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Abstract. Using a Lie algebra method based on works by HABISH-UHANDBA,
several series of unitary, irreducible representations of the group SU(2, 2) are
obtained.

1. Introduction

The group called the conformal group is commonly defined as the
pseudo-orthogonal group SO (2, 4) in the real six-dimensional space,
which leaves the form x\ + #1 — #| — #f — #1 — #1 invariant. It has a
covering group which is the pseudo-unitary group $17(2, 2) leaving
invariant the complex form |̂ |2 + |z2|2—|z3|2—|z4|2. The conformal
group was first introduced into physics by BATEMAN and CUNNINGHAM
[1], [2]. Many authors used it in connection with general relativity (it
contains the De Sitter groups SO(1,4) and $0(2,3) as subgroups),
and also in electromagnetism [3], [4], [5], [6]. It is the largest trans-
formation group on space-time leaving the Maxwell equations in flat
space invariant. More recently it was shown that a relation seems to
exist between the conformal group and the ultraviolet singularities of
quantum field theory [7]. In the present attempts to use non-compact
groups to unify in a non-trivial way the Poincare group and an internal
symmetry group of strongly interacting particles, the conformal group
might play a role [8], [9]. It is the smallest semi-simple group containing
the Poincare* group. Finally since there has been much interest in the
group SU(6, 6) as a strong interaction symmetry group [10] we may
learn something about this group by studying first the group SU(2, 2).

This short review shows that it might be interesting to study the
conformal group from various points of view. In all quantum mechanical
applications the unitary irreducible representations are of foremost
importance. Some results on the determination of these infinite dimen-
sional representations are known in the literature. GBAEV [11], [12] has
given three fundamental series of unitary irreducible representations of
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$£7(2, 2) using global methods. MURAI [13] has determined a class of
degenerate representations by the method of THOMAS [14]. In this paper
we shall use a Lie -algebra method which has been described in an earlier
paper [15]. It has been applied to a number of pseudo- orthogonal groups
and proved to be quite a powerful tool to find the unitary irreducible
representations1. The method is applicable to semi- simple groups and
its rigorous mathematical justification follows from the works of HAKESH-
CHANDEA [19]. Starting from the Iwasawa decomposition [20] (p. 156 if.)

of any semi- simple Lie group into three subgroups one defines first a
realization of the group as transformations on the quotient space
GjN ~ K x A by means of left multiplication. This quotient space then
serves as a carrier space for a linear space of functions. By introducing
suitable scalar products into this linear function space, one obtains not
only unitary representations but also irreducible ones. The calculations
are however not performed for the group itself but instead we use the
infinitesimal transformations of the Lie algebra. The possibility of
"lifting" the algebraically irreducible Hermitian representations of the
Lie algebra to unitary, irreducible representations of the group is again
ascertained by HABISH- CHANDRA [19].

2. Iwasawa decomposition of the Lie algebra

The group 8 £7(2, 2) is the subgroup of $L(4, C) leaving invariant the
Hermitian form

N'+W-W -^P
Thus we have

Sϋ(2,2) = {gζ8L(4,C):g+βg=β} (2.1)

where β is the 4 x 4 diagonal matrix with non-zero elements /3U = β22

= — β^ = —β^ί = I and g+ is the adjoint transformation.

Let © denote the Lie algebra over R of the group $17(2, 2). Hence

© = {x : eτ* ζSU(2, 2) for all r ζ R} . (2.2)

As a consequence of (2.1) and (2.2) we can define the Lie algebra by the
following conditions on its elements x :

The 15 traceless γ matrices are linearly independent and can be chosen to
fulfil (2.3). Therefore they form a basis in ©. We shall use this basis in

the sequel. Let

(2 4)

1 For the application to #0(1,2) and SO (2, 2), see Kef. [16]. The groups
#0(1, 3), #0(3, 3) and #0(1, 4) have been treated in [16], [17] and [18].



196 A. KIHLBEBG, V. F. MTJLLER, and F. HALBWACHS :

with
r A 0\ _ /O 1\ _ /O —A __ /I 0\
1 ~ \o i; ; TI ~ u o/ ; Ta - \i o; ; t3 ~ \o — i;

Then © is generated by

© : {iβ, i~σ, i β~3, y5, i β y6, σ yδ, ί /?σ y5} . (2.5)

Now let H be the Lie algebra over R associated with the group S U (4)

SZ7(4) = {g € /Sfi(4, C) : g+g = 1} . (2.6)
The Lie algebra

Vί = {y:eτy ζ SU(±) for all τ £ R} (2.7)
is generated by

H : {i /?, ί3, i j8σ, ί γ5, β γδ, i~3 γδ, β~5 γ5} . (2.8)

It is evident from (2.5) and (2.8) that II is the dual compact Lie
algebra with respect to the non- compact Lie algebra ©. These two Lie
algebras over R have isomorphic complex extensions

©o = ΠC

We introduce first the Cartan decomposition (see [20], p. 156 ff.)

© - ® + φ (2.9)
where

®= ©ni l

From (2.5) and (2.8) follows immediately that i β, ϊσ, i β~5 form a basis
in the vector space $ and γ5, ί β γ6> σ y5, i β~σγ5 form a basis in the vector
space Sp. & is the maximal compact subalgebra contained in ©, associated
with the maximal compact subgroup S(U(2) ® £7(2)) contained in
$£7(2, 2). It is convenient to choose new basis vectors in $:

(2.10)

with
[Ω, I,] = 0

(2.11)
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These relations show that & is isomorphic to the Lie algebra of
SU(2) <g> SU(2) Θ C, where C is the centre of $. The centre C itself is
isomorphic to the Lie algebra of U(l).

In the vector space φ we select a maximal Abelian subalgebra 21,
generated by

21 : K, αa}
where

(2 12)

α a = n— 2 —
with

[αl5 α2] = 0 .

Finally the remaining basis vectors of φ in suitable linear combinations
with the basis vectors of & generate another subalgebra 31. We choose the
following basis

91 : {%, na, %, n^ nδ, nQ}
where

1— σ (213)

with
[>;,%] = 0 for i,^ =

K? %] = 0

[nv nQ~\ = 4τi4

1>4, %] = 0

K» ^β] = °

[%, wβ] = 0 .
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The subalgebra 31 is nilpotent with 3ΐ4 = 0. Thus we arrive at the
Iwasawa decomposition [20] of the Lie algebra (S

© = ® + 21 4- 31 (2.14)

where the sum of the three subalgebras has to be understood as the direct
sum of vector spaces. Furthermore 6 = 21 + 3Ϊ is a solvable Lie algebra:

©(3) = 0

[αl5 %] - —^ [αa, n±\ = —%

[av n2] = —n2 [a2, n2] = —τi2

[«ι> %] = —2% [«2» %] = °
[αl3 nj - 0 [α2, rcj = —2τι4

From these relations follows that 31 is an ideal in <2.
To the decomposition (2.14) of the Lie algebra corresponds the

decomposition
G = KAN (2.15)

of the group (?, where K, A and N are groups with Lie algebras & 21 and
31 respectively. As we are only interested in infinitesimal translations on
the group, we can take for the groups K, A and N just the integrated Lie
algebras, denoted by K, A and N, and disregard discrete centres which

always lie in K. Thus we obtain for an element k £ K, introducing Euler

angles:

k =
~-e 2 e-ίωcos-~e 2

θ _, <P+V
0 e*ωcos — e *~2~ — ie

. (2.16)

Λ Λ . V <S T Y (J n' Y T 1

\ ° 0 — ιe^8m — el-2~e^cos~ £~* j

In A and N we introduce canonical co-ordinates of the second kind and
get for the elements a and n of the groups A and N respectively

a = e

λaιeμa*

which lead to

(coshλ 0 sinhλ 0 \
0 coshμ 0 sinhμl /9 17\

sinhλ 0 coshλ 0 I V'Li>
0 sinhμ 0 coshμ/
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and

(
l + ip ^ (l + 2ip)(u + it) + s + ir

—ip — s — ir + (1 — 2ip) (u + it)

ip (I -j- 2ip) (u + i£) -f- s -f ίr \
Ή<— iί -f ir — s ig -f- 2(u + i£) (if— s) \
I — ip —s — ir -f- (1 — 2ip) (̂  -f it) 1 '
s — ir — u + it 1—iq -j- 2(u -f- it) (s — ir) /

Thus we arrived at a parametrization of the group element

g = kan (2.19)

which will be used in the sequel to derive representations of the Lie
algebra. In the following we can omit the "hat" in all considerations on
the Lie algebra as already indicated.

3. Realization of the Lie algebra in the carrier space K X A

Our aim is to find those representations of the Lie algebra © which
correspond to irreducible unitary representations of the group G. When
we denote by xl the generators of © (fundamental representation by
4 x 4 matrices) and with (2ίl a representation of them as operators acting
in a Hubert space

*,->*, (3.1)
this means, among other things, that the operators 9ίj multiplied by i
have to be self-adjoint. In order to find such representations, we shall
follow the method given in Ref. [15]. We start by considering the
quotient space G/N, i.e., the set of left cosets with respect to the subgroup
N. Because of the Iwasawa decomposition

g = kan

with g ζ ( τ ; kζJί; a£.4; and n ξ N we can identify every coset g^
with ka

Now left multiplication by g0 £ G acts transitively in the coset space

- k' (g0, k) a' (g0, k) n' (g0, k) *N (3.2)

= k'(g0,k)a'(g0,k)a#

In performing the last step we used the fact that A together with N
forms a group with N as an invariant subgroup. Thus we have

ka-^>k'(g0;k)a'(g0,k)a. (3.3)

Now it is important to remark that the change in the parameters induced
by the left translation depends only on g0 and on k but not on a. This is
obvious for k' and follows for a' a from the fact that A is an Abelian
subgroup. Furthermore a translation by k0 £ K changes only k. We
14 Commun. math. Phys., Vol. 3
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therefore consider functions forming a linear space over K x A of the
special form [15]

/(k, a) = β *+»" /(ω; α, β, γ; φ, θ, ψ). (3.4)

This specification is in fact a step in the direction of selecting the
irreducible representation spaces. The parameters α and b will then serve
to label these irreducible spaces. They will be fixed later together with the
introduction of a scalar product in the linear space of the functions /.
We define a representation of G by

?V(k,a) = /(k',a'a) (3.5)

wliere k' and a' are given by the formula (3.3) replacing g0 by g"1.
Consider now the operators corresponding to infinitesimal trans-

formations. Let

then, because of (3.1) and (3.5), we have

(3-6)

where Vi with i = 1 to 9 stands for the variables λ, μ, ω, α, β, γ, φ, θ, ψ.
We obtain the derivative of the changed variables rj, which depend also
on the index I of the transforming xl9 from the fundamental representa-
tion using its decomposition (2.19)

g' = β-«*g . (3.7)
By differentiation, this gives

which is a 4 x 4 matrix equation determining \-QJ~] _ f °Γ every Z. When

we denote by corresponding capital letters the operators 9Cj, we get for
those of the maximal compact subalgebra according to Eq. (3.6)

C08<x

sinφ d
= sin? ---

cos 9?
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From the remaining generators it is sufficient to calculate one with
the method stated above, as all the others can be obtained from it by
commutation of this one with the compact generators (3.9). We choose

I f β 0 . „ . β . θ . . d
A= = ~~ cos cos Y smίι + sιn sm

2 cos sin cos£2

I sm — cos2 Ϋ

—5 sin fo — cos -nf- cos -~- sin£Ίp L Δ
βmτ

,-1
(3.10)

smτ
fi fi 7\

+ 2 cos-5-sin-s- cosC2-^F

+ j cos -H- cos -«- sin^ -

— a cos Y cos Y cosς-,

— δ sin-~ sin-«-cosζz

sin

cos J

smτ

where we introduced

= γ(4co + oc+ y — 99 — f(

ι = γ(4ω + α — y — φ + ι
(3.11)

4. Explicit construction of the Hubert space

Our next step is to introduce suitable scalar products in the linear
space of the functions / in order to construct the irreducible unitary
representations of the group. Here we are only interested in the classi-
fication of the representations, and we use the explicit representation of
some generators only as an auxiliary tool. It is sufficient to consider only
the compact generators and one of the non-compact ones. Indeed it can
be shown that the whole group can be generated from the compact
generators and their commutators with any one of the non-compact ones,
say A1 in formula (3.10). Thus we are free to consider, besides the whole
compact algebra & either the generator A^ or any commutator it appears
in. All conclusions concerning the series of representations will be inde-
pendent of this choice.
14*
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For the functions /, we now choose a basis which is adapted to the
splitting of & into £7(1) Θ SU(2) <g> £Z7(2), i.e., we set

/(ω, α, j8, y, φ, θ,ψ)

= Σ F(κ)lίm)n)j)h)k) e**™@l

mn(oc, β, γ) $ik(φ,θ,ψ) t4'1)

where ̂ ^ and &h1c are Wigner functions. Their properties are recalled
in the Appendix.

When / is a one-valued function on K, κ has to be integer or half-
integer and the sets /, m, n and j , h, k take the usual integer or half-
integer values. Let us introduce the notation

|̂ > - |κ, I, m, n, j, h, k} = e**»» &mn(*, β, γ) ®{k(φ, θ, γ) . (4.2)

Now it follows from Eq. (3.9)

iΩ\κ, I, m, n, j, h, k} = 2κ\κ, I, m, n, j, h, &>

κ, I, m, n, j, Jι, ky = m |κ, Z, m, n, j, h, Tc)

(Ll±iL2) \κ,l,m,n,j,h,ky = --

ί J3 |κ, ί, m, w, j, h, ky = h |κ, Z, m, w, y, ,̂

(4.3)

(Jj ± i J2) |«,Z,w,^,Λ,fc> - — ]/ϋ

Thus the compact generators take the form of matrices acting on the
basis vectors.

Let us now introduce a suitable non-compact operator. If we take the

commutator JΓ = — -^ [Ω, A±\ and form the conjugate combinations

A± = Aλ ± iΆ, these have the form:

- —
2 2

±ί

• 2sin cos2

sίnί

• COS -H- COSlΓ-e"F ^ ς l

Δ Δ -±

±

(4.4)

cos -£- cos -7Γ- ί

sin -£- cos2 —

— a cos - - cos -^r-
Δ Δ

ι — sn - - sn -^-
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Now we can apply these operators to the functions \φ^) of Eq. (4.2)
and we see, taking into account the properties of the Wigner functions,
that they transform a given |<^) into a linear combination of such func-
tions. Then the operators A± take also the form of matrices acting on the
labelled vectors :

(2Z + 1) (2j + 1) A+\κ, I, m, n, j, h, k}

= {κ — a + n — k} ]/(j + h + 1) (j + k + 1) (I — m + l)~(l — n + 1) X

X

+ {κ — a + n — k} J/(Z — m + 1) (Z — n + 1) (j — h) (j ~^ti) X

I 1 . 1 , . 1
X

X

" 2 ' n~~ 2 '?~~ 2 ' + 2 ' '

i>
+ {κ — α + w — k} y(l + m) (I + n) (j — h) (j — k) X

, -, i i
X L J L ^ _ i _ J L

o ' ^ 2 > ' 2

+ {—κ + b + 2 (Z + j) — (n — k)} X

1)0' + A + 1 ) (/ — * + l ) X

i 7 JL JL JL _L Ά JL

— i + 2} x

X

X

j + h+ 1) 0' — fc + ϊ) x

1 1 1 . 1 - 1

{κ — 6 — 2(Z — ?') + w— fc + 2} X

X

, 7 1 1 1 . 1 _ 1
κ—1, Z + ,m — ^ + , ^ — - - , A +

x K^"~~

x

+ {-κ + 6 - 2 (Z + ?) - (n - k) - 4} x

X J/(Z"+ m) (Z —w) 0' —A) (7 + *) X

(4.5)
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The corresponding expression for A_ is obtained by changing the
signs of κ, m, n, h, k in the above coefficients and performing in the

vectors |<^ ) the substitutions κ— l~*κ-+- l m — ->w-f-o-;^±-o — >

We remark that the indices m, n, h, k transform in such a way that
the sums m + h, n 4- k are unaffected. If we look at the compact opera-
tors, we see that m and h transform independently, but n and k are
unchanged. This shows that, under the considered operators, the three
numbers α, b and c = n -j- k are constant. But as all other operators are
commutators of the above ones, this conservation holds for the whole
group, so that the three numbers α, δ, c label the irreducible representations.

Now our problem is to endow the above linear space with a metric,
in such a way that the group is represented by unitary matrices. In
other words, all generators of its Lie algebra (multiplied by i) must be
self -ad joint with respect to this metric. It will be sufficient to fulfil this
condition for the compact operators and for A1} as the other ones can be
built up with commutators. The choice we have made for the function
/ in Eq. (3.4) on the manifold A is related to our aim of reducing the
function space over K x A into irreducible spaces. Thus we need only to
define the metric inside these irreducible spaces and we do this as general
as possible. Moreover as the functions / which span these spaces are
defined only on the compact subgroup K, we can restrict ourselves to
integration over K [15].

Thus, we put for any two functions /15 /2 on K:

(/i, /8) = // A (kt)* M (k1; k,) /, (ka) d\ <Zk2 (4.6)

where k1? k2 represent two different " points" in the compact manifold
K, cZk1? (Zk2 are the invariant volume elements on K, and M is a kernel
defining an invariant bilocal measure. According to formula (4.1), we
now have

(/i, /2) = Σ FI* (Φi) M<Φi I Φi) F2(Φι) (4-7)
ij

where M^φ^φ^ are the matrix elements of the kernel in Eq. (4.6).

The metric must be Hermitian: (/2, /j) = (/1? /2)*, which yields:

M (φjlφi) = M (φi\φj)*, that is M = M +. It must also be positive
definite : (/, /) ΪΞ 0 for any /, which implies that the real numbers

are positive for any F(φi). Since any self-adjoint operator i<X, has to
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fulfil (f1; «/,) + («/lf /,) = 0. We get

i j k

+ Σ F? (Φi) X* (Φi I Φi> M (φj I φk} F2 (φk) = 0
ijk

where 9C{<^|<^fc) are the matrix elements of 9C. That is, finally:

&) = 0 . (4.8)

Now, what we have to do is to write down explicitly the above condition
for each of the generators of the group, and to derive the conclusions on
the allowed structure of the matrix M . For instance, if we consider only,
for the sake of brevity, the indices I, m of one of the compact 8 U (2)
subalgebras, we have the relation

', m'\l, m) L+(l, m\l", m"} +

Using the expression (4.3) for L±, we get

' m> (4.9)

where the elements on the right-hand side depend on I, but not on m.
This can be extended to the whole compact subalgebra S?.

By considering explicitly the whole set of indices, it is more suitable
to introduce the following notation :

c = n + k N=n — k J+ = j + l J_ = j — l. (4.10)

The above result on the compact generators allows us to write :

M{φi\φ}}

= J(κ, I, j) (N I N'y δ (κ \κ'} δ (I \ Γ> δ (j\j') δ (m \ m'} δ <h \ h'} .

Now, considering the non-compact operators A±, equation (4.8) reads

Σ~//(κ', l ' , j ' ) (N'\NyA+(κ', l',j', m', h', N\κ", l",j", m", h", N") +
N

- <*"> l"> }"> ™"> W, N I κ', I', j', m', h', N'} x (4.11)
N

By looking at the matrix elements of A± deduced from the above
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formula (4.5) we see it is suitable to put them in the form

A+(κ, l,j, m, ft, N\κ'} l ' 9 j ' , m', ft', N'}

= j/+ (a, 6, c, κ, m, ft) <7, y, # | Z', ?', N'} x

X
(21 + 1) (2? + 1)

A_<κ,l,j,m,h,N\κf,V9r,m',h',N'y

= ̂ _ (α, 6, c, κ, m, ft) <ϊ,,', ΛΓ | V, ?", ̂ > X

X

and then to set
(2? + 1) (2j + 1)

This yields

?+ (α, i, c, κ> m, ft) <Z', f , ̂  1 1", j", N"} +

, b> c, ,̂ m, ft) <z", ", ^v i v, j', w}Jt (*", z", ̂  ) <^ I jy'') = o ,
from which we get a rather complicated matrix equation which decom-
poses into four independent ones, because of the Kronecker deltas.

For instance, grouping the coefficients of

and those of

Γ-τ)
we get, changing the primed variables to unprimed ones and replacing the
double primes by a hat :

X

X
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Likewise

X

x

x

(4.12)
X

X
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These four separate equations are still matrix equations because of
the appearance of the non- diagonal <Λ(N'\N"y elements and at this
stage, the resolution of such relations seems to bring into play very
serious difficulties. Now as a first step towards a complete solution of the
problem of the unitary representations of 811(2, 2), we shall restrict
ourselves to a simplifying assumption: we suppose that the matrix M is
also diagonal in the label N, namely :

uT(κ', Z',?') (N'\N"y = a(κ'> J'+ί J'_, N') δ(N'\N"y . (4.13)

This assumption brings a further splitting of our four matrix equations
and we are left with a rather simple system of eight complex basic
"recursion relations".

In order to write them down in the most manageable form, we
introduce once more a new notation putting in evidence the real and
imaginary parts of the two complex continuous labels :

a=l + α2+*αι & = 3 + 62 + i f t 1 . (4.14)

Furthermore, as the matrix M is now completely diagonal, the Hermiticity
condition for the metric amounts to having the matrix elements £8 real.
Then the eight complex relations are easily split into sixteen real ones.
We are finally left with the following system

(κ + N— I — α2) @(κ— 1, J+ + 1, /_, N— 1)

= (κ + N — I + αa) &(κ, J+9 J_, N)

(κ — 1, J+, J_ — 1, N— 1)

= (κ + N — 1 + αa) &(κ, J+ί J_, N)

J_ + 1, N- 1)

(κ + N — 1 + αa) &(κ, J+, /_, N)

— 1, J_, N— 1)

(κ + N- 1 + αa) Λ(κ, J+, J_, N)

», J+, J-,
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(κ - 2 J+ + N - 3 - δa) Λ(κ - 1, J+ -1- 1, JL, N + 1)

- (κ — 2 J+ + N — 3 + 62) «(κ, J+, JL, JV)

(κ + 2 JL + ̂ — 1 — 62) J>(κ— 1, J+, JL — 1, tf + 1)

- (κ + 2 J_ + 2V — 1 + &2) J>(κ, J+, JL,

(κ— 1, J+, JL+ 1,^+1)

- (κ — 2 J_ + JV — 1 4- 62) ̂  (κ, J+, J_, -W)

(κ + 2J+ 4- N +

- (κ + 2 J + N

= blΛ(κ9J^J,9N). (4.15)

5. Discussion of the series of unitary irreducible representations

The determination of the unitary irreducible representations of
SU(2, 2) or rather its universal covering group amounts to a determina-
tion of all solutions of Eqs. (4.12). However due to computational
difficulties we have not been able to solve these equations without making
the additional assumption that

Jί(κ, l , j ) (N\N'} = &(κ, J+, J_, N) δ(N\N'} .

The equations which then result have been given in Eqs. (4.15). In this
section we shall find the solutions of these latter equations. Before doing
this let us however discuss the ranges of the quantum numbers κ, I, j and
N. These ranges are different for the different groups which have the

same Lie algebra. If we consider the universal covering group $£7(2, 2)
then the only restriction on κ is that it is real. The numbers Z and / are
of course always half -integer or integer since they are attached to the
representations of 8 U (2) groups. Furthermore

I + j^ \c\ (5.1)

since c = n + k and \n\ ^ I9\k\ ^ j. For N the allowed values are different
in different (I, j) subspaces. Since

N = n — k
\n\ ^ I

1*1 ^ ί
n + k = c ,
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N can take the values

21— \ c \ , 2 l — \c\ — 1, . . ., |c | — 2j

if j ^ I and / — I ^ \c\ and the values

21— \c\,2l—\c\ — 1, . . .,— 21— \c

(5.2)

(5.3)

if j ^ I and j — Z > \c . When I ^ j one has to interchange I and j in these
relations. Fig. 1 shows the allowed ̂ -values. If one now wants to find the

-I

Fig. 1 : Allowed values for N in an (Z,;) subspace.

representations of 8U(29 2) itself, one has to impose further conditions
on the numbers κ, I, j and N. $17(2, 2) has a discrete centre of order four
which belongs to the maximal compact subgroup.
Now our carrier space of an irreducible representation is actually not

&= 17(1) β 8U(2) β SU(2) (5.4)

and & covers K twice. The points (ω = π, φ = 2π, oc= 2π, θ — ψ = β
— γ = 0) and (ω=φ=<x=θ = ψ=β=γ = Q ) o f K should be identi-
fied with the unity of K. Thus a rotation π in ω accompanied by a rota-
tion 2 π in φ and α should be mapped on the unit operator. For the basis
elements

\x; I, m, n j, h, fc> = ̂ ""^(α, β, γ) ®fo(ψ, θ, γ)

this means that
κ + I -f j = integer (5.5)

and thus κ can only be integer or half -integer in a representation of

This analysis can be continued to even smaller groups. The group
SO (2, 4) is also locally isomorphic to SU(2, 2). It has a centre of order
two and thus one has

SO(2,4:) = SU(2, 2)/Za.

To select the representations of SO (2, 4) one has therefore to choose them
in such a way that they map Z2 on the unit operator. Now one knows
that a representation of $0(4) has either both I and j integer or both
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half-integer. Therefore a representation of 80(2, 4) is characterized by

κ = integer (5.6)

in addition to the restrictions which hold for SU(2, 2). Now as pointed
out above 80 (2, 4) has a centre of order two. Therefore one can also con-
sider the factor group with respect to this centre. The representations of
this group are characterized by

κ + 2j even . (5.7)

This can be shown by means of a parametrization of 80(2, 4) in terms of
Euler angles.

After this discussion of various related groups let us go back to the
Lie algebra. Since it gives the representations of the universal covering
group and of all "smaller" groups as well the restrictions

κ — integer

I + j = integer

κ + 2j even

must in particular be compatible with the recursion relations. In fact, κ
and J+ — I -f j are constant modulo 1, while κ + 2j is constant modulo 2.

In the rest of this paper we shall confine ourselves to the group
8U(2, 2). The extension to SU(2,2) involves nothing principally new.
According to the analysis above it must then be possible to divide the
representation space of SU(2, 2) into four different invariant subspaces
characterized by I -f- j either integer or half-integer and κ -f 2j modulo
2. By looking at the recursion relations one finds even more. Each one
of these four subspaces can be divided into two according to whether

κ + N even
or (5.8)

κ + N odd

Let us denote the subspaces Hv . . . H8. Table 1 defines their properties.

Table 1. Invariant representation spaces for SU(2, 2)

I -f j integer I + j integer I + j half-integer I + j half-integer
κ + 2? even κ + 2? odd 1/2 + κ + 2? even Vi + * + 2? odd

κ + N H „ H H
even 1 2 5 *

•v 4- TV
™ >^ TT TJ ΈΓ TJ

odd H* U* ^ H*

We have to discuss the solutions of Eqs. (4.15) in each of these sub-
spaces. The analysis is divided into two cases al Φ 0 and a^ — 0.
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Case I — αx φ 0. When % φ 0 one has from the "%" equations
*(«—!, J+ — 1, J_, iV— 1) - ̂ (κ, J+, J_, #). If this equality is in-
serted into the corresponding "α2" equation one finds α2 = 0. Let us now
examine the two equations

= (κ + 2 J+ + N + 1 + 6a) Λ(κ, J+l J_, 2?)

(κ — 2JΓ

+ + Λ r —3 — 6a)^(κ— 1, J++1, J.^+l)

= (* — 2 J+ + tf — 3 + δa) Λ(κ, J+, J_, tf ) .

From the aλ equations we have

&(κ - 1, J+ - 1, </_, tf + 1) = Λ(κ - 1, J+ + 1, J_, # + 1)

= #(*, J+,JL,#+2) (5JO)

so that one can subtract the Eqs. (5,9) to get

4(J+ + 1) β(κ, J+, J_, N + 2) = 4(J+ + 1) «(«, J+J J_, Jff) .

Now since J+ + 1 > 0 one has

a(9c—l9J+— 1, J_, ΛΓ + 1) = Λ(«, J+, /_, N + 2) = ̂ (κ> J+9 J_, N)

which inserted into the first of Eqs. (5.9) gives b2 = 0. Therefore as soon
as % Φ 0 the diagonal matrix 88 (κ, J+ί J_, N) is independent of its
arguments and the ranges of these arguments are restricted only to
those valid within the subspaces Hlt . . . , H8. By keeping α2 = 0 and
δ2 = 0 one can now add the point aλ — 0 if the "α2" equations can fulfil
the same mission as the "%" equations. This is evidently possible if
κ + N — 1 never becomes zero. In four of the subspaces this is so while
in the other four subspaces this representation is reducible into two
representations characterized by κ + N ^ 1 or κ + N ^ — 1. To sum-
marize we have found a continuous series of representations characterized
by c, integer or half-integer, — oo < aλ < oo, α2 = 0 and — oo < bl < oo,
62 = 0 where the only restrictions on the quantum numbers κ,j, I and N
are those which define the invariant subspaces Hlt . . . , H8. In the sub-
spaces HZ, H^ HΊ and H% the point a^ = 0 has to be omitted.

Case 11 — 0! = 0. To begin with let us put b± ή= 0. Then 62 = 0 and
the δj equations determine the 3&(κ9 J+, J_, N) in the direction κ — N.
If furthermore κ + N is even and |α2| < 1 then the "αa" equations
determine successively positive values of SS in the direction κ + N. Thus
the contents of these representations are the same as in case I but the
measure matrix £8 is dependent on its arguments. We call this series a
continuous supplementary series.

The absolute value |αa| may however be larger than 1 but then it is

connected to a lower or upper bound κ + N and κ + N respectively for
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or (5.11)

α2 = κ + N + I .

In this case &(κ, J+, «7_, N) terminates with zero and thus projects out
a subspace of the spaces Hl9 . . ., HB. It is also found that κ + N > Oand
κ + N < 0 in order that the non-zero values of & all have the same sign.
The series so obtained are called discrete series. One may ask what
happens in the limiting case α2 = 1 of the supplementary series. It is
found that it is possible to have non-negative measure £% only if it is
different from zero only for κ + N = 0. This is then a degenerate series
since it is described by the two parameters b and c only. To all series
discussed so far under case II one can now adjoin the point 61 = 0 with-
out any restriction. Fig. 2 illustrates the bounds on the variables κ and
N for the discrete and degenerate series.

Fig. 2: Bounds on κ 4- N for discrete and degenerate series.

The possibilities are not exhausted yet. When δj — 0, α2 = 1 and
κ + N Ξ== 0 there can appear new degenerate series characterized by non-
vanishing &2. When J_ is integer, one can in fact have |62| < 1 without
any restriction on J_. Furthermore there appear the solutions

or

i.e., lower or upper bounds on J_. Finally there is also the possibility
that δ2 = 1 and J_ Ξ= 0. Fig. 3 shows the restrictions on J_ for some of
these degenerate series.
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In Table 2, we have summarized the series of representations. In
connection with this Table we want to stress two things. This Table does
not contain all unitary irreducible representations of S U (2, 2) since we

\c\ L

Fig. 3: Bounds on«/_ for some degenerate series.

had to introduce a simplifying assumption in order to solve the recursion
relations (4.12). Now this assumption of diagonality of the measure
matrix is dependent on the parametrization of K. Thus one will get new
series by choosing another parametrization of K. It seems however that
even after variation of this parametrization one will not get all representa-
tions. The other thing to be stressed is that some representations of
Table 2 may be unitarily equivalent.

We can also compare our results with those of Refs. [11], [12] and
[13]. It seems as if the series 1 and 3 correspond to two of GBAEV'S three
series. The series 4 to 7 should all appear in MURAI'S work since they are
all degenerate. We have however not found the limitation \l — j\ ^ |c|
which all the representations of Bef. [13] obey.

The functions

•"̂ »»wΛ^> P>

have the following properties

where

Appendix

^ 21 = 0 , 1 , 2 , . . .

—I ίg m, n ̂

Z) Z)
l-m

[(1 -



Table 2. Unitary irreducible representations of SU(2, 2)

Type of series

1. Continuous (main) series)
— σo < «! < σo, α2 — 0
— σo < &! < oo, &2 = 0

2. Continuous supplementary
series
αx = 0, 0 < |α2| < 1
— oo < δj < oo, &2 = 0

3. Discrete series
CTj = 0

— oo < δj < oo
62 = 0

α2 = — 1,
—3, ...

«2 = 0,

—2, . . .

4. Degenerate (main) series
αx = 0, α2 = 1

00 < &! < 00, &2 = 0

5. Degenerate supplementary
series
αx = 0, α2 — 1
δj = 0, 0< |&|a < 1

6. Degenerate
discrete series

«! — 0, α2 = 1
&, = 0

bz = —1,
Q« ,̂ . . .

δa = 0,
—2, . . .

7. Maximally degenerate series
αx = 0, α2 = 1
&! - 0, 62 = 1

Subspaces H1, Π2

c integer
J+ = |c|, |c| + 1, . . .
κ + N even

No further restrictions
on parameters or sub-
space

No further restrictions
on parameters or sub-
space

κ + N ̂  1 — α2

or κ + N 5ί α2 — 1

Empty

κ + J V = = = 0

κ + .#ΞΞO

κ +^~0;
/-^ V 2 ( l ~ & 2 )

or J_^ V 2 ίδ 2 — 1)

Empty

κ + ̂ ^0
J_^0

Subspaces ^3, H4

c integer
J+ = |c|,|c| + 1, ...
κ + N odd

a1 ={=0

Empty

Empty

κ + N ̂  1 — α2

or κ + JV ̂  α2 — 1

Empty

Empty

Empty

Empty

Empty

Subspaces H6, Hβ

c half integer
J+ = |c|, |c| + 1, . . .
κ + Λr even

No further restrictions
on parameters or sub-
space

No further restrictions
on parameters or sub-
space

.. -
κ + N ̂  1 — α2

or κ + N -^ a2 — 1

Empty

κ + N Ξ=Q

Empty

Empty

κ + ^Ξ=0;

j-^ v.α— w
or J_ ̂  1/2 (62 — 1)

Empty

Subspaces H ,, H8

c half integer
J+=: |C|, |C| + 1, ...

κ + N odd

»1ΦO

Empty

Empty

κ + N^ 1 — α2

or κ + N ̂  α2 — 1

Empty

Empty

Empty

Empty

Empty

g

o
σ5

I
§'
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The following recursion relations are valid for Pl

mn(coa β) :

[ϊβ~

"•"><"* & =-V(l-n) (l + n+l)

Using P^w(z) = ( — \)n~mPl

nm(z) these relations can be transformed into
recursion relations involving the left lower index.

Prom the addition of an angular momentum I and an angular momen-

tum we obtain the following relations

(21 -f- 1) COS "o" f*mn\vv»υ) = y \ι> f //ft 1~ J J ^ Ί~ '/ft ~1~ J J *~ ~χ i
25 WZ + g it +15-

& Λ

+ ]/(l — m)(l — ri) Pl~^n+ι (cosθ)

Λ I _I_ 1

/c\ Ί i f \ τ»7(2ί+l)cosτP«

-i
+ Y(l + m) (I + n) P \ λ (cosθ)

' w- ra-

(2Z+ l)sin|-. n o O β = -m Λ w + l

2 2

(2Z+ 1) sin-|--P^(cosθ)=— l/(ϊ + w+l)(ϊ—w+l)P Z + \ x (cosθ)+
^ m + ̂ w — g
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