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Abstract. The connection between the ideas of "contraction" and "analytic
continuation" of Lie algebras and their representations is discussed, with particular
emphasis on the contraction of the Poincare to the Galilean group.

1. Introduction

We continue the study of the relation between analytic continuation
of Lie algebras, their representations and Lie algebra cohomology. The
first topic we will treat will be a further development of tbe formalism
when a Lie algebra structure is fixed, and an irreducible representation
of it is analytically continued. In [4] we showed that, if the relevant first
cohomology group vanishes, then the Casimir operators of the Lie algebra
are constants of the deformation parameter. Here, we will study the
formalism for the case where the first cohomology group does not vanish.
We will obtain some insight into one of the main problems, namely,
discovering when the first cohomology group is finite dimensional.

Our next topic will be to continue both the Lie algebra structure and
the representation. This will provide a tie-up between Lie algebra
cohomology theory and the Gell-Mann formula for the representations
of Lie algebras. Again, we will find that the beautiful ideas of the Kodaira-
Spencer theory of deformation of structure provide us with a deep in-
sight into the already known situation, and should be an invaluable
guide to extending the existing theory to new situations. The case of the
contraction of the Poincare to the Galilean group will be treated in some
detail.

I would like to thank R. KALMAN for his hospitality at Stanford University
while this paper was written.

2. The effect of continuation of representations on the universal enveloping
algebra

Let G be a Lie algebra, with X, Y, . . . denoting its typical elements,
[X, Y] its bracket. Recall that £7(G), the universal associative enveloping
algebra of G is defined in the following way [3, 5]:
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Construct the algebra of formal products X1 . . . Xr of elements of G.
(Technically, this is the tensor algebra of the underlying vector space of
G and is denoted by T(G).) It is an associative algebra: the product is
defined in the obvious way by juxtaposition :

(Σ1...Xr)(71...7,) = (X1...Xr 71...7I).

Introduce the relations :

XY— YX—[X, Γ] = 0.

The quotient (associative) algebra is defined as Z7(G). (Technically, one
considers the two-sided ideal of T((x) generated by all elements of the
form XY— YΣ—[Σ, Γ], for X, Y ζ G, and defines Z7(G) as the
quotient of T (G) by this ideal.)

U(G) can be made into a Lie algebra by defining the bracket as
commutator :

[Δι,Δ1ί'\ = ΔlΔ2 — Δ2Δι.

Thus, G can be considered as a Lie subalgebra of U (G).
If φ : G -> L is a Lie algebra homomorphism, it extends in an obvious

way to an associative algebra homomorphism : U (G) -> U (L) . Explicitly, if

φ(Δ)=φ(ΣI)...φ(Σr)ζU(L).

An element A of U (G) is a Casimir operator of G if it belongs to the
center of U (G) : it is readily seen that this is equivalent to the condition

[Δ, G] = 0 .

Often in the applications to physics one must consider an "extended"
or "complete" universal enveloping algebra, which should, roughly,
consist of all "functions" of the elements of G, rather than simply all
polynomials. One way of making this precise might be to extend £7(G)
by adding all formal power series in the elements of G. Very little is
known about such objects: The reader might keep in mind, however,
that such an extension is desirable, and that much of what we say of a
purely formal nature about U (G) can be extended with very little effort
to such an extended algebra.

Now, suppose that φλ : G -> L is a one parameter family of homo-
morphisms of a Lie algebra G into a Lie algebra L. As in [4] we define the
map ω : G -> L by the formula :

Then, as we know, ω is a 1-cocycle of G with coefficients in the re-
presentation φ', where φ' assigns to each X ζ G the inner derivation

Z-*[φ(X),Z] of L .
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The cohomology class in Hl(φ') determined by ω then "obstructs" the
possibility of obtaining φλ from φQ by applying to it an inner auto-
morphism of L.

Suppose that Δ is an element of Z7(G). Consider the element of Z7(L)
given by the following formula :

d

Can it be computed in terms of ω ?

Suppose, for example, that

Δ = XY, with X, 7 ξ G .

= Q^ ω(X) φ(Y) + φ(X) ω(Y) .

This formula suggests that we define the right hand side as a new opera-
tion between the 1-cocycles and elements of Ϊ7(G):

ω(Σl9 . . ., Σr) = ω(X1) φ(X2 . . . Zr) +

+ φ&J ω(X2) φ(X,) . . . φ(X2) + - - - + φ(Xl . . .Xr^) ω(Xr) .

To show that it is well defined on C/(G), we must verify that:

ω(XY)-ω(YX)-ω([X, Γ] = 0 . (2.1)
But,

ω(Γ-Σ) — ω(ZΓ) = ω(Γ) φ(X) + φ(Y) ω(X)-

-ω(Σ)φ(T)-φ(Σ)o)(T)

= [ω(Y),φ(X)]-[ω(X),φ(Y)]

= -dω(Σ,Y)-ω([X,Y]),
whence (2.1), since dω = 0.

Let us now compute

ω(VU), for ΔvΔtζϋφ).
In fact,

ω(Zt . . . XrY, . . . Γ.) = ωίZO <p(X2 . . . Γ.) +

+ φ(X1...Ys_1)ω(Ys)

+ ψ(X1...Xr)ω(Yϊ...Ys).
Thus we have :

ω(AlA2) = ω(Δl) φ(Δ^ + ψ(Δl) ω(Δ2) (2.2)

6
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Suppose now that ω = d W , ί or W ζ L.

ω(TZ) = ω(Y) φ(Z) + ψ(Y) ω(Z)

= ( d W ) ( Y ) φ ( Z ) + ( φ ( Y ) d W ( Z ) )

^[W,φ(Y)]φ(Z)+φ(Y)[W,φ(Z)]

= [W, φ(YZ)] .

The general formula is obviously:

(dW) (A) = [IF, φ(A)] for W ζ I, A ξ U(G) . (2.3)

Suppose Z £ (J : let us compute

Suppose, for example, A = FZ. Then,

), ω(Γ) y(Z) + φ(T) ω(Z)

), ω(Γ)] y(Z) + ω(Γ) [φ(Z); φ(Z)] +

), φ(Y)] ω(Z)+φ(Y) [φ(X), ω(Z)}

), ω ( Y ) ] φ(Z) + ω(Y) Ψ ( [ X , Z ] ) +

+ φ([X, 7] ω (Z) + φ(Y) [φ(X), ω(Z)] .
Also,

ω([X, YZ~\) = ω([X, Y]Z+ Y [ X , Z ] )

= ω(\X, Y] φ(Z) + φ([X, Y] ω(Z) +

+ ω(Y) φ([X,Z]) + φ(Y) ω ( [ X , Z ] ) .
Hence,

+ φ(Y)([φ(X),ω(Z)]-ω([X,Z]) )

= X(ω)(7Z).

This computation obviously generalizes to higher degree elements of
Z7(G), giving the formula:

[ φ ( X ) , ω ( A ) ] = X ( ω ) ( A ) + ω([X,Δ \) for Xζ G, A ζ U(Q) . (2.4)

Thus, if Δ is a Casimir operator of £7(G),

ω)(Δ) (2.5)

= [ω(Z), φ(A)] .
Thus we have proved:

Theorem 2.1. Suppose that the homomorphism satisfies the following
condition: φ maps every Casimir operator of U((x) into a Casimir operator
of Ϊ7(L). Then A -> ω(Δ) also maps a Casimir operator of £/((*) into a
Casimir operator of U(L).
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Suppose, in particular, that L is a Lie algebra of operators on a vector
space that is irreducible in the sense that the only operators commuting with
every element of L are the multiples of the identity operator I.

Then,
ω(Δ) = a(Δ,ω)I (2.6)

for each Casimir operator Δ of U(G), where a (A, ω) is a bilinear, scalar-
valued function defined for Casimir operators A and for \-cocycles ω. If
ω cobounds, it is zero, so a ( , ) is really a bilinear function defined on Casimir
operators Δ and cohomology classes in Hl(φ'}.

Suppose now that G is semisimple. Suppose Δv . . ., Δl are the basic
Casimir operators of G, i.e., all other Casimir operators are polynomials
in these (I = rank, G = dimension of a Cartan subalgebra of G. Of course,
it is a theorem about semisimple Lie algebras that such a basic set
exists). Then, if (2.6) holds, the mapping

ω-»(α(ω,4ι)> . . ., a(ω, zlz)) (2.7)

defines a linear mapping of Hl(φ') into Cl if, for example, C (the complex
numbers) is the field of scalars for the operators L. One conjectures that
in certain circumstances this is one-one, hence, that the finite dimen-
sionality of Hl(φ') can be proved in this explicit way. One also can re-
mark that the standard methods of defining unitary representations via
induced representation theory do indeed provide representations de-
pending on I parameters.

3. Cohomology modulo subgroups

Suppose G, L, φ, and φ' are as in Section 2. In addition, let K be a
subalgebra of G. Consider a deformation λ -> ψχ of φ with

d
ω==-dλVλ\λ = «

the corresponding 1-cocycle. Now, if

φλ(X) = X for X ξ K ,
we obviously have

ω(X) = X Jω = 0.

Since dω — 0, we also have
X Jdω-0.

Now, in general, suppose we consider the subspace of those cocycles
ωζ Cr(φ') such that

0 = Z J ω = X J f l f ω ,

which we denote by Cr(φf, K). Note that
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Thus, we can define the r-th cohomology group of φr modulo K as the
quotient

Summing up, we may say that Hλ(φ' ', K) measures the possible deforma-
tions λ -> ψλ of the homomorphism φ such that the representation φ^
restricted to K is fixed. There is obviously a homomorphism Hr(φ', K) •->
~"B'(φ').

This is a standard construction in cohomology theory. Let φκ be the
homomorphism φ restricted to K. Let φκ be the corresponding homo-
morphism K -> linear transformations on L.

Every cochain in Cr(φ') defines by restriction to K a cochain in
Cr(ψκ)> hence also a linear map Hr(φ'} -> Hτ(φκ). In certain dimensions,
this is an exact sequence of the form :

H'(φ') -* H'(φ'κ) -+ H*+i(<p', K) -> H'+*(φ') - > • • - . (3.1)

("Exact sequence" means that the image of each of these homomorphisms
is equal to the kernel of the succeeding one.) In practice, this is often
used to compute H r ( φ f ) in terms of Hr(φ' ', K) and Hr(φ'κ).

These constructions are of great interest for our program of computing
Hl(φ') for homomorphisms of G arising from unitary representations
since, as we will see, Hl(φr, K) is more readily computable.

For example, suppose that

G - K θ P , with [K,P]cP, [P,P]CK,

i.e., K is a symmetric subalgebra of G.
Then, we have, for ωζZ1(φ'9K)9 X ζ K, Z(ω) = 0 = X J dω +

+ d(X Jω) = 0 hence

[y(Z),ω(Γ)] = co([Z, 7]) for Z ζ K , 7 ζ P . (3.2)

Thus, the set of operators ω (P) transforms under φ (K) like the representa-
tion of Ad K in P. The cocycle condition is now

ω([X,7])=[φ(X),ω(7)]-[φ(7),ω(X) \ = 0, for Z, ΓζP.(3 .3)

As we shall see, at least for G = SL(29 R), (3.2) and (3.3) seem to deter-
mine if1 (9?, K) by purely algebraic means.

As we have seen, an ω ζ Zl(φ') induces a mapping of Z7(G) -> ί7(L).
Suppose that L is a Lie algebra of skew-Hermitian operators on a Hubert
space H, and that φ (G) is an irreducible family of operators on H. We
constructed a homomorphism H1 (φ') ~> Rl by choosing a basis Al9 . . . , Δl

of Casimir operators for G, proving that for ω ξ Z 1 ( φ / ) , ω(A1), . . . , co(At)
are multiples ibl9 . . .,ίbl of the identity operator in H, and mapping
the cohomology class determined by ω into (bl9 . . . , δz) ζ R

l. We would
like to get some idea of how to compute the image in Rl of H1(φ'9'K).
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Suppose that HQ is a subspace of H invariant and irreducible under
the action of φ(K), such that all of H can be built up by applying to
H0 polynomials in the operators φ (P). We may ask: when do two Casimir
operators A1 and A2 of G give the same multiple of the identity in H ?
Obviously, this is so if and only if φ(Δ1) and φ(A2) have the same value
in HQ. Let us look at the simplest case, namely we suppose that

φ(K)H0 = 0. (3.4)

(If K is a maximal compact subalgebra of a semisimple G, these are what
HELGASON [2] calls representations of class 1. They are also sometimes
known as spherical representations, since they are the representations
whose matrix elements are the' 'spherical functions" in the sense of CARTAN
and GELFAND.) Then, clearly, φ(A1) and φ(A2) will be the same if
Al — A 2 belongs to the left ideal £7(G)K generated by K. Notice, how-
ever, that if a Casimir operator A in t/(G) belongs to ί/(G)K, and if
ωζZ1(φ'9 K) then

ω(J) = 0.

For, we know that ω (A) is a multiple of the identity on H. To prove it is
zero, it suffices to show that it is zero in H0. However, if

A = A[A'Z, with Λί£l7(G),4;£Z7(K),
then

ω = ω(Δ{) φ(A'2) + φ(A{) ω(Δ'ώ = ω(Δ') φ(Δ'£ since ω(Δ^ = 0 .

Then,
ω (A) (H0) = 0, since φ(A'2)HQ = 0 .

This suggests that we choose (if possible) our basic Casimir operators
zJ1? . . ., A i so that Am+1, . . ., Δl is a basis for the Casimir operators in
Ϊ7(G) K. Then, we might conjecture that the mapping Hl(φ', K) -> Em

that assigns (bv . . ., bm) ζ Em to ω ξ Z 1 ( φ f

t K) is one-one. (At least for
certain symmetric spaces, one can prove that m = rank of the symmetric
space Θ/K = dimension of maximal Abelian subalgebra of P.)

4. Computation for SL (2? R)

Now suppose that G is the Lie algebra of 8L(29 R), i.e., G is generated
by elements X, Y, Z with:

[Z,Z]= Y; [Z,Y]=-X

[X, Y] = -Z.

Suppose that φ is an irreducible representation of G by skew-Hermitian
operators on a Hubert space H, and that L is the Lie algebra of skew-
Hermitian operators on H. Define
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Then
[Z,X-] = — iX~ . (4.1)

Let K be spanned by Z, P by X and 7. Notice that φ (X+) and φ (X~)
are Hermitian ad joints of each other.

Suppose that ω ξ Z1(φf, K). We will compute ω(X) and ω(Y) using
(3.2) and (3.3). Notice that it suffices to compute ω(X+) and ω(X~),
which are Hermitian adjoints of each other.

We will proceed, as customary, by diagonalizing the operator φ(Z).
(Since Z generates a compact subgroup of tSL(2, R), φ(Z) has discrete
eigenvalues. It can be proved that these eigenvalues are simple and, with
proper normalization, are integers.) There are two cases: either the
eigenvalues of φ(Z) from go — σo to σo, or they are bounded in one
direction. We will work with the first case for the moment. Suppose then

oo

that H is written as a direct sum £ Hr of one -dimensional subspaces,
γ — — oo

each Hr generated by a single element ψr of norm one, with

φ(Z)ψr = ίrψr.

(4.1) shows that φ(X+) and φ(X~) are creation and annihilation opera-
tors, sending Hτ into Hτ+1 and Hr~~l, respectively. Suppose, say, that:

φ(X+)ψr= ocrψr+1

(α* denotes the complex conjugate of α.) Similarly,

ω(X+)ψr= βrψτ+l

ω(Z-)vv=#-ιVr-ι-

The cocycle condition is :

or

α,-!/?*-!- j8?αr = ** βf- βr-ι*f-ι

Now
X+X- = —X* —Y* +

where Δ = X2 + Y2 — Z*is the Casimir operator of G. Then,

— ω(Δ) = ω(X+X~) = ω(X+) φ(X~) + φ(X+) ω(Σ~) .

We want to show that ω (A ) determines the cohomology class in H1 (φf, K)
to which ω belongs. Suppose then that ω(A) = 0. Then

0=/? r _ 1 α _ 1 +α r _ 1 /?*_!. (4.3)

We want to show that
ω = dA ,
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where A is a skew-Hermitian operator on H. The condition ω(Z) = 0
forces

hence A maps Hr into Hr. Say, that Aψr = ίarψr.

ω(X+)=[φ(X+),A]

ω(X~) = [φ(X~), A] .

Since the second of these relations follows from the first on taking
ad joints, we can solve the first, which takes the form:

βr = iarar — iar+locr (4.4)

which can be looked on now as a set of equations for ar. Notice first that
(4.4) implies (4.3) :

α?/? rH^la(i«r--<«r-ι) (4.5)

which implies (4.3). Conversely, (4.5) can be solved for ar by recurrence.
(4.3) then guarantees that the aτ are real numbers.

Clearly, the same argument applies in case the spectrum of φ(Z) is
bounded below. We have an additional fact here however: ω(A) is
always zero. For, there is then an element ψ of H which is annihilated by

φ(X~) and ω(X~). Thus,

Since φ (A) is a scalar operator, it is zero. This is the cohomological version
of the fact that the representations of this form are part of the ' 'discrete
series", and cannot be deformed continuously. This should give us a way
of making precise what is meant by "discrete series" in the case of more
complicated groups.

5. Analytically continuing Lie algebra structures and representations
together

So far, we have been considering continuation of representations and
Lie algebra structures separately. An understanding of the combination
of the two ideas is essential for an understanding of the Gell-Mann
formula, which is just a particular case. Let us show this in the case of
SL(29 R), based on the treatment in [4].

Let us start off with the Lie algebra of the group of rigid motions in
the plane, generated by elements Z, X', Y' satisfying:

[£,X']= Γ'; [JZ, Γ'] = -Z'
(5.1)

[Xf, Γ'] = 0 .

Suppose an irreducible representation of this algebra by skew-Hermitian
operators on a Hubert space H is given. The operator X' 2 + 7' 2 is
a Casimer operator of this algebra : let us normalize so that Xf 2 -f Y'2 = I.
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Form operators
Xλ= ll2ί[Z*,X'] + λX'

ΓA=l/2i[Z», Y+] + λY

zλ = z.
Then, as was shown in [4],

[Xa, Γλ] = -Z

[Z, Xa] = Ύλ

[Z, Tλ] = -XA

these operators (Xλ, Yχ, Z) form a representation of the Lie algebra of
SL(2,E).

We now want to investigate more precisely what happens as λ-»oo.
Let us set ε = I j γ . Define

φ.(X') = Iβei[Z*, X'] + X' = εXλ

<pe(Y') = εYλ (5.2)

φ.(Z') = Z.
Then,

[Z,φt(7') ]=-φ.(X').

These formulas can be interpreted as follows :
Let G be the vector space spanned by the elements X', Y f , Z. For each

ε, define a Lie algebra structure as [ , ]e on G by the following formulas :

(Z, x'i = Y', [Z, Y'l = x' .
Define φε as above. Then, for each ε, the above formulas define φε as a
linear representation of the [,]ε Lie algebra. There is no longer any
singularity at ε = 0 or λ = oo. Thus, passing from the "Inonu-Wigner"
picture with which we began (where the Lie algebra structure remains
fixed, and the representation is continued and the basis of the algebra
is changed simultaneously) to the "Kodaira-Speneer" picture (where the
Lie algebra and representation are continued simultaneously) is an
enormous aid to a proper mathematical understanding of the situation.

Thus, we can look at the Gell-Mann formula (5.1) in the following
way: start off with the Lie algebra defined by (5.1), which is the Lie
algebra of the group of rigid motions of the plane. Define an analytic
continuation of the Lie algebra structure by the formulas (5.3). This
continuation is nonrigid in the Kodaira-Speneer sense, since for ε > 0
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the algebra is not isomorphic to the one with which we started at ε = 0.
The Gell-Mann formula itself, i.e., (5.2), now provides an analytic con-
tinuation of the representation of the [ , ]0 structure that is given, each
representation for ε being a representation of the [,]e structure.

Let us now look for the interpretation of this in terms of cohomology.
Let us change notations to conform with our earlier work. Suppose G and
L are Lie algebras, with the bracket in G given by [X, Y], and suppose
φ is a homomorphism G->L. Again, let φf be the homomorphism for G
into the linear transformations on L given by :

φ ' ( X ) ( Z ) = [ φ ( X ) , Z ] for XζG,Zζl.

Suppose a one- parameter family

(Z, Y)^[X, FU

of Lie algebra structures is given on G, reducing to the given one for
λ — 0. Let γ : G -> (linear maps on G) be the adjoint representation of the
λ = 0 Lie algebra on G, i.e.,

y(Z)(Γ)=[Z, Γ] for X, Γ ξ G .

Then, we know that the formula :

ω(X, Γ)=~[Z,Γ],|A = 0

defines ω as a two-cocycle relative to y, i.e., on element in Z2(y), whose
cohomology class in H2(γ) measures the "nonisomorphism" of the
structure at γ = 0 and that for small, but nonzero y.

Suppose further that, for each A, φλ is a linear mapping of G -> L
reducing to φ for λ = 0, such that :

φλ([Σ, YM = [φλ(X)>φλ(Y)] for Z, 7 ζ G . (5.4)

Define φ : G -> L by the formula

θ is a one-cochain in Cl(φ'). However, it is not a cocycle. In fact, let us
differentiate (5.4) and set λ — 0:

Θ([X, Y]) + φ(ω(X, Γ)) = [ Θ ( X ) , φ(Ύ)} + [φ(X), Θ(Y)] .

This gives the formula :
φ(ω)^dθ (5.5)

where φ(ω) is the two-chain in C2(φ') given by

φ(ω)(X,Y)=φ(ω(X, Γ)) .

Thus, ω considered as a cocycle in (72(y) is not necessarily a coboundary,
but its image under φ, 99 (ω), is a coboundary, and the element φ in
C f l(y) is the first term in the analytic continuation of φ.
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Now, this does not quite reflect the situation in the case developed
above; ω defined as the first derivative is zero, since the parameter λ
occurs to different order in the continuation of the representation and the
Lie algebra structure. Suppose then that

0 = o for x, y ς e .
Define now

a>Λ(Σ, Y)= £f [Σ, Γ]»|A - o for Σ, Y ζ G .

Since the first derivations are zero, it is readily seen that ω2 so defined
also satisfies the cocycle condition. Then,

dθ = 0 ,
i.e., θ itself is a cocycle. Let

d?
Θ2 (X) = -^ φλ (X) A = o

Differentiating (5.4) twice gives now:

θ2([X,Y])+ψω(X, T)

= [Θ2(X), φ ( Y ) ] + [ φ ( X ) , ΘΛ(T)

This can be rewritten as

-dθ2(X, Y) + φω(X, Y) = 2[Θ1(X),

Now, the right-hand side obviously is a two- cocycle in C2(φ') since the
left-hand side is such a cocycle. Let us denote this cocycle by

ft, ΘJ .

(This operation is discussed in the review article by NIJENHUIS and
RICHARDSON [6]. It turns out to depend only on the cohomology class
determined by θα in Hl(φ')\ Then, we can write the relation as:

i.e., the cohomology class determined by φω in Hl(φ') can be written as
a "square" of an element of Hλ(φ').

In summary, we have shown that there are interesting relations
between the deformation theory and the analytic continuation problems
that are of importance for the application of group-theoretical ideas to
elementary particle physics. Before proceeding further with the general
theory (in a later paper) it is appropriate to work out a further example
that is of the greatest importance for physics.

6. Contraction of the Poineare group into the Galilean group

Let T be a vector space over the real numbers, considered as an
Abelian Lie algebra. (One might think of T as the Lie algebra of the
group of space-time translations.) Denote elements of T by such letters
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as X, Γ, etc. Suppose a (X, Y) -> Q (X, Y) is a nondegenerate, symmetric
bilinear form in T. Let K (Q) be the Lie algebra (under commutator) of
all linear transformations A : T -> T that satisfy :

Thus, each such A is the infinitesimal generator of a one -parameter group
of linear transformations on T that preserve the form Q ( , ) . Form the
Lie algebra G(Q) as the semidirect sum of K(Q) and T, i.e., as a vector
space G (Q) is the direct sum of K (Q) and T with the bracket defined as
follows :

[X, 7] - 0 for Z, Y ζ T

[A^A^^A^-A^ for

for .̂

Now suppose Qλ is a one-parameter family of such bilinear forms,
reducing to the given one at λ — 0. We can, of course, form Cr (Qλ) for
every value of λ. In what sense can this be considered an analytic con-
tinuation of Gr(Q), and how can we investigate the limit as λ -> oo ?

Since Qλ is nondegenerate, for each λ there is a linear transformation
Bλ : T -> T with nonzero determinant such that

Qλ(X, Y) = Q(BλX, Y) for X, Γ ζ T .
Thus,

&(Z, Γ) = &(Γ, Z) forces Q(BZ, Y) = Q(£Λ 7, Z) = Q(T, BλX)

i.e., jBf = Bλ, where Bf denotes the adjoint of Bλ with respect to the
form Q.

Suppose A £ K (Qλ) :

or
0 = Q(BλAX, Y) + Q(BλX, AY) = Q(BλAX, Y) + Q(X, BλA Y)

Hence,

Thus, there is a map A -> BλA = αA(4) from K(QΛ) to ~K(Q) that is no<
a Lie algebra isomorphism. Thus, we can define a one-parameter family
[ , ]λ of Lie algebra structures on G (Q) by carrying over the Lie algebra
structure on 6 (Qλ) via this isomorphism :

[Z, Γ]Λ = 0 for Z, Γ ζ T

[A,T]l=φ^A>Y=Br1AT for ^ζK(ρ),ZζT

μi; Λ2]λ = αΛ [αΓM1; αΓ1^] (6.1)
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Now, we can pass to the limit as λ -> oo: If

5 = Urn Bγl ,

the limiting algebra has the structure

[A,!]«, = 0

[A, 7L = BA Y for A ζ K(Q), Γ ζ T (6.2)

Further, if 5J"1 is analytic Yλ in the neighborhood of infinite, then the
formulas (6.1) show that the algebra for large A is a perfectly smooth
deformation in the Kodaira-Spencer sense of the oo-algebra, which we
denote by G^.

The structure of G^ can be exhibited quite nicely if 5 is a projection
operator 52 = 5 as it is for the case where G (Q) is the Poincare group,
and GOO iβ ̂ ne Galilean group. (There, Bλ is the diagonal matrix

r o
A = c2; c = velocity of light) and 5 is the matrix

r o
Then

T = 5Tθ (I— 5)T,

Q(5T, (/ — 5)T) = Q(T, 5(1— 5)T) - 0

(since J52 = 5, and 5=
Let

4 = 1— 25.

Then, s2 = / + 452 — 45 - /.

Q(5Z,57) = Q(Z,^7) = Q(X, 7).

Thus, 5 is an automorphism of T whose square is the identity which
preserves the form Q : s defines a symmetric automorphism of K (Q) by
the formula :

for

Let L be the set of all AζK(Q) such that

8(A) = A .

Let P be the set of all A ζ K(Q) such that



Analytic Continuation of Group Representations. Ill 89

Then

, [L,L]CL, [L,P]CP, [P,P]cL.

i.e., L is a symmetric subalgebra of K($).
Now, s(A) = A if (I — 2B)A = A(I—2B), i.e., BA^AB. s(A)

= —A if (I — 2B)A = A(2B — I), or A — 2BA = 2AB — A, or
BA + A B = A. Suppose, now that, as for the case where (χ(Q) is the
Poincare group,

Then, if Y spans (/— £)T, Aζl, AY = aY, and Q(A7,7) = 0,
forcing α = 0. (Otherwise, Q(Y, Y) = 0, and, since Q(7, BT) = 0,
Q(Y, T) = 0 forcing 7 — 0 since the form Q is nondegenerate.)

Thus, BA = A = A B for A ζ L. Hence

[A,7]00 = A7=[A,7] for AζL, F ζ T

= [A19A^\ for ^ξL,^2

Thus the adjoint action of L on the [, j^ algebra is precisely the same as
the adjoint action of L on G(Q).

Let us continue to work out the rest of the structure of the [ , ]„,
algebra :

[A, 7]̂  = BAYζ BΎ if Aζl,YζT.

For 4^ ̂ 2 ζ P,

since [̂ 41? ^42] ζ L.
We can sum this up as follows :
Theorem 6.1. The Lie algebra [, ]«, has the following structure: it is the

semidirect sum of the semisimple subalgebra L and the solvable ideal P + T.
P + T in turn is the semidirect sum of the Abelian ideal T and the Abelian
subalgebra P. Its commutator algebra, [P + T, P + T] is just BT.

All this applies to the case where (χ(Q) is the Lie algebra of the
Poincare group and where the [ , ]«, algebra is that of the Galilean group.
Then, L is just SO (3, E). As L. MICHEL has pointed out, the fact that the
complement of L in the Galilean algebra is an ideal, while it is not in the
Poincare algebra, is the group theoretical fact responsible for making
the SZ7(6) theory of GUBSEY, RADICATI and SAKITA, Galilean invariant
while making the explanation, if any, of its relativistic invariance more
complicated and, up to the present, unsolved.
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7. Analytic continuation of the representations of the Poincare group into
those of the Galilean group

We have just seen that the Lie algebra structure of the Poincare group
can be deformed smoothly (in the Kodaira- Spencer sense) into the Lie
algebra of the Galilean group. The next step on the program should be
to see if the unitary representations can be so deformed. This involves an
interesting new point, since, as is well known [1], the physically inter-
esting representations of the Galilean group are only representations up to
a factor, i.e., are true representations of a central extension of the Galilean
group. To understand this well, before we consider more general situa-
tions, let us consider the simplest possible case, namely, of the Poincare
group in one-space dimension, x, and one-time dimension, t. The homo-
generous part of the group, i.e., the Lorentz subgroup, is then that which
leaves invariant the form

c2*2 — x*. (7.1)

The Lorentz subgroup is then parameterized by a coordinate θ, with
transformations given by

x -> x cosh θ + ct sinh θ

x (7.2)
t -> — sinh θ + t cosh θ .c

Thus, we have, for each value of c, a group of transformations Gc acting
on (x, t) space. In this picture, the Galilean group is defined as the
"limit" (as explained in [3]) of these groups as c -> oo.

Let us try to construct linear representations of each of these groups.
This can be done most readily by letting all these homogeneous groups
act on the "velocity space"1 corresponding to the space-time space

(X, t).
X

Let v = — . Then, by the transformations (7.2) v is transformed

according to the rule.

xcoshθ -f ct sinhθ v cosh 6 + c sinh θ

— sinh θ -f * cosh θ — sinh θ -f- cosh θ
c c

(7.3)

Let us deduce the infinitesimal transformation X on v-space obtained by
differentiating (7.3) with respect to θ at θ = 0:

or

_ 7dv
1 From a more general point of view, the "velocity space" is the projective

space associated with the vector space (x, t).
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By passing to this v quotient space, the translation part of the Poincare
group has been lost. It can be regained by constructing functions on
v-spaee that transform under the one-parameter group (7.3) by a linear
representation of the Lorentz group; as is well-known, the relativistic
expressions for momentum and energy do precisely this :

(7 4)

1/1 - v*
Now,

mvc _ v -ft,= ~

Let H be now the space of square -integrable complex-valued
functions v->ψ(v) on v-space, define X, E and p as skew-Hermitian
operators on H as follows :

E(ψ] = iEψ

Thus, the commutation relations for these operators are

[X, E] = cp

[E, p] = 0 ,
Then

IE, 3>] = 0 .

We recognize that (7.5) gives us a one-parameter family of Lie algebras

that depends analytically on— . The limiting algebra at c = oo is just

7 Commun. math. Phys., Vol. 3
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X 1
that of the Galilean group. — is analytic in — , and converges to the

operator -r- , which is just the operator of constant acceleration with

respect to the Galilean group. However, the operator E is not analytic in

— . The physical interpretation suggests a way to proceed. Let us "re-c
normalize" E by subtracting off a constant that "becomes infinite" at
c = oo. We interpret this in the following group-theoretic way: enlarge
the Lie algebra defined by (7.5) by adding an element 1 that commutes
with all the other operators, i.e., the enlarged algebra is the direct sum
with a one-dimensional Abelian subalgebra. Define :

W = E — mc2l .

E' is now analytic in — at c = oo. In terms of the basis (Σ/c, E',p,l) this

algebra becomes :

2E = (E'+mc*) = - + m. (7.6)

The limiting algebra as c -> oo now exists, and is by its construction, the

representation depending on c is analytic in — at c = 0. However, the

limiting algebra at c = 0 is not that of the Galilean group, but a central
extension of it. This explains why the "interesting" physical representa-
tions of the Galilean group are not true representations but representa-
tions only up to a factor.

8. The Gell-Mann formula for contraction of the Poincare to the Galilean
group

Now, let us ask whether there is a formula representing the Lie
algebra of the Poincare group as functions of the generators of the Lie
algebra of the central extension of the Galilean group constructed in the
last section. (For simplicity, we continue to work with the groups
corresponding to one-space dimension.) We suppose then that X", E" ,
p" and 1 are the generators of a Lie algebra, with the structure relations.

[Σ", E"] = p", [X", p"} = 1

[1, Σ"] = 0 = [E", p"] = [1, E"] = [I, p"] . (8.1)

(For simplicity, we also suppose m = 1). Define

Σ = cX"

E = . °3 (8.2)
}/c2 — 2E" V '

cp"
ΊO = — — .
^ 1/c2— 2E"



Analytic Continuation of Group Representations. Ill 93

Suppose we are given an irreducible representation of the algebra
elements defined by the (X", E", p", 1) satisfying (8.1). Looking at the
computations in Section 7, we see that the operators defined by (8.2) will
satisfy the structure relations of the Poincare algebra providing that

E" = 1/2 p"*.

However, [X"', W — l/2p"2] = p" — p" 1, and 1 is in the center of
the algebra defined by (8.1); if the representations is irreducible, it is a
multiple of the identity, which we can normalize to be the identity
operator. Thus, E"—1/2p"2 is a multiple of the identity, since it
commutes with all generators of the algebra. Notice that a scalar multiple
of the identity can be added to E" without affecting the structure
relations (8.1). Thus, we can normalize so that

#"-γp"2 = 0,

at which point we see that (8.2) is a "Gell-Mann formula" which "ex-
pands" a representation of this central extension of the Galilean group
to a representation of a central extension of the Poincare algebra which,
however, is isomorphic to a direct sum of the "true" Poincare algebra
and a one-dimensional center, since the Poincare algebra has no other
kind of central extensions. (This property of the Poincare algebra is
well known to the experts, although it is hard to find a direct, simple
proof in the literature. Since we have developed in [4] Lie algebra
cohomology theory independently of the much more complicated and
general literature on homological algebra, we will now, for the reader's
convenience, give an exposition of the cohomology theory of Abelian
extensions of Lie algebras.)

9. The connection between Lie algebra cohomology and extensions by an
Abelian ideal

Let 99 be a homomorphism of a Lie algebra G onto a Lie algebra P,
with kernel K, which is, of course, an ideal of G. In addition, we suppose
that K is Abelian. Let π be any linear map P -> G such that

φπ(X) = X for Z ζ P , i.e., φπ = 1 , (9.1)

where 1 is interpreted as the identity map.
For X, Y ζ P, define

ωn(Σ, Y) = π[X, Y] — [πX, π Y] . (9.2)

Thus, ωπ is identically zero if and only if π is a homomorphism. If this is
the case, then G is the semidirect product of K and the subalgebra
π(P). The aim of the cohomology theory is to show when a new π' can
be chosen so that ωπ> — 0 by modifying π in a certain way. Note first
7*
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that

φωπ(X, Y) = 0, i.e., ωπ(P, P)CK. (9.3)

Using the Jacobi identity gives:

ωβ(Z, [Γ,Z]) = π[Z, [Γ,Z]]-[πZ,π[Γ,Z]]

= π[[Z, Y ] , Z ] + π[Y, [Z,Z]]-[πZ,π[Γ,Z]]

= ωπ([X, Y], Z]) + [π[X, Y], πZ] ( '

+ ωΠ(Y,[X,Z]+ [πY,π[X,Z]]-[πX,π[Y,Z]].
Further,

[π[Z, Γ], nZί\ = [[πZ, π 7], πZ] + [ωπ(Z, 7), πZ].
Hence

ωB(Z, [Γ, 2]) - ωπ([Z, 7], Z) - ωn(Y, [X, Z])

= [π[Z, Γ],πZ]+ [πY,π[X,Z]]-[πX,π[Y,Z]] (9.5)

= [ωβ(Z, Γ),πZ]-[ω,.(Z,Z),πΓ] + [ωπ(7,Z), πZ].

We would like to interpret this as a condition dωπ = 0, where ωπ is taken
as a two-cochain of P defined by some representation of φ' of P by linear
transformations on K. (9.5) suggests that we try to do this by defining

φ'(X)(W)=[π(X),W] for W ζ K, X ζ P .

Let us see under what conditions this is successful.

φ'(\X, Γ])=[π([Z, Γ)], TΓ]

= [ωπ(Z, Γ)+[πZ,«Γ], Tf]

= [ω.ίZ, 7) ff ] + [πZ, [π, (7)], Tf ]

-[πY,[πX,W]].

Thus, 9>'([Z, 7]) will equal [φ'(X), φ'(Y)] if and only if

[ωπ(X, Y), K] = 0 .

ince ωπ(X, 7) ζ K, the simplest hypothesis that assures this is that

[K, K] = 0 . (9.6)

Let us then assume (9.6). Further, we see that as our notation indicates,

φ': P -+ (linear transformations on K) is independent of π.
(Proof: if π' is another map P -> Gr with φπ' = 1, then

φ(π — π;) = 0, i.e., (π — π') (P) C# ,
hence

φ'(X)(W)=[π(X),W]=[π'(X),W] for W ξ K, X ζ P) .

Having interpreted ωπ as an element of Z2(φ'), i.e., as a two-cocycle
relative to the representation φ', let us look at the condition that it be a

coboundary. Suppose that

ωπ = dθ where θ is a map: P -> K .
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Then,
ω,(Σ, Y) = φ'(Σ) φ(Y)-φ'(Y) φ(X)-φ([X, Y] ,

π[Σ, γ-\-[πΣ,πY]=[π(Σ),φ(Y) ]-lπ(Y),φ(Σ)}-θ([Σ, Y]) ,

or
( π + θ ) ( [ X , Y ] ) = [ π + φ ) ( X ) , ( π + φ ) ( Y ) ] for X, Y ζ P ,

i.e., π + φ is a homomorpMsm P -> G. Reversing the steps proves that
Theorem 9.1. // K is abelian, the algebra G is a semidirect product of the

ideal K and a subalgebra isomorphic to P if and only if the cohomology class
determined by ωπ in H2(φ') is zero.

Suppose now that conversely we are given a Lie algebra P a represen-
tation φ' of P by linear transformations on an Abelian Lie algebra K and
an element ω ζ Z2(φ'). We construct an extension of G whose kernel is
K in the following way.

As a vector space G is isomorphic to the direct sum

K θ P :

The bracket within K is given by their given Lie algebra structure

[ X y Y ] = φ ' ( X ) ( Y ) for X ζ P, Y ζ K

[X, Y] as computed in G

= [X, Y] as computed in P -f ω (X, Y) .

In this way one proves the well-known result that the extensions of P
with kernel K are in one-one correspondence with H 2 ( φ f ) .

Suppose now that we consider extensions for which [K, G] = 0, i.e.,
K is in the center of G. They are called central extensions. Clearly, then,
the representation φ' is the representation which assigns the zero
operator to each element of P. Let us now compute several of these
cohomology groups in the case where K is one-dimensional, i.e., let us
classify in certain cases of P the possible central extensions with a one-
dimensional center. (This is the case of most importance for applications
to quantum mechanics for there one is interested in projective unitary
representations of the Lie groups P whose Lie algebra is P, i.e., assign-
ments of unitary operators to elements of P that are not true representa-
tions, but such that the actions of P on the "probabilities" (which are
the absolute value squared of the "amplitudes") is a true representation).

Suppose first that P is, as for the Poincare group, a semidirect sum
L θ T of an Abelian ideal T and a semisimple subalgebra L such that the
action of L on T is irreducible. Let φ be the trivial representation of P
on the vector space of the real numbers R. For r = 1, 2, . . ., there is
then a subspace W(φ) £ Z(φ) such that

Z'(φ) = Wr(φ) φ dCr+l(φ) (9.7)

X(Wr(φ))cWr(φ) for all Z ζ L .
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Suppose r = 2, and ω ξ JF2(φ), Z ζ L. Then

0 = X(ω) = eZ(Z J ω) ,
hence :

-Σ Jω= θχ + dθ'x

where θz ζ ΪP1^), and ̂  ζ <7°(<p).
But, d(C°(φ)) = 0, since 99 is the trivial representation of P. Thus for

X, ΓζL,
Σ(T Jω)= [X, Γ] Jω,

or

0

hence

or
Z J ω = 0 for Z ζ L .

Thus, ω is determined by its restriction to T. But, ω (T, T) is then a real-
valued skew- symmetric form on T that is invariant under the action of L.
If, for example, P is the Poincare algebra, there is no such nonzero form.
Hence, H*(φ) = 0 and we have proved: The Poincare Lie algebra has no
nontrίvίal central extensions.

Now, let us turn to the situation that includes the Galilean group.
Suppose again that P = L Θ T, with

[T,T] = 0, [L, T]cT.
However, suppose that

L = L'φIΛ T - T ' θ T " ,
with

[I/, L'] c L', [L', L"] c L", [L', T'] - 0

[L / ,T / / ]cT / / ,dimT / + 1

[L", L"] - 0

[IΛ T"]cT"

L' is semisimple.

Since L' is semisimple, subspaces Wr(φ) exist satisfying (9.7) such
that

X(ω) = 0 for ωζWr(φ)yXζV .

Just as for the Poincare group, one then proves that

X J ω = 0 for X ζ I/ .

Suppose further that AdL' acting on L" and T" is irreducible and the
representations are equivalent, i.e., there is a vector space isomorphism
α : L" -* T" such that

[Z,α(Γ)] = α([Z, 7]) for ZζL', Γ ζ L " .
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Further, suppose that L" and T" admit no nonzero real-valued skew-
symmetric bilinear forms that are invariant under AdL', but that they
do admit an invariant symmetric bilinear form B ( > ) . Then, we have

ω(L^L") = 0=ω(T",T")
(9.8)

0 = ω(T',P) = 0.
Then ω must satisfy

ω(Z, 7) - αB(α(Z), 7) for X ζ L", 7 ξ T" (9.9)

where α is a real constant.
This shows that dimH2(φ) ^ 1. Conversely, we must show that (9.8)

and (9.9) define a nonzero element of H2(φ). This can be done by a
straightforward calculation that we leave to the reader. The result is
then:

Up to a normalization, there is but one nontrivial central extension of the

Galilean algebra.
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