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Abstract. Two degenerate principal series of irreducible unitary representations
of an arbitrary non-compact unitary group U(p, q) are derived. These series are
determined by the eigenvalues of the first and second-order invariant operators,
which are shown to possess a discrete spectrum. The explicit form of the correspond-
ing harmonic functions is derived and the properties of the discrete representations
are discussed in detail. Moreover, in the Appendix, we derive the properties of the
corresponding degenerate representations of an arbitrary compact U (p) group.

1. Introduction

Irreducible unitary representations of semi-simple Lie groups can be
constructed in the Hilbert spaces# (X,) of the functions defined in a
domain X;, which is some homogeneous space of the type

X, =66, (L.L)

G; being a closed subgroup of G. In the case of the non-compact uni-
modular unitary groups S U (p, ¢) we can construct two classes of homo-
geneous spaces having a compact and non-compact stability group,
respectively. The first class contains the following symmetric Cartan
spaces (see [1], Chap. IX):

Table
X rank dimension of X
SU(n)/SO(n) n—1 %(n——l) (n + 2)
SU(2n)/Sp(n) n—1 (n—1)2n +1)
SU(p+ q)/SIU(p)xU(g)] min(p,q) 2pg
SU(p, 9/S[U(P)x U] min(p,q)  2pg

* On leave of absence from Institute of Nuclear Research, Warsaw, Poland.
** On leave of absence from Institute of Physics of the Czechoslovak Academy
of Sciences, Prague, Czechoslovakia.
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The spaces of the second class have been classified by RoSENFELD [2]
and FEpyENKO [3]. For our purposes the following spaces of this class
are important:

X s =SU(p, QISIUK, s) x Ulp—k,g—3)] p=k=0 (1.2)
g=s=0.

The key theorem, which relates the geometry of a homogeneous
space X to the properties of representations in the Hilbert space J# (X),
is the Gel'fand theorem [4]. It states that the number of invariant
differential operators whose eigenvalues determine the irreducible
unitary representations realized in 5 (X) is equal to the rank of the sym-
metric space X (independently of the magnitude of the rank of the
group)®. If the rank of the space X is one, then the ring of invariant

operators in the enveloping algebra is generated by the so-called Laplace-
Beltrami operator?

A(X) = 5 0.6°(X) V17 % (13)
where g,5(X) is the metric tensor on the space X and § = det{g,s}. This
operator is equal to the second-order Casimir operator @, = g;,Z¢Z*
(Z; being the generators of ¢) of the group G with the condition that the
Riemannian metric tensor g, 4(X) on X is induced by the Cartan metric
tensor g, in the Lie algebra R of the group G (see [1] Chap. X, § 7).

In the present paper we consider the properties of the discrete
degenerate representations of an arbitrary non-compact unitary group
U (p, ) which are determined by the eigenvalues of the first and second-

order invariant operators J7 and A (X), where
»+a

M=} z, (1.4)
i=1

Z¢ being the generators of a Cartan subgroup of U (p,q). These represen-
tations are realized in the Hilbert spaces # (X2,") of functions defined in
the domains X%:¢ or X?:¢,

X2i=U(p,q)/U(p—1,9), X2=Ulp,9/U(p,q—1), (L5)
the dimension of the spaces X%:? being equal to 2 (p + ¢) — 1. It has been
shown by RosENFELD ([5], p. 621) that the group U (p, ¢) acts transitively
on these manifolds.

The full problem of the construction of the degenerate representations
of an arbitrary U (p, q) group is solved by the following steps:

(i) The construction of a convenient co-ordinate system on X, in
which the metric tensor g,5(X) is diagonal.

1 The rank of a symmetric space X is the number of independent invariants
of any pair of points z, y € X with respect to the action of ¢ on X.

2 If no other indication is given we shall employ the Einstein summation
convention.
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(i) The solution of the eigenvalue problem for the invariant operators:
A(X)Pi = AP (1.6)
n¥y = MPs . (1.7)

(iii) The proof of the irreducibility and unitarity of the representa-
tions related to the set of harmonic functions ¥¥;.

The properties of the discrete series of degenerate representations of
the non-compact U (p, ¢) groups are rather different if p = ¢ > 1 or if
p>gqg=1orp=q=1.1In Section 2 we give the solution of the problem
for p = ¢ >1, ie., the explicit form of harmonic functions and the
character of the spectra of 1 and M. The cases p >¢=1landp=¢=1
are studied in the same manner in Section 3. In Section 4 we give the
proof of irreducibility and unitarity of the representations so obtained,
while in Section 5 we discuss some of their more general properties.
Finally, the Appendix contains the derivation and discussion of the
properties of the corresponding degenerate irreducible unitary re-
presentations of an arbitrary compact U (p) group.

In a series of papers we shall give the solution of the following
problems:

I. The construction of the discrete degenerate representations of the
U(p, q) groups;

II. The construction of the continuous degenerate representations
of the U (p, ¢q) groups;

ITI. The derivation of the Gel’fand-Graev transforms [6] which are
related to the irreducible unitary representations of the U (p, q) groups;

IV. The decomposition of the direct product of two degenerate
representations of the U (p, ¢) group into irreducible components;

V. The construction of other series of degenerate irreducible repre-
sentations of the U (p, q) groups3.

Finally, let us mention that in the present paper we talk about a
representation of the U(p,q) group in a Hilbert space s# (X) although,
strictly speaking, we deal with a local representation determined on a
dense set in o7 (X). However, we shall show in Part IIT that from the
local irreducibility and unitarity the global irreducibility and unitarity
follow.

2. Discrete degenerate representations of the U(p, q) group (p = q > 1)

The set of harmonic functions which creates a basis for the representa-
tions under consideration is given by the set of simultaneous solutions of

3 In the present paper we consider the degenerate irreducible representations
of U (p, q) determined by two invariant numbers only. In Part V, we shall consider
degenerate representations of U(p, q) determined by more than two invariant
numbers.

17+
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the equations (1.6) and (1.7). To obtain an explicit solution of these
equations it is necessary to introduce a convenient model of the spaces
X?:9 and X%9, ie., a manifold which has the same dimension and the
same stability group as X%:¢ and on which the group U(p, q) acts
transitively.

The model of X%:2 can be realized by the hypersurface in the (p + g)-
dimensional complex space C?+¢ which is determined by the equation

PFL A4 22F2 4 v PR — P HIEPHl e _pptagpta— 4], (2.1)

Besides the space C?+¢ we shall also consider the flat Minkowski space
M2?7,24¢ defined by the relations

a?k~1 = Rezk 2k € OP+9; g2k~1 2% C 22,24

22k =Imz*r k=1,2,...p+q. 22)

The solution of the eigenvalue problem is considerably facilitated if a
system of co-ordinates is chosen such that the metric tensor g,5(X%:9)
on the hypersurface X?%:? induced by the metric tensor g,,(M?%?.29) on
M?7.2¢ jg diagonal. As it was shown in a previous paper [7], the so-called
biharmonic co-ordinate system turns out to be especially convenient for
this purpose. We shall construct it with the help of a recursion prescrip-
tion: first we construct the coordinate system for the compact sub-
manifold satisfying the equation

AZL 4 - 2P27 =1 (2.3)
which is a homogeneous manifold with respect to the action of the com-
pact subgroup U (p) of U(p, q). If we suppose that we have constructed
the coordinate system for 2", . . . 2"!, I < p, then the co-ordinate system
for the variables 2", . . . 2"+ is given by

Zi=2"sind't 0 ¢t 2 ¢=1,2,...1

2l = P gog P+l () < P g%, j=,2,...1. (24)

Therefore, putting 2! =e!#* for p =1 and applying successively the

procedure (2.4) we obtain the co-ordinate system for the manifold

determined by Eq. (2.3) for an arbitrary p =1, 2, ... . We shall denote
the corresponding set of angles by w = {¢!, ... ¢?, 92, ... 9%}

In the same way, the co-ordinate system for the variables

2P+l .. ., 2P %7 satisfying the equation
ZPHIZPHL oo g pptazpta — ] (2.5)
is also constructed. The corresponding set of angles will be denoted by
&={¢ ..., ¢, 52, ... ﬁq}. Finally, the complete co-ordinate system
on X% is created by
Z=z2'tchf) 1=1,2,...p

Z=2tsh l=p+1,...p+¢q 0=8<eo. (2-6)
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The metric tensor g,5(X?:9) on the space X%:7is given by

2(p+

Gup (X229 klZ y/cz(M“"“)a @Ot o, f=1,2,...2(p+q)—1. (2.7)

where 0,, x =1,2,...2(p + q¢) — 1 denotes partial differentiation with
respect to the angles ¢, @% ..., @2, @, ..., §% 92, ..., 97, 52, ..., 00
Consider first the equations (1.6) and (1.7) on the homogeneous space
X742, Using formulae (1.3) and (1.4) we find that the invariant operators
A(X2:7) and J (X?:9) can be expressed in terms of the biharmonic co-
ordinates in the following Way
1
ch2?-10 gh?¢-10 66
AX?)  AX9)
ch?0 sh?0

A(Xx_»#q)= ch2r-10 gh2e— 16—+

(2.8)

+

- = A .0
M, ,=M,+ M, M,,s—zké_\jl 5o _zzga—ﬁ’ (2.9)
where A(X?), M, and A(X9), i . are the invariant operators of the
compact unitary group U (p) and U (¢) respectively and X¢ = X9, The
eigenfunctions of the operators A(X?) and M, for an arbitrary U (p)
group are given explicitly in the Appendix.

If we represent the simultaneous eigenfunctions of the operators (2.8)
and (2.9) as a product of eigenfunctions of 4 (X?) and J, times eigen-
functions of A(X?) and M . times an unknown function v} 7 (6), we
obtain the following equation for v} 7 (0)

1
- e g b Ok

Jp(J +2P—2) Jq(Jq+2g_2) ~
- pchze + sh26 _}”] 517'“:0
where —J,(J, + 2p—2) and —J(J, + 2¢ — 2) are eigenvalues of the
operators A (X?) and A (X9) respectlvely, with J, and J, being certain
non-negative integers for p, ¢ > 1 (see Appendix).
The left-invariant Riemannian measure du(X?%:9) on the manifold
X% is given by
du(X79) = /§(X%:9) do dd do
= du(X?)d 5(X9) ch??-10 sh?2¢-16 df

(2.10)

(2.11)
where

dp(X?) = Hsmz" 399 cos 9° d9° I]d(p@

e=1

(X = Hsin20—35° cosd° dd° Hd¢e.

c=2 o=1

(2.12)
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As the eigenfunctions of the compact operators A (X?), M, and A (X9), Jig B
are square integrable with respect to the measure du(X?) and d i (X9),
respectively, the problem of finding discrete series of the degenerate
representations reduces to that of finding such solutions of equation (2.10)
which are square integrable with respect to the measure

dp(0) = ch??—10 sh?e-10 d6 (2.13)
which is induced by the measure (2.11).
The solution of (2.10) which is regular at § = 0 is given by
yh 5, (0) = th72f ch==0 x
~ i (2.14)

X o (W_ P+ 1}-% : jq +q; th20)

where a=p+g—1+)(p+¢—12—1>0. We obtain a square
integrable solution regular at 6 — oo if we impose the following condition
on the parameters of ,F;

1

o= Jp+a—2p+2)=—n (2.15)
where » is an arbitrary non-negative integer. From this condition we can
find that the discrete spectrum A of the operator A (X?%:9) is of the form
A=—L(L+2p+29—2) L=—({p+q¢+2,—(p+q +3,...(2.16)

where
L=Jp——..7q—2q—2n. (2.17)

Finally, the complete set of orthonormal square integrable functions
related to definite values of invariant numbers L and M is given by the
following formula

§ /7% AU N SR Toreod
Yoo i i, 0,0)= VT, 5 0) Yo (@Y E (@) (2.18)

where V}p, 7,(0) are solutions of equation (2.10) given by
Vf}p,fq(e) = ——V%—thf«e ch-(L+2p+20-2) 0 %

Jo—Jp+ L J,+J,+ L
2 2

>

v I (g Wy =T D—g+1) U, + O T (3 (=T + 1)+ 3)

20+ p+g— T30+ T+ D) +p+0—1) (0, +7,—1)

(see [8]). For definite L, condition (2.17) imposes now the following
restriction on J, and J,

Jy—J,=L+2¢+2n n=0,1,2,.... (2.20)
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The functions

Vo0 (@) = i I ém# [ sint- FoEd2
? =1 k=2

TR 2oy (2.21)

1

l
=M= My 1=1,2,.,p—1 = M

D

1
“kz—_(Mlc—Mk—1+Jk~1+k—2) k=2?"‘p
(2.22)
ﬂk—‘—Mlc My y—Jp1—k+2) Ji=M

»
N,= @) p I (J,+k—1)"*
k=2

are simultaneous eigenfunctions of the invariant operators A (Xi’) ,

and their form is derived in the Appendix. (The functions Y ]é M,, 9)
are obtained, naturally, only by an appropriate change of the cor-
responding symbols.) The integers M;, +=1,2,...p and the non-
negative integers J,, k=2,3,...p are restricted by the following
conditions:

1
[ My — My| + |My| = Ty — 2m, ny=0,1,...,5( (Jo— | M)
| My — M| + Ty = Jy— 2, ng=0,1,. % Jo— |My)) (2.23)
1
| My— Mg+ Jy3=J,—2n, ny=0,1,...,5 (J,— |M,])
' L
\My— My |+ Jpy=Jp—2n, n,=0,1,..., 2 — [ M,)) .

Analogous relations among the integers M, i = 1,2, . .. q and the non-
negative integers J,, k=2,3,...q are obtained from (2.23) by re-
placing M,, J,, n, and p by II,, J,, #, and q respectively.

As it is explained in the Appendix, it is sometimes convenient to pass
from the sets w, @ of angles to new sets Q, £ defined by

Q={f ¢ ... 47,9 ..., 0%

i Q= (B .. 0 (2.24)
where
¢ = gt — @i+ 1=1,2,...p—1
¢p= (P1+ (pz_’_ ceeogr (2.25)
$§=¢9’_¢5+1 1=12,...q—1

$q=¢1+¢2+...+q§q.
The general solution (2.18), (2.21) has already been written in terms
of these new variables.
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The closed linear envelope of functions (2.18) creates the Hilbert
space#’ Y (X2:9) of functions f(X) with the scalar product determined by
the measure (2.11):

(@, 2) = [ ¢(@) 7(x) dpu(X%7) . (2.26)

The space # § (X7:9) creates the represen’oa’mon space for the group
U (p, q) because for any generator Z, belonging to the Lie algebra of
U (p, ¢) and for any function ¢ € #% (X?:9) we have

4,Z)p=0, [M,Z]p=0. (2.27)

In Section 4 we prove that the representation related to the set of
harmonic functions (2.18) is irreducible and unitary. We shall denote
this series of representations by D% (X?:9) or briefly by D% (X,).

In a similar way, we obtain the corresponding series D (X2:9) of
discrete degenerate representations related to the homogeneous space
X?%:¢ given by expression (1.3). The corresponding set of harmonic
functions is obtained from (2.18) simply by replacing VL 3 (0) on the
right-hand side of (2.18) by V T, (0). Simultaneously the Yole of the
numbers J,, p and J,, ¢ is 1n'oerchanged in the formulae (2.11), (2.13) to
(2.17), (2.19) and (2.20). The representations D¥ (X?%:9) and D} (X2:9)
are non-equivalent, except for the case p=q, when both Hilbert spaces
coincide.

The structure of the Hilbert spaces 5% (X?:9) is very simple. As it
follows from the form of the harmonic functions (2.18), the whole Hilbert
space #4 can be represented as a direct sum of the form

o hod Iy *70

HHEX)= ¥ X b3 Y e
Jg=0 Jp=L+Jdg+2¢ Mp=—Jp My=—J,
(Jp—J¢—L even) (My + Jp even) (ﬂ, + J~,1 even) (2'28)
oA JPJ« (X.)0 y
M,My,+ My

Where%”LJpjﬂ (X ) is a subspace of H#% (X ) in which the irreducible

unitary represen’ca’olon of the maximal compact subgroup U( ) x Ulq)
determined by the invariant numbers J,, M, and J,, M, acts. The
formula (2.28) represents in fact the decompos1t10n of the representation
of the U (p, q) group determined by L and M with respect to the re-
presentations of its maximal compact subgroup. A similar formula holds
also for the decomposition of % (X_).

The structure of the Hilbert spaces#%; (X%:9) can be represented with
the help of a three-dimensional net with the co-ordinates J,, J, and M,
say (M,= M — M,), in which every knot represents one subspace

%LJ;;’« (X2:9) of % (X2:9). To construct the net in the case of the
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representation D} (X?:9) we use the following relations

Jp—J,=L+2¢+2n n=0,1,2,... (a)
M,=J,,J,—2,...,—J, (b) (2.29)
M= MMy = Jy—2, .. =, (©)

which follow from (2.20) and (2.23). These relations determine the set
of all possible values of J,, J, and M, for the given representation
D% (X7:9). An example can be seen in Fig. 1, which represents a section
through the three-dimensional net with M, = const.

%

Lt2g

g
Fig. 1. An M, = const section through the three-dimensional net representing admissible values of
Jps Jg and My in a given representation D3 (X%, p = ¢ > 1

In a similar way, also, the structure of the Hilbert space % (X7:9)
which corresponds to the representation D% (X?:9), can be represented.
The only difference lies in the fact that relation (2.29) (a) has to be
replaced by

Jo—J,=L+2p+2n n=01,2,.... (2.29) (a)
An example is given in Fig. 2, which represents a section through the
corresponding net with M, = const.

3. Discrete degenerate representations of the U (p, 1) group

In this case the homogeneous spaces creating the domains X%! of the
Hilbert spaces #%; (X?:1) have the form

X7t=U(p,)/Up—1,1) and X2l=U(p,1)/U(p) (3.1)

and can, again, be realized as the corresponding hypersurfaces given by
equation (2.1) for ¢ = 1. The co-ordinate systems on these manifolds are
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introduced in the same way as in Section 2 and also the invariant
operators A (X#1) and M, ,, are obtained from those defined in Section 2
simply by putting ¢ = 1.

Fig. 2. An M, = const section through the three-dimensional net representing admissible values of
Jp» Jg and M, in a given representation Di7(X2%, p = ¢ > 1

The Laplace-Beltrami operator A(X%?'), p > 1 has now the form
A =

_ 1 K2 A7 1 @ (32)
= T ch2*-19sho 20 ch?§ ~ sh*0 (9¢)®

The essential difference from the previous case lies in the fact that the

ch2r-16 sh@% +

2
invariant second-order operator-(aaw of the U (1) subgroup has eigen-

values — I3 with J7, an arbitrary integer. The set of differential equa-
tions for the representations on the manifold X2:! is obtained from the
set of equations (1.6), (1.7) by using (3.2) and

M, =1, —i % .
By the same procedure as before we reduce the eigenvalue problem of the
operator (3.2) to the problem of finding the solution of the following
equation

1 d _ d  JJ,+2p—2) M
(“ d1gshg @6 7 0shl G5 — oh*d T 6 “’1) 3.3)
X Y11, (0) = 0.
The solution of (3.3) which is square integrable in the interval
0 € (0, co) with respect to the measure

du(6) = ch2r-16 sh0 d0
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and regular at 0 = 0 and 0 — oo is now given by the function
Vit (0) = th|M1|0 ch-@&+29) 0 x
% 2F1([M1[—2J,,+L 1, | I, +2J,,+L

+ +:p;l1‘71|+1;th26)
r(L=E=) praty -y p (BT )

7, + L i1,| — L
2(L+p)F(J,+lJ;L|+ +p)F(J,,+|J;Ll )

The invariant numbers J,, and M;, which determine the irreducible
unitary representations of the maximal compact subgroup U (p) x U (1),
are restricted by the condition

Jy— M| =L+2+2n, n=0,1,2,.... (3.5)

Consequently, the discrete spectrum of the operator A(X%?!) has the
form

N =

A=—L(L+2) L=—p+1,—p+2,... (3.6)
with
L=J,—|M|—2—2n.

In a definite representation with L and M fixed, the numbers J, and

I, can have only values which are restricted by the conditions
Jo— || =L+2+2n n=0,1,2,... (3.7)
Jy+ My =M+ 2w n'=0,1,2...J,.
As the value of M, is uniquely determined by the relation M, + I, = M,
the structure of the corresponding Hilbert space can be now represented
with the help of a two-dimensional net with the co-ordinates J, and J7,.
One example of this net is given in Fig. 3. Note that for the definite L,
the number M can be an arbitrary integer having the same parity as L.

Fig. 3. Admissible values of J; and M, in a given representation Df’l(Xﬁ.’l), p>1

The basis of the representation space can be written in the form

~ 'LM1¢
Y55 e 1, Q0 4 0) = Vi O Yo, 03, (@) S (39)

where the functions Y"” J’p (2) are given by formula (2.21).
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The representations acting on the Hilbert space #°% (X?:1), p> 1, are
constructed in the same way. Instead of (3.7), we obtain now

|| —J,=L+2p+2n n=0,1,2,...
Jp+ My =M + 20 n'=0,1,2,...J,.

Two typical examples of spectra are given in Figs. 4 and 5. Let us
mention that the spectrum of the invariant numbers L and M charac-

(3.9)

S

M

%
Fig. 5. Admissible values of J, and M, in a given representation Df;’f(Xﬂl), p>1L,M < —(L + 2p)

terizing the irreducible unitary representations D (X2:1) of the U (p, 1)
group (p > 1) is given by the conditions

L=—p+1,—p+2,...
|M| = L+ 2p, M integer, L + M even.

In the case p = ¢ = 1 the differential equation as well as its solution
is found by the same method. The representation is labelled by L and M
and the conditions for M, and I, in a definite representation are

M| —|M|=L+2+2n n=0,1,2,...
M, + M, =M.

The “net” of subspaces %y 5, (X:') of the space #% (X:!) reduces
here to a string of points. The spectrum of the invariant numbers L and

(3.10)

(3.11)
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M is
L=0,1,2,...
|M| = L+ 2, M integer, L+ M even.

Two typical examples of representations D} (X%:) are shown in Fig. 6.

(3.12)

"

N
Z*Z{ \\

w;{

Fig. 6. Two examples of one-dimensional “‘nets’ representing admissible values of M, and M ; in the
representations DJI,’,(X !{.1). One example is for M = L + 2, the other for M < —(L + 2)

Since the Hilbert spaces #%; (X%!) and o#% (XL1) are identical, the
corresponding representations are equivalent and are obtained from one
another by exchanging the role of M, and J7,.

4. Irreducibility and unitarity

The Lie algebra R, , of the U(p, ) group consists of (p + ¢)* basic
elements; if the basis is suitably chosen one can distinguish the following
different types of basic elements:

1) p + q operators L;; (i =1,2,...p+ q) belonging to a Cartan sub-
algebra of R, ,.

2) (8) + (4) operators L} (1,j=1,2,...pori,j=p+1,p+2,...
P+ ¢, ¢ <j) which correspond to the subgroup SO(p) x SO(q) of
Ulp, 9)

3) (&) + () operators L;; (1,j=1,2,...pore,j=p+1,p+2,...
P+ ¢, 1 <j) which, together with L, and L create the subalgebra
belonging to the maximal compact subgroup U (p) x U(q) of U (p, q).

4) 2pq non-compact operators Bjj, Bj; where i =1,2,...p
j=p+1,...p+4q.
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The commutation relations among these operators have the following
form:

* " + = -+ I
[LJ’ Lkl] =% O Lig T 001 Litj— Ons L + 05 L5
[ 7,7>Bkl] - 6k9 zl 6leI;; + 6kl‘B]-l- + 69‘131;5 (41)

+ + + + +
[BE, BS) = % 60,18 7 6,01 + 60,Lj5 — 6, L
L:,-ﬂg =F L{‘;, B =+ B

(YR
no summation.

Due to the fact that the algebra R, , of U(p, ) is a subalgebra of the
algebra of the SO (2p, 2¢) group we can express our basis of E, ,in the
form of certain linear combinations of the generators of SO(2p, 2¢). By
an explicit calculation we can see that

L = Lyiq,05-1+ Lysy05) 6,7 =1,2,...p, i<j or

Z o 4.2)
LH‘L%*I,W Ly 051 %7~p+1>~~~p+q, 1 <9

Li; =2L,; 4,5 9=1,2,...p4+¢q

B = By;_y1,05-1+ Bzi,zf}i= 1,2,...p s
B = By;_1,0;— Bys,pi1) i =2+ 1,...p+¢q

where Ly, (k,1=1,2,...2p or k,1=2p+1,...2(p+q)) and By,
(k=1,2,...2p, I=2p+1,...2(p+ q)) are the generators of the
compact and non- compact rotations of the SO (2p, 24q) group respectively.

In order to calculate the action of the generators of the U (p, g) group
on the set of harmonic functions (2.18) or (3.8) we represent the Lie
algebra R, , by the Lie algebra of the operators of differentiation with
respect to the co-ordinates ¢, ..., @?, @, ... @2 92, ... 097, 2, ... 0¢
and 0. This representation of the Lie algebra R, , will be denoted by
R, .. We give here the explicit form of two basic operators of R, ,, which
will be useful in the following.

o 5 0
+ ; BT — ot i(eP—37 -
By gt 0By, =eEt@—F) [oosﬁp cos ¢ 55

. 5 0 .1 d
— cth 6 cos 9P (smﬁ‘?—gq— + 1 e a—qz«) - 4.4)
— th @ cosJe (smﬂp Fi— 1 2 )]
o9r cos9? Jo?

I. Irreducibility

To prove the irreducibility of our representation D (X%:9) on the
Hilbert space #% (X2:9) we show that #J; (X%:9) contains no subspace
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invariant with respect to the action of the Lie algebra R, ,. The structure
of % (X%:9) is given by formula (2.28).

From the proof of irreducibility given in the Appendix it follows that
our representation of the algebra of the maximal compact subgroup

U (p) x U(q) is irreducible in the space f{fﬁ‘fﬂm Thus, to perform the
proof of irreducibility in the non-compact case, it is sufficient to show

that for any two subspaces %7, A”IJ“ﬂg H JI{,‘,"&Jﬂm occurring in the sum on

the right-hand side of (2.28) there exists an operator in the enveloping

algebra of B, ,such that transforms one element of %ff’lﬁ‘;ﬁq into an

element of 5# JL”JJ%“ ;-
1. The case p = q > 1. The structure (2.28) of #% (X%9) can be
represented with the help of a three-dimensional net with co-ordinates

Jp, J, and M,, in which each knot denotes one subspace %JLMJA‘}%’L of

HYy (see Fig. 1). To prove the irreducibility it is sufficient to find some

operators B; ¢ E, , and one harmonic function YLJ s Tpda e (218)
M, BT, 0

such that the operators B; can perform the transmlon into all nearest
neighbouring knots of the net, i.e., into the Hilbert spaces A M i7; with
Jp=J,+1, J' Jo+1 and M, = M, + 1. Wefollowherethemethod
Whlch has been developed in [8]

By an explicit calculation we can see that the operators

B, = 1B

+ B, 2.9 +4q

p+q and By= BF

pp+q .0 +a

given by formula (4.4) have the desired properties, B; performing the
four steps J, =J,+ 1, J; =J,+ 1, M, = M,+ 1 and B, performing
the other four steps J,, = J, & 1, J' = j + 1, M, = M,—1if acting on

Vi a = YR 0 i, (2. 2. 0) (45)
Performing the calculation we obtain the following result:
BYS gl —— Y T+ T+ 1+ YT+ J + 1= L) x

X at g YhIs+ 1 Je+1 +
M, M, +1,M,—1

YT +1+L)(J— J+1—L')a+~—anJ&:+11J«A;1 —  (4.6)

5 7 L,Jp—1,J,
—V U —=F =1+ L) (J—F—1—L)azatYp7z—bierl +

+Y T+ T =1+ D)0+ T —1—L) az az Y5720t |

where

J=J,+p—1, J=J,+q—1, L'=L+p+qg—1 (47)
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and
1 YW+ M, +p—1 V] +M,—p+3
=qt ==
=aitd, My p) =5 VIT+ 1D
o 1V YWJ—M,—p+ 1 yJ—M,+p—3
aL=0a, (J’ M’p, p) =9 VJ _ 1) (48)

aE(JM )=a$(J_ » D)
dt=at(J, M, q) .

The corresponding expression for B,Y%; J"’J‘iq can be obtained from
(4.6) by performing the following changes

L,J} LJsJe . '
YMﬁp+1Mq—1—>YM,zf2pi1,Mq+1 for J,=J,+1
. s
T=Jet1 4y
£ ok :
at —a*
Ny
at —~at.

By a successive application of the operators Bf, ., + B, ,,
every point of the given diagram can be reached starting from an arbitrary

point.
The proof of the irreducibility of the representation DY (X?:9) for
p = ¢ > 1 is analogous.

2. The case p>q=1. The decomposition (2.28) of the space
A% (X2:1) reduces to a double sum an can be represented with the help
of a two-dimensional net (see Fig. 3). The operators B, and B, have,
according to (4.4), the following form

B, 14+ iBy, 4 =eti®— 2 [cosﬁf’—:F@cthO cos PP 2 —

‘ (4.10)
—th§ (Smﬁ 55 ¥ s a%v)] , §=
and we let them act on (see (3.8))
Vit i = Y500, Q) o V1, 6) (4.11)
Using the same procedure we obtain
B Y5, =V — I+ 1+ L) (J— M, +1— L) x
X el Yigr b g+ (4.12)

+ YT+ =1+ L) (J+ I —1—L) a7 Y5 80 s 1, -1 -

The action of B, is obtained from (4.11) if all symbols (except for
J and @%, which do not occur here) are changed according to (4.9).
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A successive application of the operators B; and B, makes it possible
to perform any transition from point to point within the given diagram.

The irreducibility of the representation D (X?:!) is proved anal-
ogously.

3. The case p=q=1. The sum in (2.28) is now one-dimensional
(over M,, M, + M, = M) and the operators B, and B, reduce to

B+iiB—=eii<¢—¢>[ F¢cthf d;izthe ¢]

(4.13)
= ¢ = (ﬁl .
The basic vectors have the form
o 1 . o

Yir, it 00, ($ 0) = 5~ €Mt MIVE 0 (0) (4.14)
We obtain
B, Y{In,M,,zl?, = V(Ml“‘]’ﬂl + 1+ L) (M, :Ml +1—-L') X («15)

X Yf{,M1+1,1F1,—1

and
B, Y310, 11, = — V(I — My + 1+ L) (0, — My +1— L) @.16)

S YZI;I,MI—LITII +1-

So, the irreducibility is proved also in this case. We can see from (4.15)

that the factor |I1,| — |M;| + L + 2 stops the raising of M, at the point
—M,+M,=L+2 M, <0 I, =<0

as it is prescribed in the summation (2.28) for this case (see (3.11)). The
same factor stops also the lowering of M, at the point

M,—M,=L+2 M,>0 I,=0
(see (4.16)), in agreement with the condition (3.11).

I1. Unitarity
An element g of the U (p, ¢) group and its representation 7', in the
Hilbert space % (X2:9) are connected by the relation

T, YL Inda o dy ¥) S 0 72 SO S O P (g‘lY’) (4.17)
M,My,... Mp,M,,... M, M M,,... M, M

where ¥ means a point (£2, &, 6) of the manifold Xl_’;q and g—l'P means its

left translation. As the group U (p, q) acts transitively on X?:9, the uni-

tarity follows from the left invariance of the measure d u (X%:9) on X%:.
The unitarity of the representation D (X?:9) is proved by the same

argument.

18 Commun. math. Phys., Vol. 3
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5. Conclusion

We have shown that for any non-compact unitary group U (p, q),
p = q there exist two different discrete series of degenerate representa-
tions, DY (X2:9) and D¥; (X?:9), which coincide only for p = ¢. These repre-
sentations are characterized by only two numbers, Land M, L=—(p+4q) +
+2,—(p+¢q)+3,..., M being an integer having the same parity as L.
In the cases D% (X?:1) and D% (X1.1) the values of L, M are restricted by
additional conditions (3.10) and (3.12) respectively.

As D% (X7:9) and D (X?:9) are the degenerate representations (see
Footnote 3), the corresponding maximal set of commuting operators is
extremely small, consisting of only the 2(p+ ¢)— 1 independent
operators? for which we can choose invariant operators 4 (X7 ¢) and
M,,.,= I of the U(p,q) group and the sets C,, €, of commuting
operators of the maximal compact subgroup U (p) x U( ) given by?®

Oﬂ = {A (Xp)7 Mp7 A (Xp—l)’ Mp—p . A (X2) 2’ lMl}
0, = {A(X9), i, A(Xe-Y), M,_,, ... A(X?), i, 11} .

All these operators commute with the parity operator P defined by
Pri=_—z, i=1,2,...p+q. For every irreducible representation
defined by L and M the parity is equal to the parity of L.

Our approach made it possible to obtain rather easily the sets of

orthonormal functions YZ7e:-Jnu...J (.Q ,0) which create the
M, M,,..., M, M,

bases of the representation spaces This is 1mportant for physical applica-
tions since the explicit knowledge of the basis functions plays a great
role.

The representations D (X%:9) and D¥ (X?:9) themselves seem to
us to be of special interest from the point of view of applications in
elementary particle physics, for the following reasons:

(i) The maximal set €= {4(X?9), C,, C;} of commuting operators
contains a very small number of elements. The set of numbers L,
My,...M, Jy...d, M, ... 0, J,...J, which label each basic
function determines the eigenvalues of the maximal set C (see (2.16) and
(A.6)) and may be related to a set of quantum numbers characterising
a given physical state. The small number of elements of C is important
due to the fact that in physical applications unitary groups with com-
paratively high values of p or p and ¢ have been used.

(u) The spectra of all quantum numbers L, My, ... M,, J,, ... J,,

Mq, J2, . J are discrete.

¢ For the principal non-degenerate representation the number of commuting
operators whose eigenvalues label the basic functions is %(p +q)(p+q+1).

& Note that ﬂ, + ﬂa = I
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(i) The biharmonic co-ordinate system, which we have used to
parametrize the manifolds X?%:9, leads to the maximal number of linear

operators M,,...M,, M, ... M, Naturally, if we interpret them
physically, we obtain the maximal set of additive quantum numbers.
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Appendix
Degenerate representations of compaet unitary groups U (p)
I. The basic functions

For an arbitrary compact unitary group U (p) there exists a series of
degenerate unitary representations which are created on the finite-
dimensional Hilbert spaces #*j2, of functions with the domain given by the
manifold X

Xr=U(p/U(p—1).

This manifold represents by itself the symmetric Cartan space, on which
the group U (p) acts transitively.

As a model of X? we choose the hypersurface in the p-dimensional
complex space C given by the equation

27 2232 e e . ogPED — ], (A.1)

The co-ordinate system on X?is created in a recursive manner described
by formula (2.4) and the corresponding metric tensor is given by for-
mula (2.7) for ¢ = 0. The Laplace-Beltrami operator A (X?) is then ex-
pressed by a recursion formula in terms of 4 (X?-1) in the following
form (see [7]):

1 9 . 9
ARXD) = msr=vgi cosge v S0 70D cosP g+
1 o 1 (A.2)
+ cos?9? (3 ?)? + Sz o? A(Xr-1)

Further, the invariant first-order operator M belonging to the centre of
the U (p)-algebra has the form

~ .2
M,=—1i) 3
i=1

9 .9 -

= =—zW+Mp_1. (A3)
If we express the eigenfunctions of the operators (A.2) and (A.3) in

the form of a product of eigenfunctions of A (X?-1) and M,_, and an

18*
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unknown function 1p;’n” o=l (o) fm,(9?) we obtain the general solution of
the eigenvalue problem in the form of functions each of which depends only
on one angle, ¢¢ or 9*. The solution of the equation for 1/)"” »/>=1(99) has the
form
- 1

’I’%’JP 1 (87) = tglr-al 97 - cos”r 9 ,F, [@ (ITp-a| — I + myp),

1 (A4)
3 (Tpaal = Tp—mp); [Jpa| + p—1; —tgzﬁ")]

where J,, J,_, and m, are restricted by the condition that ,F; be a
polynomial and y be square integrable:

[ Tpal + |mpl =J,—2n n=0,1,2,.... (A.5)
The eigenvalues 1, of 4(X?) have the form
Ap=—d,(J, +2p—2). (A.6)
Further, the eigenvalue equa,tion of the operator M, leads to the
following relation among m,, m,, . . . m, and the eigenvalue M, of M ,:
M, = 2‘1 m; . (A7)
i=

Under the condition (A.5), the function 1/);;‘” 721 (99) can be expressed in
terms of d-functions which appear in the harmonic analysis of the three-
dimensional rotation group. The set of eigenfunctions of the operators
A(X?) and M, can be written in the following manner:

1 2 . P . L(Je+k—
Vi, (@) =y Hexpmygh) - I sin=9% BEFED 9.91) (A 8)
where

=?(m,c+J,c 1+E—2) kE=2,...,p; Ji=m
1

ﬂk—— (my—Jxy—k+2) (A.9)
o={¢4h ¢ ..., 9?9, ..., 02 ¢'=2x i=12,...,p
Osﬁk§7 E=2,3,...,p
and
2 1
Np——27zpﬂ7k_‘_—k—_—1

The functions Yﬁ;’_""”{,fp (w) create an orthonormal set of functions on the
manifold X7 with respect to the measure

ap(x) = Vg Hay Hap: -

) (A.10)
= [[sin2%-39% cos9* d9* [Id¢'.
k=2 =1
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For a closer discussion of representations of the U (p) and SU (p)

groups it is useful to introduce new azimuthal angles ¢!, ..., ¢? which
are defined by

=g — gttt k=1,2,...,p—1;

and
P
v =) ot (A.11)
i=1
ie.

1 pl L=t
pr=o(@?+ X (p—0)¢)— X ¢

P i=1 i=1
I=12,...,p.

The restrictions 0 < ¢! < 2x,1=1,2, ... p on the angles ¢! impose the
following restrictions on ¢?:®

—2n = ¢t < 2n

—27 < ¢P1 < 29 (A.12)
0= ¢?< 2ap.
Further, it is convenient to introduce, instead of m,,...m,, the
numbers M,
1
M= m; 1=12,...,p. (A.13)

i=1
A given representation of the U (p) group is characterized by the
numbers J, and M, which, due to (A.5) and (A.7), fulfil the following
restrictive conditions:
J,=0,1,2,...,

My=Jp Jy—2,J,—4, ..., —J

D

(A.14)

Analogously, the numbers J, and M, are invariant under the action of
the U () subgroup of the U (p) group (! =1,2,...p—1), and charac-
terize the representation of the U () subgroup.

The maximal set of commuting operators is given by the chain of
operators

A(X?), M, A(X?=Y), M, _y, . .., A(X?), M,, I, .
and corresponds, in fact, to the Gel’fand-Tsetlins parametrization [9] for
the degenerate series of representations.

¢ Strictly speaking, the region 0< ¢!< 2z, I =1, 2,...p is expressed in
terms of ¢ in the form of a set of involved inequalities which define only a part of
the region given by (A.12). Nevertheless, due to symmetry properties of the har-
monic functions in the whole region (A.12) the normalization integrals can be taken
over the whole region (A.12) if only the normalization constant is appropriately
changed. In the constant N, (see (2.22) and (A.17)) this change has already been
taken into account.
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Expressing now our basic functions (A.8) in terms of the new variables,
we obtain )

ya
Yool (@)= VN Hexp(z‘ulqsl H51n2 kﬁkdz(Jk-?—k D 9,95 (A.15)
where

= M,———M I=12,...,p—1

My =

D

&g, ==

1
P
1
o =My + T+ k—2) k=2,...,p (&0
1

ng—“‘ (M, — Mk-1“‘Jk—1"‘k+2) Jy= M,
Q={d ..., ¢7, 0 ..., 0%

and

My — M| 4 M) = Ty— 20y my=0,1,2,..., 220
k=2,3,...,p

M Moy + Ty = Ty— 2, = 0,1,2,.. . L (A7)

Y4
N,=Q@n)p I (J+k—1)"1.
k=2

This form of the basic harmonic functions has been used in Sections 2
and 3.

Let us now discuss in more detail the series of representations of the
U (p) group which has been obtained. Each representation is determined

b1 -1

V.
Mp1 Mot
-7
/=

Moy
%—7] I“fz
Mot M,

Fig. 7. Examples of nets representing admissible values of J,_, and M,_, in the representations
DH(X®)p>2

by two integers J, and M, satisfying the conditions (A.14) and will be
denoted by D3z ’(X?) or, briefly, Dy 3£, 1t is convenient to represent each
representatlon D"”p by a diagram in which each possible value of
(Jp—1> M, _,;) is denoted by a point. The diagrams are obtained by making
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use of the conditions
M, =J, 1—2n n=0,1...,J,,
IM:o_'M:v—ll +Jaz-1=Jz:"2", N »
n’=0,1,2,,..,—1%"| (p>2)

(A.18)

which follow from (A.17). Some typical examples are shown in Fig. 7.
If p equals 2, we obtain, instead of (A.18), the condition

My — My + |0 = Ty—2n n—=0,1,... 2L (A

11. Irreducibility

The Lie algebra R, of the unitary group U (p) is a compact subalgebra
of the R, , algebra defined in Section 4 and its basis can be created from
the operators L;, L and L;; (1,5 = 1,2, ... p, 1 <j), which satisfy the
commutation relations given in the first row of (4.1).

The action of these operators on the set of harmonic functions with
the basis (A.8) can be obtained if we represent the Lie algebra R, by the
Lie algebra E, of the first-order operators of differentiation with respect
to @b ..., @P, 0%, ..., 0P

The irreducibility will be proved if we show that the Lie algebra R, is
irreducible on the Hilbert space 5 ‘z{j’P(X ?) of the harmonic functions (A.8).

We shall perform the proof by induction. The irreducibility is well
known for the representations of U (1) and U (2) (see, e.g., [10]). Assuming
now the irreducibility of E,_; on the corresponding subspace o ‘1{}’;’1"};‘1
of the space ‘l{j’p we shall show that the representation &, of R, is
irreducible on the space #° lj‘;’p.

The case p> 2. The Hilbert space %}{j’p has the following structure:
I
Hip,= X Yediph,

Ipis=0 Mpy
where the summation over M, _, is restricted by
M, =J, ,—2n n=0,1,...J,, (A.20)

Jo— | M,
My— My | 4 Ty = Ty— 20w —0,1,.. Lol
which can be represented with the help of diagrams; each diagram
represents one space %}{fp and each point of a given diagram denotes one
of its subspaces #” Jﬁ;:’ﬁ,’;_l (see Fig. 7).

To prove that there is no subspace of %‘{,}’p invariant under the action
of B, it is sufficient to find some operator L ¢ E, and one element
YJz’l:jj’_j’pr (Q)of £ ‘l{j’p such that LY}{;; :::’_:’j}p has nonvanishing components
in all neighbouring subspaces, i.e., in all neighbouring points J,_; 41,
M,_, + 1 of the diagram under consideration (see [8]).
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To show this, let us find the action of the operators L= ¢ E, where

. T (e 0

LE=Lf, | +iL;, ;= eFieri=em [cosﬁp"1 (‘“ ao» L
X (A.21)
. » 0 97 (singr -1 0 % 0
+itgd dq7 + ctg Sm dor—1 + cos9?-1 dgr-1
on the basic vector
Tp-nsT o Y T gz Tp1s .
Yo, b, = Yo 0wt A T, () (A.22)

where for simplicity of calculation we choose M,_, = M,_; and con-
sequently, J,_, = M,_,. We obtain

Jp-odpdy 17+ ypadpat+ LJ ey TpaIpa—1,T
LEXE Ry, = oo Yop, o 0 i, T e~ b Yor, 5 4 5w, » (A.23)
where a* and 6% have the following form:

gr oy T ENGTITED

bE=bi(m,) =)Y(J+£J +14+m,)(J FJ —1—m,)
bE (m,) = b¥ (—m,) (A24)
J=J,+p—1, J=J, +p—2, J'=J,_,+p—3,
my,=M,—M,_;.

By successive application of the operators L}, |+ iL; , ; every
point of the given diagram can be reached starting from an arbitrary
point. Only two exceptional cases need a closer discussion, namely
M, ,=J,,and M,_; =—J,_;. In the former case the simultaneous
lowering of M,_; and J,_;, which is allowed by the conditions (A.17),
is impossible due to the fact that J,_; = J,_, and that a==0.
In this case we choose instead of (A.22), another basic vector
Y = Y}{f;:'_li:]f[;:f’}wp which differs from (A.22) only in the fact that the
numbers J,_, = M, _, are smaller by one in Y'. Acting by L on Y', we
can perform the transition M, _,, J, ;- M, _;—1,J,_;— 1. The non-
vanishing of this transition follows from the fact that

Tpr—1,Jpa—1,7 oL,
(O 57 s raainl ey YRR Vil 7 S NS 17y YR

is equal to the complex conjugate of

Tpa—1,Tp 2 Tpa—1,Tp =1,
(067 15 72 YR 20 /i i s s Yo I

which is non-vanishing.
The case M,,_, = —J,_, is solved by the same method.

II1. Unitarity

The unitarity of the representations DJM”p (X?) follows from the left
invariance of the measure d u(X?) on the manifold X? analogously as in
the case of non-compact groups U (p, ¢) (see Section 4, IT).
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