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Abstract. The paper deals with the general background connecting the ideas of
analytic continuation and contraction of Lie algebras and their representations. A
connection is also established between the Kodaira-Spencer deformation theory
and the theory of cohomology of Lie algebras.

1. Introduction

In this paper, we follow up some relations discovered in [1] between
the contraction of a Lie algebra and the various "analytic continuations"
possible for its skew-Hermitian representations. Consider the Lie algebra
of SL(2, R). One contraction leads to the group of rigid motions in the
plane. Conversely, through an ί'expansion" process (using the "Gell-
Mann formula") a representation of the latter group gives a one para-
meter family of representations of SL(2, R), which is just the familiar
"continuous series". Another contraction leads to the Heisenberg Lie
algebra, i.e. to that generated by the Heisenberg commutation relations
[p, q] = 1, 0 = [I, p] = [1, #]. DOTHAN has pointed out that there is an
opposite "expansion" process. (It will be presented in this paper.) It has
a new feature: Although the formulas depend continuously on the para-
meter, only for discrete values of this parameter do the formulas give
genuine non-singular operators. The corresponding series of representa-
tions of SL(2, R) is the "discrete series", while the associated "physics"
is that of the one dimensional harmonic oscillator.

We hope that ultimately these facts will be generalized to the other
semisimple groups. The intuitive geometric picture at which we are
aiming is that of the equivalence classes of unitary representations of a
given Lie group forming a non-compact, finite dimensional space, with
the representations of the various contractions of the given group lying
on the boundary as "points at infinity".

In working on this program, it will be useful to have the general ideas
of "deformation" of Lie algebras and their representations at hand. This
fits into a much more general pattern of mathematical thought, first
created by K. KODAIEA and D. C. SPENCER, and carried further by
many others, e.g., E. CALABI, M. GERSTENHABEB, P. GRIFFITHS, M.
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KUBANISHI, A. NIJENHUIS and R. RICHARDSON, in various algebraic
and geometric directions. (A review paper by NIJENHUIS and RICHAKD-
SON [3] is most closely relevant for our work and we refer there for further
references.) One interesting feature of the theory is that the idea of
cohomology of Lie algebras appears very naturally. Since the available
mathematical literature on this is rather impenetrable to the non-
specialist, we will give in this paper an independent treatment of this
theory, together with some indications how it applies to the theory of
deformations and show that the deformation theory is related to the
basic problems in group representation theory.

This work owes much to conversations with N. BURGOYNE, Y. DOTHAN,
M. GELL-MANN and D. C. SPENCER, and I would like to thank them.

2. Analytic continuations of Lie algebras and their representations

Let G be a Lie algebra over the reals numbers. Let us denote elements
of G by such letters as X, Y, etc., and denote the given Lie algebra
bracket by [X, Y]. An analytic continuation or deformation of this Lie
algebra is a one-parameter1 family of Lie algebra structures on the same
underlying vector spaces as G, reducing to the given one at λ = 0. We
denote the bracket in the Lie algebra parameterized by λ as:

[Σ, ΪT*
A Lie algebra structure (X, Y) -> [X, Y]^ is the limit of the deforma-
tion if:

lim [X, Y]λ = [X, ΓL. for X, Y £ G . (2.1)
λ-»oo

(We will not try to keep track of the subtleties involved in the topology
if G is infinite dimensional: Let us say that we are working explicitly in
the finite dimensional case but keep in mind that some of the ideas
should apply to the infinite dimensional case also.)

Now, we want to describe how deformation of representations is
defined when such a deformation of Lie algebras is given. Let L be
another Lie algebra, and let φ be a homomorphism of the original Lie
algebra structure on G into L, i.e.

φ([X, Y]) = [φ(X), φ(Y)] for X, Y ζ G .

A deformation on analytic continuation of φ is a one parameter family
λ -> ψλ of linear maps: G ~> L, such that, for each A, φ^ is a homo-
morphism of the λ-ih Lie algebra structure on G into that on L, i.e.

&(&, ΓU = [φλ(X), φλ(7)] for Σ,YίG,

which reduces to φ at λ = 0.
1 For simplicity in stating the ideas, we are considering deformations varying

smoothly (i.e. with all necessary derivatives) with a real parameter λ. Of course,
many of the ideas carry over to more general parameter spaces.
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The limit map φ^ is defined as :

φas>(X) = lim φλ(Σ) for Z ζ G .
λ—>00

It is clearly a homomorphism of the [,^-Lie algebra structure defined
by (2.1) into L.

The Ϊnonu-Segal-Wigner ideas of " contraction" of Lie algebras and
representations is a special case: Suppose that the [,]rLie algebra is
isomorphic to the original one, i.e. there is, for each λ, an invertible linear
map Aλ : G -> G such that

[X, Y]λ = A^[AλX,AλY].
Then

[X, Γk = lim JΓ1 [AλX, A, Y] (2.2)
A — >oo

Let φ'λ — φλA^1. Then

φ'λ[X97]=φλAϊ*[X,Y]

X9 AλA^ 7]

i.e. λ -> 99^ is a one-parameter family of homomorphisms of the original
Lie algebra structure on G into L. Conversely if the deformation φ'λ is
given as a one -parameter family of homomorphisms of the given Lie
algebra structure on G, defining

provides a one-parameter family of homomorphisms of the λ-ih structure
on G. Thus, we may consider φ^ defined as lim φ[Aλ: It may converge,

Λ->oo

even though the limit Lie algebra f,]^ does not: Thus, one might be
able at least in principle, to "contract" a representation of a Lie algebra
without being able to contract the Lie algebra itself. (However, I know
of no such examples.)

Let us look at an example: Take G, with its "original" Lie algebra
structure, as the Lie algebra of SL (2, E). It has a basis given by X, Y, Z,

[Z,X]=Y; [Z,Y] = -X (2.3)

One contraction leads to the Lie algebra of the group of rigid motions in
the plane :
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Then,
[Z,Z]00=Γ; [Z,7 \ga=-X;

[X, ΓL = 0 .

To keep notation from getting unduly complicated, let us denote this
Lie algebra in the following way: It is given by elements Z', X', Yf

satisfying :
[Z',XΊ = Y'; [Z',7'-\ = -Σ' , (2.4)

\X', Y'] = 0 .

Let L be the "complete" universal enveloping algebra of the Lie algebra
defined by (2.4), i.e. the Lie algebra formed by taking formal power
series in its elements. Then, the "Gell-Mann formula" [1] asserts that the
following formulas define a one-parameter family of homomorphisms of

φλ(Z)=Z'; δ* =

Notice now that

converges as λ -> σo to the map

X^X' 7_> 7'; Z-+Z'

which sets up the isomorphism between [ , ]TO and the Lie algebra defined
by (2.4).

Another contraction of interest is that where Gr contracts into the
Heisenberg Lie algebra :

Aλ(Z)=Zlλ; Aλ(X) = Xf]β , Aλ(T) = YR/λ .
Then,

[Z, X\m = 0 = [Z, Y]x

[x, r]« = -z ,
which are the structure relations of the Heisenberg algebra (with the
identifications Z -*1; Y -> p; X -> q).

Now, let L be the Lie algebra of functions / (p, q) of two real variables
p and q, with the Lie algebra structure given by the Poisson bracket:

// i-lL^L-.^Llί.
ih US - dp dq dq dp '
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Now, consider:

It is readily checked that, for every A, this is a homomorphism of G into
L. Obviously, φ'λA converges as λ -> oo to the isomorphism between
[, ]TO and the Heisenberg algebra, generated by 1, p and q.

I owe this construction to Y. DOTHAN. (He has also generalized it to
SU(n, 1)). It is clearly the analog of the "Gell-Mann formula" for this
particular contraction of 0, enabling one to ' 'expand" a representation
of the contracted algebra to a one -parameter family of representations of
the original Lie algebra which has automatically the correct limiting
properties as the parameter goes to infinity. This example leads one to
conjecture that there are many such formulas yet to be discovered by
considering the multitude of possible contractions of a given semisimple
Lie algebra.

3. Cohomology of Lie algebras

We have just seen that there is great interest from the point of view
of representation theory in the problem of knowing in how many
different ways it is possible to ' 'deform" a given Lie algebra or Lie algebra
homomorphism. The Kodair a -Spencer theory, mentioned in the intro-
duction, is designed to do precisely this. There is one feature to our
problem that is new : their theory is designed to study the deformation
of structures in a small neighborhood of the origin of the deformation
parameter, while we are also interested in the limiting behavior as the
deformation parameter goes to infinity. Since there do not as yet seem
to be any systematic techniques for studying this latter problem, it
seems natural to ask what the existing ideas have to offer. We will give a
brief review of this here, presenting a different approach, using the idea
of "Lie derivative". (In the background, is an approach to differential
geometry presented in [2].)

Let G be a Lie algebra, as before, and let F be a vector space. Suppose
φ is a linear representation of G to operators on F, i.e. to each X ζ G is
assigned a linear transformation φ (X) : F -> F, such that

ψ([X,Y])=φ(Σ)φ(7)-φ(7)φ(X) for Σ, Y ζ G .

An r-cochaίn, usually denoted by co, will be a multilinear, skew- symmetric
function (X1} . . . , Xr) -> ω (Xl9 . . . , Xr) from r- tuples of G to elements of
F. We can symbolize this by :



58 B. HERMANN :

The set of all these eochains forms a vector space, that we will denote
by Cτ(φ). We will first define two operations between elements of G
and r- eochains, the inner product and the Lie derivative.

a) If X ζ G, ω £ Cr(φ], (X J ω), the inner product of ω and X, is an
element of Cr~l(φ) which assigns to (Xlt . . ., Xr_ι) the element
ω(X, Xi, . . .,JCr_1), i.e. (X J ω) (XI9 . . ,Xr- ύ = ω(X,Xlt . . ., Xr-ι)-

b) For X ζ G, ω ζCr(φ), X(ω), the Lie derivative of ω by X, is an
element of Cr(φ) defined by:

X(ω) (XI9 . . ., Xr) = φ(X) (ω(Xv . . ., Zr))-

— β> ([Jf, Z J, Z2, . . . , Zr) ----- co (Zu . . . , [X, Zr])

for Zi, . . . , Z r £ G .

(It can be readily verified that this formula really depends skew-sym-
metrically on Z1} . . . , Xr.) A special convention is necessary for
r = 0 : C°(φ) will be defined to be V itself. If v ζ CQ(φ) = V, then

Now, we will define a linear mapping

d5:C7 r(y)-».C* i+1(y)
by induction on r. (d is called the exterior derivative.) If r = 0, v ξ C°(φ),
dv ζCl(φ). As definition,

d v (Z) - 9 (Z) (v) for Z £ G .

Suppose now that c£ is defined for all degrees less than r, and that
ω ζCr(φ). As definition,

dω(Xl9 . . ,Zr+1) =Z!(G>) (Z2? •> ^r+i) — Λ(X1 J ω) (Z2, . . ,Zr+1)

for Z1? . . . , Z r ζ G .

Thus, the three basic operations are related as follows :

Z(ω) = Z _\dω + d(X J ω) for X ζ G, ω ζ Cr(φ) .

Lemma 3.1. For X, Y ζ G, ω ζ Cr(F, φ),

X(YAω)=[X, Y] J ω + ΓJZ(ω).
Proof.

X(Y J ω) (Z^ . . ., Zrβl) = y(Z) (co(7, Z1? . . ., Z^))-

[Z, 7] JωfZj, . . .,Zr_1) = ω([Z, Γ], Zx, . . .,Zr_1)

7 J Z(ω) (Zx, . . ., Zf _!> = Z(ω) (Γ, Zlf . . ., Z,^)

---- ω(Y9Xl9...9[X9Xr_I'\).

This shows explicitly that the formula is true.
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Lemma 3.2. dω so defined depends skew-symmetrically on

Zj, . . ., Xr+ι

Proof. Proceed by induction on r. The induction hypotheses shows
that dω depends skew-symmetrically on X2, . . . , Zr+1. We must verify
that it changes sign under interchange of Xτ and X%. But

d((X1 J ω)) (X2, . . . , Zr+1) = Z,((Z J ω) (X3, ..., Xr+1)

-d(X2_lX1^ω)(Xs,...,Xr+1).
By Lemma 3.1,

ω)) (Z8, . . . , Z,^) = ([Za, ZJ J ω) (Z8, ...,Xr_1) +

+ Xτ J Z2(ω) (Z8, . . . , Xr_ι)

+X2(ω) (X19 Z3, . . ., Xr-i) .

This shows that ίZω depends skew -symmetrically on X1 and X2

Lemma 3.3. For X, Y £ G, ω ζ C"*(<p),

Proof. Proceed by induction on r. Let Z £ G.

Z J [X, 7] (ω) = [Z, Γ] (2 J ω) - [[Z, Γ], Z] J ω

Z J Z Γ(ω) = Z(Z J Γ (ω)) - [X, Z] J Γ(ω)

By induction hypotheses,

Z Ύ(Z J ω) - YX(Z J ω) = [Z, Γ] (2 j ω) .
Thus

2 J ([Z, Γ] (ω) - Z Γ(ω) + ΓZ(co))

] Jβ))-[Γ,[Z,Z]] Jω-

-Y([X,Z]ω)-X([Y,Z]ω) +

which is zero by virtue of the Jacobi identity for G. Since Z is arbitrary,
the lemma is proved. (An rc-cochain is zero if and only if its inner product
with all elements of G is zero.)
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Lemma 3.4. Z(dω) - d(Z(ω)) for ω ζ <7r(G (<?)), X ζ G.
Proof. Again, proof is by induction on r. Let 7 be an element of G.

)=—[Z9 7] Adω + X(Y Adω)

= —[X, Y] J dω + Z(Y(ω) — d(Y J α>))

= -([Z, 7] (ω) -d([Z, Y] J ω)) +

+ XY(ω) — Xd(Y Jω)

, Y] J ω + Y _\X(ω)

- Y Ad(Z(ω)). q.e.d.

Lemma 3.5. ί? dω = 0 for cα ξ (7r((τ, 99).
Proof. Again, induction on r. For Y £ (7

) — rf(Γ Jdω)

= d(Y ldω + d(Y J G>) —

= d d(Y Jcα) = 0, by induction hypotheses, q.e.d.

These lemmas provide us with the basic rules of calculation for the
three operations of inner product, Lie derivative and exterior derivative.

Let us calculate, for example, dω for ω £ Cr(G} φ), r = 1,2.

r=l. dω(Z, 7)- (Z JeZω)(F)

= X(ω) (7, Z) - d(X J ω) (7, Z)

= φ(X)(ω(Y,Z))-ω([X,YlZ)-ω(Y,[X,Z])

- φ(Y) ((X J ω) (Z)) + p(Z) ((Z J ω) (7)) +

(Z, Z)) + φ(Z) (ω(Z, 7)) +

+ ω(Z,[7,Z]).

Lemma 3.5 enables us to define the cohomology groups2 Hr(φ). A
cochain ω ζCr(φ) is a cocycle iί dω = 0. (Sometimes one also says it is
closed.) By Lemma 3.5, if ω = dθ, for θ ζ Cr~1(φ), it is a cocycle: One

2 In this context, they are more naturally thought of as vector spaces.
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says it is a coboundary if such a θ exists. The set of cocycles form a vector
space, called Zr(φ). The coboundaries form a subvector space, called
dCr~1(φ). Now, as definition:

i.e. Hr(φ) is the quotient of the cocycles modulo the coboundaries, hence
measures the extent to which cocycles fail to be coboundaries.

Notice that the Lie derivative operation ω -> X (ω) defines a re-
presentation of G by linear transformations on Cr(φ), which maps
Zr(φ) and dCr~1(φ) into themselves (Lemmas 3.3 and 3.4).

E ω 6 Z ' ( y ) , Z ζ G ,
Jω)

i.e. the quotient linear representation of G on Hr(φ) is the trivial re-
presentation.

Suppose that there is a subspace Wr(φ) of Zr(φ) such that:

Zr(φ) = dCr~l(φ} Θ Wr(φ) (3.1)

X(Wr(φϊ)ζWr(φ) for Σ ξβ .

(For example, if G is finite dimensional and semisimple and if V is finite
dimensional, such a subspace exists by the complete reducibility theorem
for semisimple Lie algebras.) Then, the action of G on Wr(φ), isomorphic
to that of G on Hr(φ). Hence,

Σ(ω) = 0 = d(Σ Jω) for ω ζ Wτ(φ)\ X 6 0- .

Suppose r — 1 : Then,

y(Γ)(ω(Z)) = 0 for Σ, Y ζ G ,

ω([Σ, Γ]) = 0 .
In particular we have
Theorem 3.6. IP (φ) = Q if [G, G] = G and if the subspace W1(φ)

satisfying 3.1 exists.
(For example, [G, G] = G if G is semisimple).
Now, under the assumption that Hl(φ) = 0 and that W2 (φ) exists,

let us examine H2(φ). Suppose ω ζ W2(φ). Then,

d(X_\ω) = 0 for Σ ζ 0 .

Since EP(φ) = 0, there is a θx ζ C°(φ) with

cZθ^ = X J co .
Then, for Z, 7 ζ β,
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Let v = θx + θγ — θx+γ ζ V. Then,

φ(Z)(v) = Q for all Z £ G .

Let us suppose that there are no vectors in F invariant under all of
φ(Gt). Then, v = Q, i.e.

X-+ex

is a linear mapping Gr ->• V.
Now,

<*θuM ]=[*, Y] Jω

= X(Y Aω)-Y JZ(ω)

Again, since we are assuming that there are no vectors in F invariant
under <p((x),

This says that the subspace {βx : X ζ G} of F transforms like the adjoint
representation of G. This, we have proved:

Theorem 3.7. // a Wz(φ) satisfying (3.1) exists, if Hl(φ) = 0, if φ(Q)
has no invariant vectors, and if V has no subspaces transforming under
φ (G) like the adjoint representation, then

Now, let us consider the case that escapes Theorem 3.7. Suppose that
F = G also, and φ is the adjoint representation of G. Thus, X -> θx

defines a linear mapping of G into itself. The condition

means that this map commutes with the adjoint representation. Suppose
first that G is a simple Lie algebra. Then, the adjoint representation is
irreducible, hence X -» θγ must be a multiple of the identity, i.e.

θx = cX ,
for some scalar c.

Thus,

Let α ζ C1 (φ) be c times the identity map :

d*(X, Γ) = φ(X) (α(Γ))- φ(T) (α(X))- ([Z, 7])

= c[Z, Γ]-c[Γ,Z]-c[Z, Γ]

= c[Z, Γ] = -ω(Z,Γ),
i.e.

CD = — dα .
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Since ω ζ W2(φ), ω = 0, hence:

If G is semisimple, it can be written as the direct sum of its simple ideals.
The adjoint representation is the direct sum of the adjoint representations
of its simple ideals. It is readily verified that the cohomology groups
similarly split up into a direct sum of the cohomology groups of the
simple ideals. Finally, then, we have proved:

Theorem 3.8. // G is a semisimple (finite dimensional) Lie algebra and
if φ is the adjoint representation of G, then H2 (φ) = 0.

We shall see in the next Section that this has an important con-
sequence for the possibility of deformations of Lie algebra.

As we have seen, the existence of the subspaces Wr(φ) is crucial to
the above arguments. If everything is finite dimensional, and if G is
semisimple, its existence can be deduced from the complete reducibility
theorem for finite dimensional Lie algebras. In the original Kodaira-
Spencer theory, its existence is deduced using a "Laplacian" operator.
We can see what is involved here in the following terms :

Suppose that A is a linear transformation

&(φ)-+C'(φ)

which commutes with the action of G, i.e.

XΔ(ώ) = ΔX(ώ) for X £G, ω £ Cr(φ) .

The ami is to choose A so that its kernel, i.e. the set of ω ζZr(φ) such
that

A (ω) = 0 ,

can serve as Hr. In the Kodaira- Spencer theory, the elements of Cτ(φ)
were realized as tensor fields on a compact manifold, and Δ could be
taken as a certain second- order elliptic differential operator. In our more
Lie algebraic approach, it is natural to consider Δ as one of the Casimir
operators of G, i.e. an element in the universal enveloping algebra which
commutes with AdG. In fact, let us examine the second order Casimir
operator.

Now,
X*(ω) = X(d(X_\ω)) = d(X J(α>)) for X ζG .

Suppose X19 . . . , Xn is a basis for G that is orthonormal with respect to
the Killing form. Then,

A=Σy3%f> witn ft = ±ι for 7 = 1, . . . , r a .
Thus,

(ω)) = d (Σ g,Xs J X, (ω)\ ,
W /

i.e.
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Thus, if Zr(φ) is a direct sum of the kernel of A and Δ (Zιτ(φγ) (which
one would expect if Δ had something like an "eigenvector expansion")
one would expect the kernel of Δ to serve as Wr. For example, suppose
that ω ζZ1(φ)) and Δ (ω) = 0. Then, for 7 ζ G,

Δ (ω) (7) = 0 = φ(T) (Σ to** J *, (

Suppose, for example, that φ (G) has no invariant vectors. Then, the
condition that A (ω) = 0 is :

ί
We shall now leave the general cohomology theory at this point in

order to review the applications to deformations of Lie algebras and their
representations .

4. Analytic continuation of Lie algebra structure

Let G be a vector space with a "given" Lie algebra structure
(X, Y) -> [X, Y]. Consider an "analytic continuation" of this structure,
i.e., for each value of λ, a Lie bracket operation (X, Y) -> [X, Y]λ is
given on G, reducing to the given one for λ = 0, satisfying the Jacobi
identity :

[X,[Y,Z]λ]λ=[[X,Y]λ,Z]λ+[Y,[X,Z]λ]λ for X,Y,ZζG. (4.1)

For X, YζG, define:

ω(X, Γ) = ̂ [Z,Γ]Λ/Λ = 0.

Differentiating (4.1) gives the identity:

ω(Z,[Γ,Z])+[JE,ω(Γ,Z)]

= ω([X9 7], Z) + [ω(Z, 7), Z] + co(7, [X, Z]) + (4.2)

+ [Y,ω(X,Z)].

Let us interpret ω as a 2-cochain. Let φ be the adjoint representation
of G; for X ζ G, φ (X) is the linear transformation 7 -> [X, 7] of G into
itself. Then, ω can be interpreted as an element of C*(φ). It is readily
checked that condition (4.2) just means that :

dω — 0 ,
i.e. ω£Z2(φ).

Let us look at the meaning of the condition :

Suppose that the A-th Lie algebra is isomorphic to the original one, i.e.,
for each λ there is a linear transformation

Aλ : G -> G, with A0 — identity



Analytic Continuation of Group Representations II 65

such that

λ Y ] for Z, Γ £ G . (4.3)
Define :

θ(Z)=^JΛ(Z)|Λ = 0 for Z £ G .

Interpret θ as an element of ^(φ). Differentiating (4.3) gives:

ω(X, Y) = -Θ([X, Y]) + [Θ(X), Y] + [X, Θ(Y)] ,
i.e.

dθ=-- ω,
hence :

The element of H2 (φ) determined by ω is zero if 4.3 is satisfied.
The Kodaka- Spencer theory then interprets the element of H2(φ)

as the "first obstruction" to the existence of a one-parameter family of
isomorphisms between the A-th and the original Lie algebra structure.
For example, if G is finite dimensional and semisimple, we have seen
(Theorem 3.8) that H2(φ) = 0. Then, the deformation theory (e.g. [3])
applies to give the existence of the Aλ satisfying (4.3) : Deformations of
semisimple algebras are "trivial" for the Kodaira- Spencer type of theory.
However, as we have seen these are not "trivial" for our purposes, since
we are interested in what can happen as λ -> oo. In fact, the general
theory comes into play here also: Suppose, for example, that the Lie

algebra [,] is an analytic function of ~γ at λ = oo. Then, it can be

regarded as an analytic continuation of the Lie algebra structure [,]oo,
we contributes to JΪ2(φ00), where φ^ is the adjoint representation of this
λ = oo Lie algebra.

For example, let us apply this remark to the Lie algebra G of 8L (2, M),
generated by elements X , Y, Z, with

[Z, X] = Y [Z, Y] = -Z

[Z, Y] = -Z.
Consider Aλ given by :

AλZ = Z AλX = Xjλ; Aλ Y = Γ/l .

[Z, Z]Λ = 7, [Z, Γ]Λ = -Z

et ω ζZ2(φoΰ) be the cocycle resulting from differentiating with respect
to I/A:

ω(Z,X) = Q=ω(z, Y) .

ω(X, Γ) = — Z .

Notice that the Lie algebra of 8L(2, R) can be reconstructed from
the Lie algebra of G^ and ω. This fact will be generalized in Section 6.
5 Commun. math. Phys., Vol. 3
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5. Analytic continuation of Lie algebra homomorpliisms

Let G and L be Lie algebras. Let φ : G -> L be a homomorphism from
G to L. A deformation or analytic continuation of φ is a one-parameter
family A -> 9^ of homomorpliisms reducing to the given one when λ = 0.

Let φ' be the following representation of G by linear transformations
on L:

For Z ξ G, T ζ i, 9/(Z) (T) = [^(Z), F].
Define :

f o r X ξ G .

Thus, ω ζ Cl(φ'). Let us differentiate the identity:

φλ([X, Y]) = [φλX, ψλT].

ω([Z, T]) = [ω(Z), 9?(Γ)] + fy(Z), co(Γ)]

= 9/(Z)(
It is equivalent to :

dω = Q.

Let us look for the condition that ω be a coboundary : Suppose that
φλ is obtained from φ by changing it via an inner automorphism of L,
i.e. there exists a curve λ-> Y(λ) in L such that:

φλ = AάΈxp(Y(λ))φ, (5.1)

Γ(0) = 0, i.e.
Then,

for Z ζ G .

Put : Z - -j Y (λ)λ = 0. Then,

ω(Z)=[
hence :

Thus, we see that Hl(φr) "obstructs" the possibility of writing the
deformation λ -» φ% in form (5.1).

For example, suppose that L consists of the set of all operators on a
vector of space F, so that φ defines a linear representation of G. Thus,
analytic continuations of form (5.1) are ί 'trivial" in the sense that each
one is equivalent (by a change of basis, say) to the given one. For example,
a Casimir operator of G will have the same value for all λ. Notice that if
G is semisimple and if L is finite dimensional, H2(φ') = 0: This is inter-
preted by saying that the finite dimensional representations of semi-
simple groups are "rigid", i.e. cannot be deformed in a non-trivial way.
In fact, we know much more, from Lie algebra theory, namely that the
equivalence classes of finite dimensional irreducible representations of a
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semisimple group form a discrete set, namely a lattice in its Cartan sub-
algebra determined by the maximal weights. However, notice how much
simpler it is to prove the weaker rigidity theorem : this gives us hope that
cohomology techniques at least might be useful in obtaining qualitative
information about the structure of the set of unitary equivalence classes
of unitary representations of non- compact semisimple Lie groups.

Let us investigate more precisely how the cohomology is related to the
values of a Casimir operator of G . Suppose λ -> φ% is a deformation of
homomorphisms : G-> L, as before, and suppose

Δ = 9ίXf

is a second order element of the universal enveloping algebra that lies
in the center, i.e. is annihilated by AάG. Suppose that φ (Δ) lies in the
center of the enveloping algebra of L3. (X19 . . . , Xn are elements of G\
the indices i,j9 . . . run between 1 and n, and we use the summation
convention, gl9 . . . , gn are scalars.)

Then,

= 0 = gί(ω(Xi) φ(Σt) + φ(Xi)

Suppose ω ζdCQ(φ'), i.e.

ω = dZ9 for Z
Then,

ω(Σ)=[φ(Σ)9Z] for X
Then,

Z] φ(Σi)+φ(Σi)

Suppose now that these conditions are satisfied: Let us look at the
d*

condition that -r̂ - φ^ (Δ ) |λ = 0 be zero

Put:

Then, ω!Sς.C1(φ').
Let us differentiate the identity twice :

ψλ([Σ9T \)=[φλ(Σ)9φλ(T) \ for Z, Γ ζ G ,

, 7]) = [a>2(Σ)9 φ(Y) \ + [φ(X), ω2(7)] + 2[ω(Σ)9

dω^X, Y) = 2[ω(Σ)9

3 For example, if L is the Lie algebra of operators on a vector space V, and φ
arises from an irreducible representation of G on V, then, by SCHUB'S lemma, φ(Δ)
will satisfy this condition.
5* Commun. math. Phys., Vol. 3
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Now, we have defined the Lie derivative ω -> X (ω) of a cochain by an
element of G. However, the vector space L in which cochains take their
values is also a Lie algebra: We can define the Lie derivative ω -> Z(ω)
by an element Z ζ L by the formula :

Z(ω)(X)=[Z,ω(X)].

(There is a special case of a construction investigated by NIJENHUIS and
RICHARDSON [3]: The cochain themselves can be made onto a Lie
algebra.)

However, this Lie derivative does not commute with exterior
differentiation :

dZ(ω) (X, Y) = [φ(X),Z(ω) (7)]-

, [Z, ω(7)]]- [φ(Y], [Z,

, 7])]

- [z,

-[Z,ω([Z, 7])]

= Z(dω) (X, Y)-[[Z, φ(X)],ω(Y)] + [[Z, φ(Y)l co(Z)].

In our case, dω = 0, ω(X) = [99 (JQ, Z]. Hence,

dZ(ω) (X, Y) =
Thus,

d(ω2 — Z
i.e.

Let us again suppose its cohomology class is zero, i.e.

ω2 — Z(ω) = dZl9 with Z1 ζL .
Then,

([Z, ω(Xj)]

,)? Z] + [^(Z,), Z,]) φ(Xs) +

2[φ(XJ),Z] [φ(X^Z} + φ(Xs) ([Z, [ φ ( X f ) 9 Z ]

(Notice that this formula is general, and does not depend on Δ being a
Casimir operator of G, and holds no matter what the degree of Δ. The
method can be extended to the higher derivatives with respect to λ. We
have then proved the following result :
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Theorem 5.1. Suppose φ is representation of G by operators on a vector
space in which the Casimir operators of G are multiples of the identity.
Suppose Hl(φ') = 0. Let λ -> ψχ be any analytic continuation of φ. Then,
the values of the Casimir operators are independent of λ.

In particular, this theorem is useful in physics in interpreting the idea
of analytic continuation of spin or angular momentum. For, this is just
defined as an eigenvalue of the Casimir operator of SO (3) in a representa-
tion: the theorem then asserts that to continue analytically a given
representation of the Lie algebra in such a way that the value of the
Casimir operator changes, it is necessary to continue into an infinite
dimensional space.

6. Cohomology of semidirect products

Let G be a Lie algebra, and let φ be the adjoint representation of G.
We have seen that, if G is semi-simple, the first and second cohomology
groups relative to φ are easy to compute. Basically, this is because all
finite dimensional linear representations of G are completely reducible.
The next simplest situation occurs when G has a subalgebra K such that
the representation of G on the cohomology groups restricted to K is
completely reducible. In this section, we shall present some typical work
in this direction, without aiming for a complete analysis.

Rather we shall always aim at an understanding of the Poincare
group. Suppose that:

H°(φ) = 0, i.e. G has no center (6.1)

ZL(φ) = dC*(φ) + Wl(φ), with X(ωL(φ)} W^(ψ) for X £K . (6.2)

As we have seen, (6.2) implies that:

Z(ω) = 0 for ωξ:W
1(φ), Z ζ K ,

hence:
d(X Jω) = 0.

By (6.1) we have:
ω(K) = 0. (6.3)

Also, for Σ ζ K, 7 ζ G,

0 = dω(X, Y) = [X)ω(Y)λ-[Y)ω(X)λ-ω([X, 7])

= [Z,ω(Γ)]-ω([X, Γ]). (6'4)

Suppose that P is a subspace of G such that :

G - K + P, [K,P]CP. (6.5)
Then, we have:

Theorem 6.1. In addition to these assumptions, suppose that AdK
acting in P is irreducible over the complex numbers and that AdK acting
on K contains no representation equivalent to AdK acting on P, and that
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[P, P] - 0. Then,
dimΉ1^)^ 1 .

Proof. Notice that the hypotheses that AdJfΓ acting in P irreducible
over the complex numbers means that any operator on P commuting
with AάK must be a multiple of the identity. Now, (6.4) implies that ω,
as a map P -> G, commutes with the action of AdK. Our assumption
that AdK acting on K contains no representation like AdK acting on P
implies that :

co(P)CP.
Then, for X, Y ξ P,

, 7)= [X, ω(Y)] — [7, ω(X)] — ω([X, Y]) (6.6)

= α[Z, Y]~a[Y,X]

2a[X, Y ] .

This proves that W1^), hence also Hl(ψ), is spanned by the map
G -> G which is zero on K and the identity on P.

Remark: Suppose we do not assume that [P, P] = 0. Then for
X, FζP,
0 - dω(X, Y) - 2a[X, Y] — a (projection of [X, Y] on P) . (6.7)

Then, if a Φ 0, we must have [P, P] = 0. For, otherwise,

[P,P]CP.

(6.7) then implies that [P, P] = 0. Thus, we have:

H*(φ) = 0 if [P,P]ΦO. (6.8)

Now, let us turn to H2(φ). Suppose that a subspace W2(φ) exists
with:

X(W*(φ))cW*(φ) for Z ζ K .

Then, for ω ζ W*(φ), X ζ K,

Q = d(X J α > ) .
Suppose then that

XAω = θx + d(Yx),
where

θztWi(φ),Yzζβ.

Then, X -> θx and X -> Yx define linear functions of X. (Here we must
use condition (6.1)). Now, for Z £ K,
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But, [Z, X] J ω = θ[Z,χ} + d Y{z,χ], i.e.

for X,ZζK (6.9)

for Z ζ K . (6.10)

Thus, the mapping X -> Yx commutes with the action of K on G.
Define α ζ Cl(φ) as follows:

α(Z) = Γz for X ζ K

α(Z) = 0 for Z £ P .
Then,

<Zα(X,Z) = [Z, α(Z)]- [Z, α(Z)]-α([Z,Z]) .

Casel:Z ζK

= (Z Jc*α(Z) = [Z, 7 ]̂- [Z, Γx]- Γ[X)Γ]

= -[Z,Γ2Γ]=-dΓJΓ(Z).

£ P.

<Zα(Z,Z) = -[Z, Yz]-oc([X,Z])=:-dYx(Z).

(We are assuming that [K, P] C P).
In both cases we have :

X Adoc = — dYx.
In particular,

X J (ω + doc) = θx for X ζ K . (6.11)

Theorem 6.2. Suppose:
a) K acting as Z1(φ) and Z2(φ) is completely reducible.
b) [K,K] = K.

Then, each cohomology class H*(φ) contains a cocycle ω such that

Z J ω = 0 for all Z ζ K . (6.12)

Proof. Notice that hypothesis b) and (6.9) imply that:

θz-0 for all X

(6.11) then completes the proof.
Through condition (6.12) we hare succeeded in partially normalizing

the elements of W2(φ). (Our goal is, of course, to compute H*(φ)9 at least
in sufficiently simple, but interesting, cases.)

Suppose that ω £ Z 2 ( φ ) satisfies (6.12). Then, also

Z(ω) = 0 for all X £K .

Thus, the mapping (X, Y) -> ω (X, Y) of P x P -> G commutes with the
action of K. We want to find a condition that

α>(P,P)CK. (6.13)
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Define s : G -> G by the formula :

s(X) = X for XζK (6.14)

s ( X ) = — X for X ζ P .

Define the transform of ω by s, denoted by s(ω), as follows:

s(ω)(X, T) = 8(ω(8Σ,sY)).

(Notice that s = s"1).
Lemma 6.3. // s(ω) — ω, then (6.13) is satisfied:
Proof. For X, Y ζ P,

ω(X, Y) = 8(ω) (X, Y) - s(ω(—X, — Y))

= sω(X, Y ) ,
i.e.ω(X, Γ)ζK.

Now, we can put the pieces together :
Theorem 6.4. Let Gc = G + ^G be the complexification of G. Suppose

G = K + P, with [K, P] C P, [P, P] = 0,

[K,K]CK.

Let s : G -> G δe defined by (6.14). Extend s to a complex linear trans-
formation: Gc -> Gc. Suppose that K is semisimple, and that the connected
group of inner automorphisms of Gc generated by KQ includes the trans-
formation s. Then if ω ζZ2(φ) satisfies (6.12), it also satisfies (6.13). In
this case, we can define a one-parameter family of Lie algebra structures on
the vector space G by the following formula:

[X, Y]λ = [Z, Γ] + -i ω (X, 7) for Z, F ζ G . (6.15)

^4s A -> oo, £/b"s jLie algebra pass over to the Lie algebra on G with which we
began.

Finally, if there is, up to a scalar multiple, just one skew-symmetric
mapping P x P -> K commuting with the action of K on K and P, then

If there are no such mappings (other than the one which maps onto
zero), then

Proof. Our hypotheses guarantee that s(ω) = ω, hence (6.13) is
satisfied. It only remains to show that the formula (6.15) satisfies the
Jacobi identity :

Now,

[X, [Y,Z]λ]λ=[X, [Y,Z]λ]+~ω(X, [Y,Z]λ)

= [X, [Y, Z]] + [X, -ί̂ -̂] + 1 (ω(Z, [7, Z]) + j- ω(X, ω(Y, Z))) .
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Since ω (G, G) C K, and K J ω = 0, this equals

[Z, [ Y , Z ] ] +y [X, ω ( Y , Z ) ] + ^ω(X, [ Y , Z ] ) .

The Jacobi identity now requires that :

[X, ω(Γ,Z)] + ω(X, [Y,Z]) + [Z, ω(X, 7)] +

+ ω(Z9 [X, 7]) - [7, ω(Z, Z)] + ω(7, [Z, Z]) = 0 .

Notice that this is just the condition:

dω = 0 ,
which we are given, q.e.d.

Remarks: This new Lie algebra structure [,]λ has the property that
K is a symmetric subalgebra of Gλ. The classification of symmetric
subalgebras thus enables one to effectively compute H2(φ). We will do
this in more detail in another paper.

Theorem 6.4 applies in case G is the complex Lorentz group 80(4:, C).
It is readily seen that άimH2(φ) = 1. The corresponding Lie algebra
GΛ is just 80 (5, C), the complex de-Sitter group: The result as λ -> oo is
the well-known contraction of the de-Sitter group into the Poincare
group4. This leads us to ask: Is this essentially the only group which can
contract into the Poincare group ? We will now deal with this question.

7. A uniqueness theorem for limits of Lie algebras
Let GOO be a given Lie algebra. We have said that G^ is the limit of a

one -parameter family λ -> [X, 7]λ of Lie algebra structures on the same
vector space as G^

Km [X, Y]λ = [X, ΓL for X, Y £ G^ .
λ->oo

Now, one may ask: What are the possibilities of structure of the Lie
algebras G^ (at least if λ is sufficiently large) ? The work of the last
section provides us one method for severely limiting what seems at first
sight appears to be a bewildering multiplicity of possibilities.

Let us suppose that the dependence on λ is at least diίferentiable at
λ = oo, i.e. [X, Y]χ admits a Taylor expansion of the form:

[X, 7]Λ=[X, Y]x+~ω(X,Y)+ω2x, 7, for X, Y £GX .

As we have seen, ω ζ Z * ( φ ) , where φ is the adjoint representation of the
Lie algebra G^, here determines an element of Hz(φ). Further, we can
assume that ω is any specified cocycle within its cohomology class, since
changing the cocycle by a coboundary merely amounts to subjecting

4 Of course, at the real level both S 0(4,1) and $0(3,2) contract to the de-
Sitter group.
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the vector space to a linear transformation. In particular, suppose that
the cohomology class contains a cocycle satisfying the following con-
dition :

ω(X,Y)_lω = Q for X, Y £ G^ . (7.1)

(We have seen in the last section that certain possibilities of structure
for GOO lea(i t° this conclusion.) Then, as the computation we used in
proving Theorem 6.4 shows the following formula defines a Lie algebra
structure for every value of λ:

[X, Γ]l=[Z,Γ]co+~ω(Z, Y ) ,

i.e.

[Σ, Γ]Λ = IX, Y]\ + ̂  tt>2 (X, Y, -}) .

/Suppose that the Lie algebra Gj[ is semisimple. (Again, the work of the
last section suggests many cases where this can be proved.) Now, the
Lie algebra GΛ is a deformation of the algebra Gj[: Since the latter is
semisimple, the rigidity theorem for semisimple algebras [3] implies
that Gλ is isomorphic to G'λ. ISΓow, all the G^'s are isomorphic among
themselves: We thus have at least a sketch of a method for proving
that, given certain assumptions about G^, only a certain number of Lie
algebras may appear among the various ways of exhibiting G ,̂ as a
limit. Carrying out the details of this method will be done in a later
paper.

In particular, these remarks do apply to the case where G^ is the
Poincare group: The conclusion seems to be that it is only possible to
"approximate" it by the de-Sitter groups, if one takes the method of
approximation to be that described above.

Note added in proof: R. RICHARDSON has developed a more powerful method
for handling the problem considered in section 7. His work will appear later.
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