorphisms of 21 which leave each element of ^ fixed.

We prove first that αc(2l) and π(2l) coincide. Since in each faithful
representation of 21 an element of π(2l) leaves the center of the weak
operator closure of 21 and a fortiori <£ elementwise fixed, we have
π (21) C ccG (21). Suppose that a is in αc (21). With Έi k, j , h = 1, . . ., n matrix
units of Jίn and oc(I <g> Ejk) = BjJc; we have oc(ΣJtkAjk Θ Ejk)

— Σj)k(Ajk <g> I)Bjk, since α ( i ® I) = i ® I. Since multiplication by
Bjk and Aik -> Ajk 0 / are strong-operator continuous; α (and, similarly,
α"1) is strong-operator continuous, has an extension δc to the weak-
operator closure ja/~ ® Jίn of 2t, and α is an automorphism of 2l~. Γor
this we note that the faithful representation of 21 under consideration is
unitarily equivalent to stf <g> Jίn acting on the n-told direct sum of a
Hubert space on which stf is represented faithfully. Now the commutant
of 2l~ is jtf' ® /, and όc (̂ 4 ® /) = A <g) / for A in j / ~ since this is true for
A in the strong operator dense subset $0 of s$~ and α is strong-operator
continuous. Thus α leaves the center of 2l~ elementwise fixed, and oc is
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inner since 2l~ is of type/. I t follows that α is in π(2l). Hence 7z(2t)
2 αc(2l), so that π(2l) = αc(2l).

With α in π(2l) and ρ a point of X (i.e. a pure state of si) a homo-
morphism φρ of JS/ <g> ^ n onto ~# w is determined by φρ(A ® B) = ρ(A) B.
With J5 in *Jίn and α(ρ) (J5) defined as φρ(pc(I <S> B)), α(ρ) is an isomor-
phism of Jίn into ^ w ; since <pQ(ot{I Θ /)) = / and the closed 2-sided
ideal generated by I <g> JS is 21, if ΰ Φ O . From the finite dimensionality
of Jίn, we conclude that α(ρ) is an automorphism of *Jln and that all
topological linear structures on the (bounded) linear operators over *Jίn

are equivalent. Thus, in order to establish the norm continuity of
ρ -> α(ρ) it suffices to establish the continuity of ρ -> α(ρ) (B) for each

n

fixed B in u? n . If α(/<g> B) = Σ Aύk® Ejk with ^4ifc in j / , then

n
α (^) (^) ^ ^ Q{Ajk)Ejk; and the continuity in question follows from

the definition of the w* -topology on X.

Conversely, if ρ -> α (ρ) is an arbitrary continuous mapping of X into
n

oc{Λn), with B in ^ # n and α(ρ) (JB) = Σ ^όk{θ)^ό^ w e n a v e

ρ-> Ejjθί{ρ) (B)EkJC = Λjk(ρ)Ejk is continuous; so that each J^ & ^s a

continuous complex-valued function on X and corresponds to a (unique)

operator -4^in si. Defining <x{A ® J5) to be Jj^ AAjk<g> Ejk determines

an automorphism α of j / in π(2l) (= αc(2l)). The identity (α/S) (ρ)
= α(ρ) j8(ρ) is valid, justifying the notation 'α(ρ)' and proving that the
correspondence between elements of π(2l) and continuous mappings of
X into α(^#n) is a group isomorphism when this second set is provided
with pointwise multiplication through the group structure of α(^#n).
Henceforth we pass from the elements of π (21) to the continuous mappings
of X into α(^#n) without comment.

Since each automorphism of ~£n is inner and the only unitary opera-
tors in *Jίn inducing the identity automorphism of ~# n are the scalars of
modulus 1, α(~#w) ^ TJ{n)\Tx, where U(n) is the group of unitary
operators in Jίn and Tl9 its center, is the circle group. Let p be the natural
mapping of U(n) onto U(n)ITv If α in π(Qί) is inner there is a unitary
operator U in 21 which implements it. Let α(ρ) be φρ(U)9 an element of
U(n). Again ρ->α(ρ) is a continuous mapping of X into U(n) and
pδί= α. Conversely, if α is a continuous mapping of X into U(n),
oc = pot is a continuous mapping of X into £7(W)/JΓ15 i.e. an element of
π (21), while α is an element £7 of the unitary group of 21 which implements
α. Thus io(2l) is the group of continuous mappings of X into the base
space Ό (ri)jTx which can be "lifted" to the bundle U(n) (with projection
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p, fibre and group T-J. From Theorem 7, each element y of the connected
component of the identity y (2J) of α (2ί) is a product γ1. . . γm where
γ. = γ^l) and t-> γj(t) is a norm continuous one-parameter group in
α(Sl). Thus, with Γ(ρ, ί) = (y^)) (ρ) . . . (γm(t)) (ρ), Γ is a homotopy of
y and ρ -> y(ρ, 0) = 2\ . . . Tj_ = Tv i.e. of y and the constant mapping
of X onto the identity element of ϋ'(rήjT^ Of course this constant
mapping lifts to U(n); and the Covering Homotopy Theorem [29;
Theorem 11.7, p. 54] tells us that the homotopy under consideration
can be covered by a homotopy of this lifted constant mapping in the
bundle space U(n). This homotopy in the bundle provides a lifting of y
from ϋin)/^ to ϋ(n). Thus y is in *0(2l) and y (21) ς t0 (21) ς π (21)
= αβ(2l).

From this same argument, if α and β in π (21) are in the same coset of
y (21), say α = β γ with y in y (21), then a homotopy of y with the constant
mapping of X onto 2^ in U{n)ITx provides a homotopy between oc and /ϊ.
Conversely, if α and 8̂ are homotopic and F:X x [0, l]-> U(n)jTlf

F(ρ, 0) = α(ρ), jF(ρ, 1) = /8(ρ) is a homotopy, then /S-1^7 denned by
(β^F) (ρ, t) = β^iρ) F(ρ, t) (group product in U(n)ITx) is a homotopy
of β~λoί with the constant mapping (onto Tτ). Hence β-χoί lies in y(2l)
(it is connected to the identity automorphism by the "arc" which is the
homotopy just described). Thus τr(2ί)/y(2l) is the group of homotopy
classes of mappings of X into U(n)/Tl9 the product of two such classes
being formed by multiplying any two representatives pointwise using the
multiplication in U{n)jT1 and passing to the class of the result. Since
y (21) £ ίo(2l), each y (21)-coset of an element α of ίo(2l) consists of
elements in £0(2l). From the foregoing, this coset is the class of mappings
of X into ϋ (rijlT-L homotopic to α. Thus each β homotopic to α lies in
£0(2l) (can be lifted to U(n) — the Covering Homotopy argument gives
this same result directly), and io($ί)lγ($l) is the group of homotopy
classes of continuous mappings of X into U(n)IT1 which can be lifted to
U(n).

Applying these general topological identifications of y(2ί), ι>0($l),
π (21) and their quotients to specific choices of X, we note first that if X
is contractible (to a point) — for example, if X is the unit ball in τι-space —
then each continuous mapping of X is homotopic to a constant mapping,
π(2ί)/y(2l) has a single element, so that y(2l), ιo(2l) and π(2l) coincide
in this case. Specifically, if s/ is O([0, 1]) and 21 is si % Jίn, y(2t)

= *o(20 = π(2l).
At the other extreme, we show that if si is C(U'{n)jT-^ and 21 is

si % Jίn, then y(2l) $ £0(2l) % π(2t). The last inequality is established
by noting that the identity mapping of U {rήjT-^ onto U{n)jT1 cannot
be lifted to ϋ{n); in other words, the bundle {U(n), p, ϋ(n)ITlf Tv TΎ)
does not have a cross section. To see this note that U(n) is homeo-
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morphic to Tx x SU(n) and has fundamental group ^(i7(n)) iso-
morphic to Z, the additive group of integers [4; Proposition 7, p. 61],
where 8U(n) the special unitary group is the group of unitary operators
in Jίn having determinant 1. Since U (n) is Tt \J 8 U (n) and T-^rλSU (n)
is Z w the group of multiples of / by nth roots of unity, the second iso-
morphism theorem of group theory tells us that U(n)[T1 is isomorphic
(as a topological group) to 8TJ\ri)\ΊLn (here, Z n is the center of 8U(n)).
Now 8U(n) is simply connected and Z n is a discrete subgroup in (equal
to) the center of 8U(n). Thus 0 -> Έn -> 8 U (n) -> 8 U (w)/ZΛ -> 0 is a
covering mapping and π1(βU{n)j'Z.^) (= nJJJ (n)jT ̂ )) ̂  Έn (cf. [4;
Proposition 7, p. 54 and Proposition 6, p. 60]). If our bundle admits a
cross section then ^(^/(w)) (^ Z) has a subgroup isomorphic to
Tt^ϋirήlT^ (« ZΛ) (cf. [29; 17.7, p. 92], actuaUy ^{U(n)) would be the
direct sum of'^{ϋ(n)fT-D and n^T^) since it is abelian). Of course this
is not the case since Z has no torsion. Thus the identity mapping of
UitήlT-L onto Ό(n)jT1 does not lift and provides an element α in π(2l)
not in

We exhibit, next, an essential mapping α of Uin)/^ into
which lifts to a mapping of 11(71)/^ into C7(̂ ). Thus α is an element of
jo(2l) not in y(2t). To describe α we use the representation of ί/^)/^
as 8U(n)IΈn and of U(n) as the product Tx x 8U(n) noted above. From
the form of the representation 2\ x 8U(n), i: U-> (1, ?7) is just the
inclusion mapping of 8U(n) into ί/(w). Let g be the natural mapping of
8 U (n) onto 8 ϋ {n)l"Zn and s: U-+Un a, mapping of 8 U (n) into SU(n).
Since q is open and s is continuous and maps Z n onto /, the mapping
r: ?7Zn-> ?7W of 8U(n)IΈ.n into 8U(n) is well-defined, satisfies rq — s
and is continuous. With t = ir mapping 8U(n)IΈn into 77(w), £ is con-
tinuous and the diagram

^ O(n)\Tx

is commutative. We assert that α (= pt) is an essential mapping (i.e.
not homotopic to a constant mapping) of Όfy)!^ into U{n)jTv Suppose
the contrary. With / a continuous mapping of X into Y, we denote by
f% the induced homomorphism of πm(X) into πm(Y) (cf. [29; 15.5, p. 75]).
Since pis= ptq and pt is inessential ^ ί * (= (p t) %) is 0 on πm(8U(n)IΈn);
so that p*i*s* (= p*t*q*) is 0 on πm(8U(n)) (cf. [29; 15.6, 2° and 5°,
p. 76]). Let / be a mapping of 83, the 3-sphere, into 8U(n). Then
5/ (== fn) is homotopic to ^/ (in the sense of homotopy addition) [29;
16.7, p. 88]. From [29; 17.8, p. 93, 25.1, p. 131 and 25.4, p. 132],
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Z « πs(U(n)) & πsiTj) + πs(8ϋ{n)) ^ π^(8U{n)). With / a represen-
tative of a generator z of πs(8U(n)), nf and, hence, sf are representatives
of nz (φθ since πs(SU(nj) ^ Z). But sf is a representative of s#(z);
so that ^(z) = nz=\=0. On the other hand, i% is injective since it is
induced by a (trivial) bundle cross section [29; 17.7, p. 92, see the
proof], and p% is injective on π3(U(nj) from the exactness of the homotopy
sequence of the bundle {U(n), p, U(n)ITlf Tlf Tj} as applied to the por-
tion -•^πz{T1)^πs(U{n))-^^π3(U(n)IT1)-^π2(T1)-> ' (noting
that Tt^Tj) = π2(T1) = 0 together with exactness shows that p% is an
isomorphism of πz(ϋ(n)) onto τtz(ϋ(n)lT^) [29; 17.3 and 17.4, p. 91].
Since i#s%(z) is a non-zero element of π^(U(n)), p^i^s^(z) 4= 0 contra-
dicting the earlier conclusion that p#i#s% is 0 on each πm(SU(n)). Thus
a (= pt) is essential and provides an element of £0(2l) (since it can be
lifted to t) not in y (21).

For our next illustration, we take X to be Tx and α a continuous
mapping of Tx into Ufa)/^ (& $C7(w)/Zn) which represents a non-zero
element in π\(JJ {ri)jT-^ (^ Z n ) . Then α is not in y (21). However each
continuous mapping β of 2\ into ΪHn)jTx can be lifted to £7(%). To see
this choose a fixed triangulation of U {rήjT ̂  as a complex if. Since the
fibre Tx is arc wise connected, the bundle over the 1-skeleton K1 of K has
a cross section (cf. [29; last statement, p. 148]), so that each simplicial
mapping of a space X into K1 can be lifted. In particular each simplicial
mapping of Tx into K can be lifted. Now β is homotopic to a simplicial
mapping of Tx into K (from the Simplicial Approximation Theorem) so
that the Covering Homotopy Theorem [29; 11.7 p. 54] guarantees a
lifting of β. We conclude that, with stf taken as 0 (Tx) and 21 as J / 0 ~#w,
y(3l) ί eo(3l) = π(2l). In this example ι0(&)/}/(SI) (= π(2l)/y(a)), t h e

homotopy classes of mappings of X into ϋ {n)jT1 (= SU (w)/Zn), is just
π x ($ ?7 (n)/Zn) which we have identified as isomorphic to Z n .

To illustrate the possibility that γ (21) = £0 (21) with ιQ (21) a proper
subgroup of τr(2l), we exhibit a compact space X and a (continuous)
mapping of X into U{2)jT1 which cannot be lifted to U(2), so that this
mapping is an element of π (21) not in t0 (21) while each mapping of X
into £7(2) is inessential, hence (by projecting the homotopy) each
mapping of X into ?7(2)/!7T

1 which can be lifted to 17(2) is inessential —
from which, y(9l) = *0(2l) Recall that £7(2)/^ « £Γ7(2)/Z2 and that

each element C7 of # 17(2) has the form (? ~ ^ , where |α| 2 + |&|2 = 1. The

mapping U -» (α, δ) is a homeomorphism of 8 U (2) with the unit sphere
in complex 2-space, i.e. with the 3-sphere 8s in real 4-space. The natural
mapping of 8U(2) onto 8U(2)fZ.2 corresponds to the covering mapping
of 83 onto P 3 , projective 3-space, which identifies antipodal points of
S3. Thus U (2)ITX is (homeomorphic to) P 3 . Choose a triangulation of P 3
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and let X be its 2-skeleton. Then, by definition, Hλ{X, Z), the first
cohomology group of X with integral coefficients, is Hλ(Pz, Z). Since
H1{PZ, Z) = 0 (cf. [13; Theorem 3.9.5, p. 135]), H1{X, Z) = 0, and each
mapping of X into Tx is inessential (cf. [13; pp. 72—73, Corollary 7.4.4,
p. 302 and remarks following] — we are indebted to L E I F KRISTENSEN

for drawing our attention to the identification of Hm(K, G) with the
homotopy classes of mappings of K into the Eilenberg-MacLane space
K(G, m) which allowed us to complete the argument that mappings of
X into 17(2) are inessential). Now U(2) is homeomorphic to Tλ x SU(2)
hence to Tx x 8s. Each mapping of X into U(2) yields, by projection, a
mapping into $ 3 which is inessential (since X is a 2-complex) [14;
Theorem VI 6, p. 88]. Covering the homotopy of this mapping of X into
$ 3 establishes that the mapping of X into U (2) (i.e. Tt x $3) is homotopic
to a mapping into Tv Having just noted that mappings of X into Tλ are
inessential, we conclude that mappings of X into £7(2) are inessential; so

that y(2l) = ίo(3l)
We have noted that p: U(2) ~> U (2)jTx has no cross section. If the

identity mapping of X onto X could be lifted, this cross section over the
2-skeleton X of U(2)jT1 could be extended to a cross section for the
total bundle, since the fibre Tx has π 2(T x) = 0 (cf. [29; pp. 148—149]).
Thus the identity mapping of X onto X cannot be lifted to £7(2), and is
an element of π(Ql) not in ιo($l).

Let us denote, now, by 9imn the (7*-algebra s$m <g> <Jίn where j / m is
the algebra C(8m), Sm the m-sphere. Since U(n) is homeomorphic to
Tx x 8U(n) and the natural mapping of 8U(n) onto 8U(n)l~Z.n

(^ U'(n)jT-j) is a covering mapping

πm(U(n)) ~ πm{8U(n)) ~ πm(8U(n)IXn) ™ πm(U(n)/^)

for m ^ 2 from [29; 17.8, p. 93, 21.2(2), p. I l l , 17.6, p. 92]. Using
Bott's Periodicity Theorem [2; Theorem 5, p. 51], we have τtm(U(n)IT^)
( ^ πm(U(n))) is ^ f° r m even and Z for m odd Φ1 when m <2n, while
^n{ϋ(n)fT^^ΈnX,π^n+1{ϋ{n)IT^ is Z 2 for even n^ 2 and 0 for
odd n\ π 2 7 l + 2(ί7(^)/T1) « Z 2 -f Z ( n + 1 } 1 for even n ^ 4 and « Z ( w + 1 ) l / 2

for odd w ^ 3 (cf. [31 p. 103, p. 117]). We have noted that

so that the list preceding identifies this quotient for the given m and n.
In particular, for even m<2n, π(3lmn)/y (2lTOΛ) is 0, i.e. π (2lmn) = y (^ίwn).
Hence in this case, each mapping of 8m into U(n)IT1 lifts to Ϊ7(w) and

J For odd m Φ 1 and m < 2n,

so that y ( ^ m n ) £ π ( 2 ί m j . We shall note that to(<Άmn) = π(<Άmn) for
m, ft = 1, 2, . . ., by universal bundle techniques. (We are indebted,
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once again, to L. KRISTENSEN for pointing out the use of universal
bundle methods in providing a detailed description of mappings which
lift.)

We begin by identifying ι0 (21) more carefully, with 21 = stf <8> *^ n and
stf = G(X). Suppose that X is a (compact) ^-dimensional complex. Let
B be an m-universal bundle with base B1 fibre and group TΎ and pro-
jection q (cf. [29; 19.2, p. 101, 19.6, p. 103]), where m is taken very large
relative to k and n. Note that each simplicial mapping g of X into B is
inessential, for Go defined on the subcomplex X x {0} \j X x {1} of
X x [0, 1] by G0(x, 1) = b0 (a fixed point of B) and G0(x, 0) = g(x) can
be extended to a homotopy G, mapping X x [0, 1] into B, of g with the
constant mapping of X into b0, since the high connectivity of B (cf. [29;
19.4, p. 102]) guarantees that there is no obstruction to the stepwise
extension of 6r0 over a simplex of X x [0, 1] of a certain dimension from
its value on the boundary of that simplex in the skeleton of X x [0, 1]
of one lower dimension.

Since each mapping g of X into B is homotopic to a simplicial
mapping (Simplicial Approximation Theorem [13; 1.7.10 to 1.8.1, p . 37]),
g is inessential. Thus a mapping of X into B1 which lifts to B is seen to
be inessential by projecting the homotopy of the lifted mapping to a
constant mapping into B. Conversely if a mapping of X into B1 is in-
essential the Covering Homotopy Theorem [29; 11.7, p. 54] provides a
lifting of it to B; so that the mappings of X into Bx which can be lifted
are precisely the inessential ones.

From the universal property of B, there is a bundle mapping h of
U(n) into B inducing a mapping h of U{n)jT1 into B1 (cf. [29; 2.5, p. 9]).
Moreover [29; §10, pp. 47—49] the bundle B' induced by h over
U (n)jT1 is equivalent to U(n) over U(n)jTv Thus the possibility of
lifting a mapping / from X into Ufo)/^ to U(n) is equivalent to that of
lifting / from U(n)jT1 to B'. Now B' is the set of points (u, b) in
(U{n)jTύ x B such that h{u) = q{b) (cf. [29; 10.2, p. 47]); so that if g is
a lifting of hf from Bx to B, then / defined by f(x) = (/(#), g(x)) is a
lifting of / from U(n)jT1 to Bf since hf(x) = qg{x). Conversely, if /lifts
/ from U{rήjTi to B', then f(x) = (J(x), g(x)) for each a i n l and some
mapping g of X into B, since the projection of B' onto ΊJ{n)\Tλ is, by
construction, projection onto the first coordinate and g lifts Jif from B1

to B since hf(x) = qg{x). Thus / lifts to U(n) if and only if hf lifts to 5 ,
that is, if and only if hf is homotopic to a constant mapping into Bv

With 21 = stf 0 .y#w and ja/ = O(X), £0(2l) is the group (under pointwise
multiplication in U (rij/Tj) of mappings f oί X into U (n)jTx such that hf is
inessential. In particular, taking 8k for X with & ̂  3, we see that all
mappings / lie in ιQ($l) (= ιo(^ίjcn)) for π^B-^) ^ nk(B) = 0 (recall that
5 is m-universal, so, m — 1 connected, with k < m), from the exactness
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of the bundle homotopy sequence [29; 17.4, p. 91], * -> πk{T1)

-> πk{B)-> πjtiBJ-> πjc^iTi) and the fact that ^ ^ ( Γ J = πk\τj
= πk(B) = 0 with k ^ 3. Since π2{U{n)IT^) = 0 and the arcwise con-

nectedness of Tx allows us to lift mappings of a 1-complex into U '(n)ITx

to U(n) (as noted earlier when we discussed the case X = T^), we see

that ίo(2lwn) = π(<Άmn) for all m, n = 1, 2, . . . .

We can show that io{$lmn) = π(2lm Λ) without universal bundle

techniques by a more special analysis. From the homotopy sequence of

the bundle,

so that p% is an isomorphism of πm(U(n)) onto πm(JJ'{n)ITj) for m Ξ> 3.

For m = 2, π2(U(ri)IT^) = 0 as noted earlier. For m = 1, ^ ( T ^ = 0, so

that p* is surjective for all m. Thus each mapping of $ m into U(n)IT1 is

homotopic to the projection of some mapping of 8m into U(n), i.e.

homotopic to a mapping which lifts, and hence lifts itself. It follows that

= πi^mn) for all m and n.
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