On the Reduction of the Regular Representation of the Poincaré Group

G. Rideau
Institut Poincaré, Paris

Received February 14, 1966

Abstract

The decomposition of the regular representation of the Poincare group into irreducible representations is given.

I

We denote by (a, Λ) any element of the Poincaré group \mathscr{P}, where a is a 4 -Translation and Λ an element of the Lorentz group G. In the following, we shall not distinguish between G and its universal covering $S L(2, C)$. The multiplication law in \mathscr{P} is given by:

$$
\begin{equation*}
\left(a_{1}, \Lambda_{1}\right)\left(a_{2}, \Lambda_{2}\right)=\left(a_{1}+\Lambda_{1} a_{2}, \Lambda_{1} \Lambda_{2}\right) \tag{1}
\end{equation*}
$$

We consider the Hilbert space \mathscr{H}, the elements of which are functions with square modulus integrable with respect to Haar measure. The mapping

$$
\begin{equation*}
f(a, \Lambda) \xrightarrow{\left(a_{0}, \Lambda_{0}\right)} f\left(a+\Lambda a_{0}, \Lambda \Lambda_{0}\right) \tag{2}
\end{equation*}
$$

defines a unitary representation of \mathscr{P}, the so-called right regular representation. In this work, we shall explicitly decompose this representation into irreducible components.

We set:

$$
\begin{equation*}
\hat{f}(\hat{a}, \Lambda)=\int f(a, \Lambda) e^{-i \Lambda^{-1} a \cdot \hat{a}} d a \tag{3}
\end{equation*}
$$

where $a \cdot b$ is the Lorentzian scalar product. Now:

$$
\begin{gather*}
f(a, \Lambda)=\frac{1}{(2 \pi)^{4}} \int \hat{f}(\hat{a}, \Lambda) e^{i \Lambda^{-1} a \cdot \hat{a}} d \hat{a} \tag{4}\\
\left.\int\left|f(a, \Lambda)^{2} d a d \Lambda=\frac{1}{(2 \pi)^{4}} \int\right| \hat{f}(\hat{a}, \Lambda)\right|^{2} d \hat{a} d \Lambda \tag{5}
\end{gather*}
$$

Therefore, equation (3) defines an isometric mapping of \mathscr{H} into $\widehat{\mathscr{H}}$, Hilbert space, the elements of which are functions with square modulus integrable with respect to measure $d \hat{a} d \Lambda$.

Transformation (2) induces in $\widehat{\mathscr{H}}$:

$$
\begin{equation*}
\hat{f}(\hat{a}, \Lambda) \xrightarrow{\left(a_{0}, \Lambda_{0}\right)} e^{i a_{0} \cdot \hat{a}} \hat{f}\left(\Lambda_{0}^{-1} \hat{a}, \Lambda \Lambda_{0}\right) . \tag{6}
\end{equation*}
$$

Let, generally, Ω_{m} be the hyperboloid:

$$
\hat{a} \cdot \hat{a}=m^{2}
$$

and, if $m^{2}>0$, let $\Omega_{m}^{+}, \Omega_{m}^{-}$be superior and inferior sheets of Ω_{m}.
We set:

$$
\left.\begin{array}{lll}
\hat{f}_{m^{2}}(\hat{a}, \Lambda)=\hat{f}(\hat{a}, \Lambda) & \text { for } & \hat{a} \in \Omega_{m}, m^{2}<0 \tag{7}\\
\hat{f}_{m^{2}}^{ \pm}(a, \Lambda)=\hat{f}(\hat{a}, \Lambda) & \text { for } \quad \hat{a} \in \Omega_{m}^{ \pm}, m^{2}>0
\end{array}\right\}
$$

Now, taking into account equation (6), we have:

$$
\left.\begin{array}{l}
\hat{f}_{m^{2}}(\hat{a}, \Lambda) \xrightarrow{\left(a_{0} \cdot \Lambda_{0}\right)} e^{i a_{0} \cdot \hat{a}} \hat{f}_{m^{2}}\left(\Lambda_{0}^{-1} \hat{a}, \Lambda \Lambda_{0}\right) \\
\hat{f}_{m^{2}}^{ \pm}(\hat{a}, \Lambda) \xrightarrow{\left(a_{0}, \Lambda_{0}\right)} e^{i a_{0} \cdot \hat{a}} \hat{f}_{m^{2}}^{ \pm}\left(\Lambda_{0}^{-1} \hat{a}, \Lambda \Lambda_{0}\right) \tag{8}
\end{array}\right\}
$$

and, obviously:

$$
\begin{gather*}
\int|\hat{f}(\hat{a}, \Lambda)|^{2} d \hat{a} d \Lambda=\frac{1}{2} \int_{0}^{\infty} d m^{2}\left[\int\left|\hat{f}_{m^{2}}^{+}(\hat{a}, \Lambda)\right|^{2} d \sigma_{m}^{+}(\hat{a}) d \Lambda+\right. \\
\left.+\int\left|\hat{f}_{m^{2}}^{-}(\hat{a}, \Lambda)\right|^{2} d \sigma_{m}^{-}(\hat{a}) d \Lambda\right]+\frac{1}{2} \int_{-\infty}^{0} d m^{2} \int\left|\hat{f}_{m^{2}}(\hat{a}, \Lambda)\right|^{2} d \sigma_{m}(\hat{a}) d \Lambda \tag{9}
\end{gather*}
$$

where $d \sigma_{m}^{+}(\hat{a}), d \sigma_{m}^{-}(\hat{\alpha}), d \sigma_{m}(\hat{a})$ are invariant measures for $\Omega_{m}^{+}, \Omega_{m}^{-}$and Ω_{m} respectively. This shows that the representation of \mathscr{P} defined by (6) is a direct integral of representations defined by (8). Our problem will now be resolved if we reduce these simpler representations.

II

First, we study, the representation corresponding to $\hat{f}_{m^{2}}^{+}(\hat{a}, \Lambda)$, denoted now, in short, by $\varphi(\hat{a}, \Lambda)$. These functions are defined on $\Omega_{m}^{+} \times G$ and have square modulus integrable with respect to invariant measure $d \sigma_{m}^{+}(\hat{a}) d \Lambda$.

We can associate to each $\hat{a} \in \Omega_{m}^{+}$the matrix $\left|\begin{array}{ll}\lambda & 0 \\ \zeta & \lambda^{-1}\end{array}\right|, \lambda>0$, the element in $S L(2, C)$ which transforms the apex Q_{0} of Ω_{m}^{+}([1]) into \hat{a}. Now, if $\Lambda=\left|\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right|$, we have:

$$
\left|\begin{array}{ll}
\alpha & \beta \tag{10}\\
\gamma & \delta
\end{array}\right|\left|\begin{array}{ll}
\lambda & 0 \\
\zeta & \lambda^{-1}
\end{array}\right|^{-1}=\left|\begin{array}{ll}
\lambda_{1} & 0 \\
\zeta_{1} & \lambda_{1}^{-1}
\end{array}\right|^{-1}\left|\begin{array}{rr}
u & v \\
-\bar{v} & \bar{u}
\end{array}\right|, \lambda_{1}>0,|u|^{2}+|v|^{2}=1
$$

and we write:

$$
F_{\lambda_{1}, \zeta_{1}}(\lambda, \zeta, \tilde{u})=\varphi(\hat{a}, \Lambda), \tilde{u}=\left|\begin{array}{cc}
u & v \tag{11}\\
-\bar{v} & \bar{u}
\end{array}\right| .
$$

Taking (8) into account, we deduce:

$$
\begin{equation*}
F_{\lambda_{1} \zeta_{1}}(\lambda, \zeta, \tilde{u}) \xrightarrow{\left(a_{0}, \Lambda_{0}\right)} e^{i a_{0} \cdot \hat{a}} F_{\lambda_{1}, \zeta_{1}}\left(\lambda^{\prime}, \zeta^{\prime}, \tilde{u} \tilde{u}^{\prime}\right) \tag{12}
\end{equation*}
$$

where $\lambda^{\prime}, \zeta^{\prime}, \tilde{u}^{\prime}$ are defined by:

$$
\left.\left|\begin{array}{ll}
\lambda & 0 \tag{13}\\
\zeta & \lambda^{-1}
\end{array}\right|\left|\begin{array}{ll}
\alpha_{0} & \beta_{0} \\
\gamma_{0} & \delta_{0}
\end{array}\right|=\left|\begin{array}{cc}
u^{\prime} & v^{\prime} \\
-\bar{v}^{\prime} & \bar{u}^{\prime}
\end{array}\right| \begin{array}{ll}
\lambda^{\prime} & 0 \\
\zeta^{\prime} & \lambda^{\prime}-1
\end{array} \right\rvert\,
$$

On the other side, one etablish easily, if $d \sigma_{m}^{+}(\hat{a})=\frac{d^{3} \hat{a}}{\hat{a}_{0}}$:
$\int|\varphi(\hat{a}, \Lambda)|^{2} d \sigma_{m}^{+}(\hat{a}) d \Lambda=m^{2} \int \frac{d \lambda_{1} d \zeta_{1}}{\lambda_{1}^{3}} \int\left|F_{\lambda_{1} \zeta_{1}}(\lambda, \zeta, \tilde{u})\right|^{2} \frac{d \lambda d \zeta}{\lambda^{3}} d \tilde{u}$
where $d \zeta\left(d \zeta_{1}\right)$ denotes the surface element in the complex plane of $\zeta\left(\zeta_{1}\right)$, and $d \tilde{u}$ is the invariant measure on $S U(2)$. From this result, we deduce that the representation of \mathscr{P}, defined by (8) is a direct integral of the representations defined by (12).

Since $F_{\lambda_{1}, \zeta_{1}}(\lambda, \zeta, \tilde{u})$ is of square modulus integrable on $S U(2)$ for almost all $\lambda_{1}, \zeta_{1}, \lambda, \zeta$, we shall write ([2]):

$$
\begin{equation*}
F_{\lambda_{1} \zeta_{1}}(\lambda, \zeta, \tilde{u})=\sum_{s} \sum_{j=-s}^{+s} \sum_{j^{\prime}=-s}^{+s} F_{\lambda_{1}, \zeta_{1} ; j^{\prime}, j}^{s}(\lambda, \zeta) D_{j j^{\prime}}^{s}(\tilde{u}) \tag{15}
\end{equation*}
$$

where s runs over all integers or half-integers and where $D_{j j^{\prime}}^{8}(\tilde{u})$ denotes the customary matrix element of the $S U(2)$ representation D^{s}. From (12), we associate to each (a_{0}, Λ_{0}) the transformation:

$$
\begin{equation*}
F_{\lambda_{1}, \zeta_{1} ; j^{\prime} j}^{s}(\lambda, \zeta) \xrightarrow{\left(a_{0}, \Lambda_{0}\right)} e^{i a_{0} \cdot \hat{a}} \sum_{k^{\prime}=-s}^{+s} D_{j^{\prime} k^{\prime}}^{s}\left(\tilde{u}^{\prime}\right) F_{\lambda_{1}, \zeta_{1} ; k^{\prime} j}^{s}\left(\lambda^{\prime}, \zeta^{\prime}\right) \tag{16}
\end{equation*}
$$

which is one possible form for the unitary irreducible representation of \mathscr{P} with mass m and spin s ([1]). Taking into account orthogonality relations for the $D_{j j^{\prime}}^{s}(\tilde{u})$, we have:
$\int \frac{d \lambda d \zeta}{\lambda^{3}} \int d \tilde{u}\left|F_{\lambda_{1} \zeta_{1}}(\lambda, \zeta, \tilde{u})\right|^{2}=\sum_{s, j} \frac{1}{2 s+1} \sum_{j^{\prime}} \int \frac{d \lambda d \zeta}{\lambda^{3}}\left|F_{\lambda_{1}, \zeta_{1} ; j^{\prime} j}^{s}(\lambda, \zeta)\right|^{2}$
and this finishes the reduction into irreducible components for the representation of (8) corresponding to $\hat{f}_{m^{2}}^{+}(\hat{a}, \Lambda)$.

Obviously, we can proceed in the same way for the representation (8) corresponding to $\hat{f}_{m^{2}}^{-}(\hat{a}, \Lambda)$. Therefore, we have studied the case $m^{2}>0$ in its entirety.

III

Now, we consider the case $m^{2}<0$. First, we must notice that for almost all elements $\Lambda=\left|\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right|$, we can write:

$$
\left|\begin{array}{ll}
\alpha & \beta \tag{18}\\
\gamma & \delta
\end{array}\right|=\left|\begin{array}{ll}
a & b \\
\bar{b} & \bar{a}
\end{array}\right|\left|\begin{array}{rl}
0 & 1 \\
-1 & 0
\end{array}\right|^{\varepsilon}\left|\begin{array}{ll}
\lambda & 0 \\
\zeta & \lambda-1
\end{array}\right|,|a|^{2}-|b|^{2}=1, \quad \varepsilon=0,1, \quad \lambda>0
$$

which is true for $|\delta|^{2}-|\beta|^{2} \neq 0$, or:

$$
\left|\begin{array}{ll}
\alpha & \beta \tag{19}\\
\gamma & \delta
\end{array}\right|=\left|\begin{array}{ll}
\lambda & 0 \\
\zeta & \lambda^{-1}
\end{array}\right|\left|\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right|^{s}\left|\begin{array}{ll}
a & b \\
\bar{b} & \bar{a}
\end{array}\right|
$$

which is true for $|\alpha|^{2}-|\beta|^{2} \neq 0$ ([6]).
If $Q_{0} \in \Omega_{m}$ has coordinates $(0,0,0, m)$ we can associate to each point $\hat{a} \in \Omega_{m}$, the new coordinates $(\varepsilon, \lambda, \zeta)$ which, from (18), label a right coset
of $S L(2, C)$ with respect to $S U(1,1)$. Writing now:
$\left.\left|\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right| \begin{array}{ll}\lambda & 0 \\ \zeta & \lambda^{-1}\end{array}\right|^{-1}\left|\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right|^{-\varepsilon}=\left|\begin{array}{ll}\lambda_{1} & 0 \\ \zeta_{1} & \lambda_{1}^{-1}\end{array}\right|^{-1}\left|\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right|^{-\varepsilon_{1}}\left|\begin{array}{ll}a & b \\ \bar{b} & \bar{a}\end{array}\right|, \varepsilon_{1}=0,1$
we shall define $F_{\left(\varepsilon_{1}, \lambda_{1}, \zeta_{1}\right)}(\varepsilon, \lambda, \zeta, \tilde{a})$ by:
where \tilde{a} is the matrix $\left|\begin{array}{ll}a & b \\ \bar{b} & \bar{a}\end{array}\right|$ in the right member of (20) and where $(\varepsilon, \lambda, \zeta)$ corresponds to \hat{a}. To simplify, we omit the index m^{2}.

Transformation (8) gives:

$$
\begin{equation*}
F_{\left(\varepsilon_{1}, \lambda_{1}, \zeta_{1}\right)}(\varepsilon, \lambda, \zeta, \hat{a}) \xrightarrow{\left(a_{0}, \Lambda_{0}\right)} e^{i a_{0} \cdot \hat{a}} F_{\left(\varepsilon_{1}, \lambda_{1}, \zeta_{1}\right)}\left(\varepsilon^{\prime}, \lambda^{\prime}, \zeta^{\prime}, \tilde{a} \tilde{a}^{\prime}\right) \tag{22}
\end{equation*}
$$

where $\varepsilon^{\prime}, \lambda^{\prime}, \zeta^{\prime}, \tilde{a}^{\prime}$ are defined by:

$$
\left|\begin{array}{ll}
\lambda & 0 \\
\zeta & \lambda^{-1}
\end{array}\right|\left|\begin{array}{rl}
0 & 1 \\
-1 & 0
\end{array}\right| \varepsilon\left|\begin{array}{ll}
\alpha_{0} & \beta_{0} \\
\gamma_{0} & \delta_{0}
\end{array}\right|=\left|\begin{array}{cc}
a^{\prime} & b^{\prime} \\
\bar{b}^{\prime} & \bar{a}^{\prime}
\end{array}\right|\left|\begin{array}{rl}
0 & 1 \\
-1 & 0
\end{array}\right| \begin{array}{ll}
\varepsilon^{\prime}
\end{array}\left|\begin{array}{ll}
\lambda^{\prime} & 0 \\
\zeta^{\prime} & \lambda^{-1}
\end{array}\right|
$$

On the other hand, one established immediately with $d \sigma_{m}(\hat{a})=\frac{d^{3} \hat{a}}{\left|\hat{a}_{0}\right|}$:

$$
\begin{gather*}
\int \left\lvert\, \varphi(\hat{a}, \Lambda)^{2} d \sigma_{m}(\hat{a}) d \Lambda=m^{2} \sum_{\varepsilon_{1}=0,1} \int \frac{d \lambda_{1} d \zeta_{1}}{\lambda_{3}} \sum_{\varepsilon=0,1} \int\right. \tag{23}\\
\left|F_{\varepsilon_{1}, \lambda_{1}, \zeta_{1}}(\varepsilon, \lambda, \zeta, \tilde{a})\right|^{2} \frac{d \lambda d \zeta}{\lambda^{3}} d \tilde{a}
\end{gather*}
$$

where $d \tilde{a}$ is Haar measure for $S U(1,1)$. Therefore, the representation of \mathscr{P} defined by (8) is a direct integral of the representations defined by (22).

Now, from (23), $F_{\varepsilon_{1}, \lambda_{1}, \zeta_{1}}(\varepsilon, \lambda, \zeta, \tilde{a})$ has square modulus integrable on $S U(1,1)$ for almost all $\lambda, \zeta, \lambda_{1}, \zeta_{1}$. We can thus write (cf. Appendix for the notations):

$$
\begin{aligned}
& F_{\left(\varepsilon_{1}, \lambda_{1}, \zeta_{1}\right)}(\varepsilon, \lambda, \zeta, \tilde{a})=\sum_{\eta=0,1} \sum_{n, m=-\infty}^{+\infty} \int_{0}^{\infty} d \varrho F_{\varepsilon_{1}, \lambda_{1}, \zeta_{1}}^{(m, n)}(\varepsilon, \lambda, \zeta ; \varrho, \eta) \times \\
\times & D_{n m}(\tilde{a} ; \varrho, \eta)+\sum_{+,-} \sum_{s=2}^{\infty} \sum_{m, n=0}^{\infty} F_{\varepsilon_{1}, \lambda_{1}, \zeta_{1}}^{ \pm(m, n)}\left(\varepsilon, \lambda, \zeta ; \frac{s}{2}\right) D_{n, m}^{ \pm}\left(\tilde{a} ; \frac{s}{2}\right)
\end{aligned}
$$

and from (2.2) obtain the transformations:

$$
\begin{gather*}
F_{\varepsilon_{1}, \lambda_{1}, \xi_{1}}^{(m, n)}(\varepsilon, \lambda, \zeta ; \varrho, \eta) \xrightarrow{\left(a_{0}, \Lambda_{0}\right)} e^{i a_{0} \cdot a} \sum_{p=-\infty}^{+\infty} D_{m p}\left(\tilde{a}^{\prime} ; \varrho, \eta\right) \times \tag{24}\\
\times F_{\varepsilon_{1}, \lambda_{1}, \zeta_{1}}^{(p, n)}\left(\varepsilon^{\prime}, \lambda^{\prime}, \zeta^{\prime} ; \varrho, \eta\right) \\
F_{\varepsilon_{1}, \lambda_{1}, \zeta_{1}}^{ \pm(m, n)}\left(\varepsilon, \lambda, \zeta ; \frac{s}{2}\right) \xrightarrow{\left(a_{0}, \Lambda_{0}\right)} e^{i a_{0} \cdot a} \sum_{p=0}^{\infty} D_{m, p}^{ \pm}\left(\tilde{a}^{\prime} ; \frac{s}{2}\right) F_{\varepsilon_{1}, \lambda_{1}, \zeta_{1}}^{ \pm(p, n)}\left(\varepsilon^{\prime}, \lambda^{\prime}, \zeta^{\prime} ; \frac{s}{2}\right) . \tag{25}
\end{gather*}
$$

Taking account of equation (A.6) in the Appendix, it is obvious that our study of the case $m^{2}<0$ is complete, because, in (24) and (25), we recognize one possible form for the unitary irreducible representation of \mathscr{P} with imaginary mass, induced by the representation $D(\tilde{a}, \varrho, \eta)$ and $D^{ \pm}\left(\tilde{a}, \frac{s}{2}\right)$ of the little group $S U(1,1)$.

IV

In the following $f(a, \Lambda)$ is an infinitely often differentiable function with compact support. If $T^{+(s, m)}(a, \Lambda)$ denotes the operators of the unitary irreducible representation of \mathscr{P} with mass m, spin s, corresponding to Ω_{m}^{+}, we consider the operator:

$$
\begin{equation*}
\int d a d \Lambda T^{+(s, m)}(a, \Lambda)^{-1} f(a, \Lambda) . \tag{26}
\end{equation*}
$$

The $T^{+(s, m)}(a, \Lambda)$ acts on Hilbert space of functions $h_{i}(\hat{a}), \hat{a} \in \Omega_{m}^{+}$, $-s \leqq i \leqq s$, such that:

$$
\sum_{i} \int\left|h_{i}(\hat{a})\right|^{2} d \sigma_{m}^{+}(\hat{a})<\infty
$$

As transformation law, we have:

$$
h_{i}(\hat{a}) \xrightarrow{\left(a_{0}, \Lambda_{0}\right)} e^{i a_{0} \cdot \hat{a}} \sum_{i} D_{i, i^{\prime}}^{s}\left(\tilde{u}^{\prime}\right) h_{i^{\prime}}\left(\hat{a}^{\prime}\right)
$$

where \tilde{u}^{\prime} and \hat{a}^{\prime} are defined by:

$$
\Lambda_{a} \Lambda_{0}=\tilde{u}^{\prime} \Lambda_{a^{\prime}}
$$

Here, $\Lambda_{\vec{a}}$ denotes the matrix $\left|\begin{array}{ll}\lambda & 0 \\ \zeta & \lambda^{-1}\end{array}\right|$ which transforms Q_{0} into \hat{a}. We have now:

$$
\begin{align*}
& \int d a d \Lambda f(a, \Lambda) T^{+(s, m)}(a, \Lambda)^{-1} h_{j}(\hat{a}) \\
= & \int d a d \Lambda f(a, \Lambda) e^{-i \Lambda^{-1} a \cdot a} \sum_{j^{\prime}} D_{j j^{\prime}}^{s}\left(u_{1}^{-1}\right) h_{j^{\prime}}\left(\hat{a}_{1}\right) \tag{27}
\end{align*}
$$

with

$$
\Lambda_{a} \Lambda^{-1}=\tilde{u}_{1}^{-1} \Lambda_{a_{1}} .
$$

If we choose as a new variable in the right member of (27):
and notice that:

$$
\Lambda_{0}=\Lambda \Lambda_{\hat{a}}^{-1}=\Lambda_{a_{1}}^{-1} \tilde{u}_{1}
$$

$$
d \Lambda_{0}=\frac{1}{m^{2}} d \sigma_{m}^{+}\left(\hat{a}_{1}\right) d \tilde{u}_{1}
$$

we can write

$$
\begin{align*}
& \int d a d \Lambda f(a, \Lambda) T^{+(s, m)}(a, \Lambda)^{-1} h_{j}(\hat{a}) \\
= & \sum_{j^{\prime}} \int d \sigma_{m}^{+}\left(\hat{a}_{1}\right)\left[\int d \tilde{u} \frac{1}{m^{2}} \hat{f}_{m_{2}}^{+}\left(\hat{a}, \Lambda_{a_{1}}^{-1} \tilde{u} \Lambda_{a}\right) D_{j^{\prime} j}^{s}(\tilde{u})\right] \times h_{j^{\prime}}\left(\hat{a}_{1}\right) \tag{28}\\
= & \sum_{j^{\prime}} \int d \sigma_{m}^{+}\left(\hat{a}_{1}\right) K_{f}^{+\left(j j^{\prime}\right)}\left(\hat{a}, \hat{a}_{1} ; m, s\right) h_{j^{\prime}}\left(\hat{a}_{1}\right) .
\end{align*}
$$

From orthogonality relations between the $D_{i j^{\prime}}^{s}(\tilde{u})$ and taking into account equations (11), (15), we conclude immediately:

$$
F_{\lambda_{1}, \xi_{1} ; j, j^{\prime}}^{+s}(\lambda, \zeta)=m^{2}(2 s+1) K_{f}^{+\left(j j^{\prime}\right)}\left(\hat{a}, \hat{a}_{1} ; m, s\right)
$$

and it is easy to prove that $K_{j}^{+\left(j j^{\prime}\right)}\left(\hat{a}, \hat{a}_{1}, m, s\right)$ is the kernel for a HilbertSchmidt operator.

It is obvious that we can treat in the same way unitary irreducible representations corresponding to Ω_{m}^{-}. We denote by $K_{f}^{-\left(j, j^{\prime}\right)}\left(\hat{a}, \hat{a}_{1} ; m, s\right)$ the corresponding kernel. For the representations with imaginary mass induced by representations $D(\tilde{a} ; \varrho, \eta)$ and $D^{ \pm}\left(\tilde{a} ; \frac{s}{2}\right)$ of the little group, we can apply a similar procedure with the modifications implied by the particular parametrization of Ω_{m} and the Plancherel measure on $S U(1,1)$. One can repeat word by word the preceding reasoning, as one will easily see if one takes, as point of departure, a form of representations similar to (24) and (25). We always obtain thus kernels for Hilbert-Schmidt operators.

This being said, we wish now to express $f(a, \Lambda)$ in terms of its components. First of all, we have:

$$
\begin{gather*}
f(a, \Lambda)=\frac{1}{2} \frac{1}{(2 \pi)^{4}} \int_{0}^{\infty} d m^{2} \\
{\left[\hat{f}_{m^{2}}^{+}(\hat{a}, \Lambda) e^{i \Lambda^{-1} a \cdot \hat{a}} d \sigma_{m}^{+}(\hat{a})+\int \hat{f}_{m^{2}}^{-}(\hat{a}, \Lambda) e^{i \Lambda^{-1} a \cdot \hat{a}} d \sigma_{m}^{-}(\hat{a})\right]+} \tag{29}\\
+\frac{1}{2} \frac{1}{(2 \pi)^{4}} \int_{-\infty}^{0} d m^{2} \int \hat{f}_{m^{2}}(\hat{a}, \Lambda) e^{i \Lambda^{-1} a \cdot \hat{a}} d \sigma_{m}(\hat{a})
\end{gather*}
$$

We give detailed calculations for the first term in the right member; the other terms can be treated in the same way. We can write:

$$
\begin{align*}
\int \hat{f}_{m_{2}}^{+}(\hat{a}, \Lambda) e^{i \Lambda^{-1} a \cdot a} d \sigma_{m}^{+}(\hat{a}) & =\int d \sigma_{m}^{+}(\hat{a}) \hat{f}_{m}^{+}\left(\hat{a}, \Lambda_{\bar{a}_{1}}^{-1} \tilde{u} \Lambda \hat{a}\right) e^{i\left(\Lambda_{\hat{a}}^{-1} \tilde{u}^{-1} \Lambda_{\hat{a}_{1}}\right) a \cdot \hat{a}} \\
& =\int d \sigma_{m}^{+}(\hat{a}) \hat{f}_{m^{2}}^{+}\left(\hat{a}, \Lambda_{\hat{a}_{1}}^{-1} \tilde{u} \Lambda_{\hat{a}}\right) e^{i a \cdot a_{1}} \tag{30}
\end{align*}
$$

by the definition of the Λ_{a} 's. Then:

$$
\begin{aligned}
& \int d \sigma_{m}^{+}(\hat{a}) \hat{f}_{m_{2}}^{+}(\hat{a}, \Lambda) e^{i \Lambda^{-1} a \cdot \hat{a}}=\sum_{s}(2 s+1) \times \\
\times & \sum_{j, j^{\prime}} m^{2} \int d \sigma_{m}^{+}(\hat{a}) K_{f}^{+\left(j, j^{\prime}\right)}\left(\hat{a}, \hat{a}_{1} ; m, s\right) D_{j^{\prime} j}^{s}(\tilde{u}) e^{i a \cdot \hat{a}_{1}}
\end{aligned}
$$

and $\Lambda_{a_{1}}, \tilde{u}, \Lambda_{\hat{a}}$ are such that

$$
\Lambda_{\hat{a}_{1}} \cdot \Lambda=\tilde{u} \cdot \Lambda_{\hat{a}} .
$$

Now, let us consider:

$$
T^{+(s, m)}(a, \Lambda) \int d a^{\prime} d \Lambda^{\prime} f\left(a^{\prime}, \Lambda^{\prime}\right) T^{+(s, m)}\left(a^{\prime}, \Lambda^{\prime}\right)^{-1}
$$

We have:

$$
\begin{aligned}
& T^{+(s, m)}(a, \Lambda) \int d a^{\prime} d \Lambda^{\prime} f\left(a^{\prime}, \Lambda^{\prime}\right) T^{+(s, m)}\left(a^{\prime}, \Lambda^{\prime}\right)^{-1} h_{j}(\hat{a}) \\
= & T^{+(s, m)}(a, \Lambda) \sum_{j^{\prime}} \int d \sigma_{m}^{+}\left(\hat{a}_{1}\right) K_{f}^{+,\left(j, j^{\prime}\right)}\left(\hat{a}, \hat{a_{1}} ; m, s\right) h_{j^{\prime}}\left(\hat{a}_{1}\right) \\
= & e^{i a \cdot \hat{a}} \sum_{k} D_{j k}^{s}\left(\tilde{u}^{\prime}\right) \int d \sigma_{m}^{+}\left(\hat{a}_{1}\right) K_{f}^{+\left(k, j^{\prime}\right)}\left(\hat{a}^{\prime}, \hat{a}_{1} ; m, s\right) h_{j^{\prime}}\left(\hat{a}_{1}\right)
\end{aligned}
$$

where $\tilde{u}^{\prime}, \hat{a}^{\prime}$ are defined by:

$$
\Lambda_{a} \Lambda=\tilde{u}^{\prime} \Lambda_{a^{\prime}} .
$$

From this follows:

$$
\begin{aligned}
& \sum_{i, j^{\prime}} \int d \sigma_{m}^{+}(\hat{a}) K_{f}^{+\left(j, j^{\prime}\right)}\left(\hat{a}, \hat{a}_{1} ; m, s\right) D_{j^{\prime} j}^{s}(\tilde{u}) e^{i a \cdot \hat{a}_{1}} \\
= & \operatorname{Tr} T^{+(s, m)}(a, \Lambda) \int d a^{\prime} d \Lambda^{\prime} f\left(a^{\prime}, \Lambda^{\prime}\right) T^{+(s, m)}\left(a^{\prime}, \Lambda^{\prime}\right)^{-1} \\
= & \operatorname{Tr} \int d a^{\prime} d \Lambda^{\prime} f_{(a, \Lambda)}\left(a^{\prime}, \Lambda^{\prime}\right) T^{+(s, m)}\left(a^{\prime}, \Lambda^{\prime}\right)^{-1}
\end{aligned}
$$

where $f_{(a, \Lambda)}\left(a^{\prime}, \Lambda^{\prime}\right)$ is the right-translated by (a, Λ) of $f\left(a^{\prime}, \Lambda^{\prime}\right)$:

$$
f_{(a, \Lambda)}\left(a^{\prime}, \Lambda^{\prime}\right)=f\left(a^{\prime}+\Lambda^{\prime} a, \Lambda^{\prime} \Lambda\right)
$$

If we denote by $T^{+(s, m)}(f)$ the quantity:

$$
\operatorname{Tr} \int f\left(a^{\prime}, \Lambda^{\prime}\right) T^{+(s, m)}\left(a^{\prime}, \Lambda^{\prime}\right) d a^{\prime} d \Lambda^{\prime}
$$

we can write finally, taking into account the unitary properties:

$$
\int d \sigma_{m}^{+}(\hat{a}) \hat{f}_{m^{2}}^{+}(\hat{a}, \Lambda) e^{i \Lambda^{-1} a \cdot \hat{a}}=m^{2} \sum_{s}(2 s+1) \overline{T^{+(s, m)}\left(f_{(a, \Lambda)}\right)}
$$

With similar calculations for the other terms in the right member of (30), we obtain (cf. Appendix):

$$
\begin{align*}
f(a, \Lambda)= & \frac{1}{2} \frac{1}{(2 \pi)^{4}} \sum(2 s+1) \int_{0}^{\infty} m^{2} d m^{2}\left(\overline{T^{+(s, m)}\left(f_{(a, A)}\right)}+\overline{T^{-(s, m)}\left(f_{(a, \Lambda)}\right)}\right)+ \\
& +\frac{1}{2} \frac{1}{(2 \pi)^{4}} \int_{-\infty}^{0}\left|m^{2}\right| d m^{2} \int_{0}^{\infty} d \varrho \varrho \operatorname{th} \frac{\pi \varrho}{2} \overline{T^{0,0, i m}\left(f_{(a, \Lambda)}\right)}+ \tag{31}\\
& +\frac{1}{2} \frac{1}{(2 \pi)^{4}} \int_{-\infty}^{0}\left|m^{2}\right| d m^{2} \int_{0}^{\infty} d \varrho \varrho \operatorname{cth} \frac{\pi \varrho}{2} \overline{T^{\varrho, 1, i m}\left(f_{(a, \Lambda)}\right)}+ \\
& +\frac{1}{2} \frac{1}{(2 \pi)^{4}} \sum_{+,-} \sum_{s=1}^{\infty}(s-1) \int_{-\infty}^{0}\left|m^{2}\right| d m^{2} \overline{T^{ \pm\left(\frac{s}{2}, i m\right)}\left(f_{(a, \Lambda)}\right)}
\end{align*}
$$

with obvious notations.
In particular, for $a=0, \Lambda=e$:

$$
\begin{align*}
f(0, e)= & \frac{1}{2} \frac{1}{(2 \pi)^{4}} \sum_{s}(2 s+1) \sum_{+,-} \int_{0}^{\infty} m^{2} d m^{2} \overline{\left(T^{ \pm(s, m)}(f)\right)}+ \\
& +\frac{1}{2} \frac{1}{(2 \pi)^{4}} \int_{\infty}^{0}|m|^{2} d m^{2} \int_{0}^{\infty} d \varrho \varrho \operatorname{th} \frac{\pi \varrho}{2} \overline{T^{e, 0, i m}(f)}+ \\
& +\frac{1}{2} \frac{1}{(2 \pi)^{4}} \int_{-\infty}^{0}\left|m^{2}\right| d m^{2} \int_{0}^{\infty} d \varrho \varrho \operatorname{cth} \frac{\pi \varrho}{2} \overline{T^{e, 1, i m}(f)}+ \tag{32}\\
& +\frac{1}{2} \frac{1}{(2 \pi)^{4}} \sum_{s=1}^{\infty}(s-1) \sum_{+,-} \int_{-\infty}^{0}\left|m^{2}\right| d m^{2} \overline{\left(T^{ \pm\left(\frac{s}{2}, i m\right)}(f)\right)}
\end{align*}
$$

Finally, denoting by $K_{f}^{+}(s, m), K_{f}^{-}(s, m), K_{f}(\varrho, \eta, i m)$ and $K_{f}^{ \pm}\left(\frac{s}{2}, i m\right)$ the operator corresponding to kernels connected to representations appearing in (31), (32), we obtain, applying the same calculations to (5) and (9):

$$
\begin{align*}
& \int|f(a, \Lambda)|^{2} d a d \Lambda \tag{33}\\
= & \frac{1}{2} \frac{1}{(2 \pi)^{4}} \sum_{+,-} \sum(2 s+1) \int_{0}^{\infty} m^{2} d m^{2} \operatorname{Tr} K_{f}^{ \pm}(s, m) K_{f}^{ \pm}(s, m)^{*}+ \\
& +\frac{1}{2} \frac{1}{(2 \pi)^{4}} \int_{-\infty}^{0}\left|m^{2}\right| d m^{2} \int_{0}^{\infty} d \varrho d \varrho \operatorname{th} \frac{\pi \varrho}{2} \operatorname{Tr} K_{f}(\varrho, 0, i m) K_{f}(\varrho, 0, i m)^{*}+ \\
& +\frac{1}{2} \frac{1}{(2 \pi)^{4}} \int_{-\infty}^{0}\left|m^{2}\right| d m^{2} \int_{0}^{\infty} d \varrho \varrho \operatorname{cth} \frac{\pi \varrho}{2} \operatorname{Tr} K_{f}(\varrho, 1, i m) K_{f}(\varrho, 1, i m)^{*}+ \\
& \left.+\frac{1}{2} \frac{1}{(2 \pi)^{4}} \sum_{+,-} \sum_{s=1}^{\infty}(s-1) \int_{-\infty}^{0} \right\rvert\, n d m^{2} \operatorname{Tr} K_{f}^{ \pm}\left(\frac{s}{2}, i m\right) K_{f}^{ \pm}\left(\frac{s}{2}, i m\right) .
\end{align*}
$$

As the infinitely often differentiable functions with compact support are dense in the Hilbert space of functions with square modulus integrable on $\mathscr{P},(33)$ is still true for all such functions. So, (31) and (33) contain the essential results concerning the Fourier transform on \mathscr{P}, this last being understood as in Guelfand's work ([7]).

Appendix

On unitary representation in principal series of $S U(1,1)$ and Plancherel formula
a) Continuous representations in the principal series. Let \mathscr{H} be the Hilbert space the elements of which are functions $f(\varphi)$ such that:

$$
\int_{0}^{2 \pi}|f(\varphi)|^{2} d \varphi<\infty
$$

Let us associate to each element $\tilde{a}=\left|\begin{array}{ll}a & b \\ \bar{b} & \bar{a}\end{array}\right|$ of $S U(1,1)$ the transformation

$$
\begin{equation*}
f(\varphi) \rightarrow\left(b e^{i \varphi}+\bar{a}\right)^{i \frac{\varrho}{2}+\frac{\eta}{2}-\frac{1}{2}}\left(\bar{b} e^{-i \varphi}+a\right)^{i \frac{\rho}{2}-\frac{\eta}{2}-\frac{1}{2}} f\left(\varphi^{\prime}\right)=D(\tilde{a} ; \varrho, \eta) f(\varphi) \tag{A.1}
\end{equation*}
$$

where $\varrho>0, \eta=0$ or 1 and φ^{\prime} is given by:

$$
e^{i \varphi^{\prime}}=\frac{a e^{i \varphi}+\bar{b}}{b e^{i \varphi}+\bar{a}}
$$

(A.1) defines a unitary irreducible representation of $S U(1,1)$ for which Casimir's operator has the value:

$$
q=\frac{1}{4}+\frac{\varrho^{2}}{4}
$$

If $\eta=0$, one obtains representations, isomorphic to representation C_{q}^{0} in Bargmann's work and, if $\eta=1$, to representations $C_{q}^{1 / 2}\left(q>\frac{1}{4}\right)$.

We take as a norm in \mathscr{H}, Bargmann's value:

$$
\|f\|=\left(\frac{1}{2 \pi} \int_{0}^{\infty}|f(\varphi)|^{2} d \varphi\right)^{\frac{1}{2}}
$$

b) Discrete representation in the principal series. Let \mathscr{H}_{s} be the Hilbert space the elements of which are functions $f(\zeta)$, analytic in the disk $|\zeta|<1$, and such that:

$$
\int_{|\zeta|<1}|f(\zeta)|^{2}\left(1-|\zeta|^{2}\right)^{s-2} d \zeta<\infty \quad s \geqq 2
$$

Let us associate to each element $\tilde{a}=\left|\begin{array}{ll}a & b \\ \bar{b} & \bar{a}\end{array}\right|$ of $S U(1,1)$ the transformation

$$
\begin{equation*}
f(\zeta) \rightarrow(b \zeta+\bar{a})^{-s} f\left(\frac{a \zeta+\bar{b}}{b \zeta+\bar{a}}\right)=D^{+}\left(\tilde{a} ; \frac{s}{2}\right) f(\zeta) \tag{A.2}
\end{equation*}
$$

or the transformation:

$$
\begin{equation*}
f(\zeta) \rightarrow(\bar{b} \zeta+a)^{-s} f\left(\frac{\bar{a} \zeta+b}{\bar{b} \zeta+a}\right)=D^{-}\left(\tilde{a} ; \frac{s}{2}\right) f(\zeta) \tag{A.3}
\end{equation*}
$$

We define thus unitary irreducible representations isomorphic to representations $D_{s / 2}^{ \pm}$in Bargmann's work.

We take as a norm in \mathscr{H}_{s}, Bargmann's value:

$$
\|f\|=\left(\frac{s-1}{\pi} \int_{|\zeta|<1}\left(1-|\zeta|^{2}\right)^{s-2}|f(\zeta)|^{2} d \zeta\right)^{+1 / 2}
$$

The discrepancies between our formulas and those of Bargmann come from the dissimilar action of the group on homogeneous spaces (unit circle, unit disk): in our representation the group acts from the right.
c) Plancherel formula and regular representation ([4], [5]). Let $D_{n, m}(\tilde{a} ; \varrho, \eta)$ be matrix elements of $D(\tilde{a} ; \varrho, \eta)$ in the orthonormal basis $e^{i n \xi},-\infty \leqq n \leqq+\infty$ and let $D_{n, m}^{ \pm}\left(\tilde{a} ; \frac{s}{2}\right)$ be matrix elements of $D^{ \pm}\left(\tilde{a} ; \frac{s}{2}\right)$ in the orthonormal basis $\left(\frac{n!(s-1)!}{(n+s-1)!}\right)^{1 / 2} \zeta^{n}, n=0,1, \ldots$ It result from Bargmann's work that this set of function is a complete system in the Hilbert space whose elements are functions with square modulus integrable on $S U(1,1)$. Let $\phi(\tilde{a})$ be such a function; for almost all \tilde{a}, we can write

$$
\begin{align*}
\phi(\tilde{a})= & \sum_{\eta=0,1} \sum_{n, m=-\infty}^{\infty} \int_{0}^{\infty} d \varrho \phi_{n m}(\varrho, \eta) D_{n m}(\tilde{a} ; \varrho, \eta)+ \tag{A.4}\\
& +\sum_{+,-} \sum_{s=2}^{\infty} \phi_{n, m}^{ \pm}\left(\frac{s}{2}\right) D_{n, m}^{ \pm}\left(\tilde{a} ; \frac{2}{s}\right)
\end{align*}
$$

According to orthogonality relations between matrix elements we have:

$$
\left.\begin{array}{l}
\varphi_{n m}(\varrho, 0)=\varrho \operatorname{th} \frac{\pi \varrho}{2} \int d \tilde{a} \phi(\tilde{a}) \overline{D_{n, m}(\tilde{a}, \varrho, 0)} \\
\phi_{n m}(\varrho, 1)=\varrho \operatorname{cth} \frac{\pi \varrho}{2} \int d \tilde{a} \phi(\tilde{a}) D_{n, m}(\tilde{a} ; \varrho, 1) \tag{A.5}\\
\phi_{n, m}^{ \pm}\left(\frac{s}{2}\right)=(s-1) \int d \tilde{a} \phi(\tilde{a}) D_{n, m}^{ \pm}\left(\tilde{a} ; \frac{s}{2}\right) .
\end{array}\right\}
$$

Further

$$
\begin{gather*}
\int|\phi(\tilde{a})|^{2} d \tilde{a}= \\
=\sum_{n, m=\infty}^{+\infty}\left[\int_{0}^{\infty} d \varrho \varrho \operatorname{th} \frac{\pi \varrho}{2}\left|\phi_{n, m}(\varrho, 0)\right|^{2}+\int_{0}^{\infty} d \varrho \varrho \operatorname{cth} \frac{\pi \varrho}{2}\left|\phi_{n, m}(\varrho, 1)\right|^{2}\right]+ \\
+\sum_{s=1}^{\infty}(s-1) \sum_{n, m=0}^{\infty}\left(\left|\phi_{n, m}^{+}\left(\frac{s}{2}\right)\right|^{2}+\left|\phi_{n, m}^{-}\left(\frac{s}{2}\right)\right|^{2}\right) . \tag{A.6}
\end{gather*}
$$

If we replace $\phi(\tilde{a})$ by its translated $\phi\left(\tilde{a} \tilde{a}_{0}\right)$, the coefficients in A. 5 become, taking into account unitarity and invariance of $d \tilde{a}$:

$$
\sum_{p=-\infty}^{+\infty} D_{m, p}\left(\tilde{a}_{0} ; \varrho, \eta\right) \phi_{n, p}(\varrho, \eta), \sum_{p=0}^{\infty} D_{m, p}^{ \pm}\left(\tilde{a}_{0} ; \frac{s}{2}\right) \phi_{n, p}^{ \pm}\left(\frac{s}{2}\right) .
$$

So, for n fixed, vector functions $\phi_{n, m}(\varrho, \eta), \phi_{n, m}^{ \pm}\left(\frac{s}{2}\right)$ transform according to irreducible representations of $S U(1,1)$ and this with A.6, resolves the problem of decomposing the right regular representation of $S U(1,1)$.

Bibliography

[1] Rideau, G.: Ann. Inst. Poincaré 3, 339 (1965).
[2] Narmark: Representations linèaires du groupe de Lorentz. Paris: Dunod 1962.
[3] Bargmann: Ann. Math. 48, 568 (1947).
[4] Harish-Chandra: Proc. Nat. Acad. Sci. 38, 337 (1952).
[5] Pukansky: Bull. Am. Math. Soc. 69, 504 (1963).
[6] Graev: Trudy Mosk. Math. Obšč. 7, 335 (1958) (in russian).
[7] Gueffand, Graev, and Vilenkin : Obobščenye functsi, tom V (für f) (in russian).

