Commun. math. Phys. 2, 165—175 (1966)

On Quadratic Lagrangians in General Relativity

E. PECHLANER and R. SEXL
Institute for Theoretical Physics, University of Vienna, Vienna, Austria

Received October 8, 1965

Abstraet. Theories of gravitation similar to General Relativity but with an
additional R? term in the Lagrangian are explored. The Schwarzschild metric is
not the exterior solution that can be continued to the interior of the body to give a
positive definite mass distribution. The experimental consequences of R? terms are
investigated. Furthermore, it is shown that a theory with an R? term only possesses
an interesting singular dependence on the coupling constant.

1. Introduetion

One of the requirements Einstein made in deriving the equations of
General Relativity was that the field equations should contain only
second derivatives and these only linearly. Postulating this and a
coupling of the energy-momentum tensor to the metric of a Riemannian
space time, EINSTEIN was led almost uniquely to the famous field
equations of General Relativity:

1
R;w”"zag;w'Rz"‘%' T/w (1)
derivable from an action integral
W= [da(/—g: B+ 2% A®@)) 2)

where /1 (z) is the action integral of the matter fields.

From Quantum Electrodynamics we know that the vacuum polariza-
tion introduces nonlinear terms into the originally linear equations of
this theory. There, the classical Lagrangian

L= (B*—H?) 3)
has to be modified to
2
= (B2 —H2) 4 o (B — HY? + 7(E - H)?] 4)

(cx is the fine-structure constant and m the electron mass, we put ¢ = 1)
to account for the effects of vacuum polarization in the first non-
vanishing order in the coupling constant.
The same phenomenon is likely to occur in the quantisation of
General Relativity, although the field equations are nonlinear in this
12%
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case from the start. There are three possible terms
R?, R, Rik, ——kmn_ Rikst Rmn (5)
V=g
which can appear in next order in x.
The term Rikmn R, . can be omitted because of the identity
o
dg®
A calculation of these corrections by Birura [7] shows that actually all

three of these terms will be present. We shall consider only one of them
and take as the starting point of our theory the action integral

W= [da|(R+ B) - Y—g + 2040)] ©)

where a is a constant of the dimension of a length.

(B2 — 4R, R** + R Ry ) = 0.

The field equations stemming from this Lagrangian are of fourth
order and to solve them we shall resort to the weak field approximation,
which will be done in Chapter 3. In Chapter 2 the work done before on
R? terms will be discussed and in Chapter 4 we shall try to obtain experi-
mental limits on the constant ¢ appearing in [6]. In the Appendix we
prove that a theory containing only an R? and no R term is not analytic
in the coupling constant and does not have the correct Newtonian limit.

2. Disecussion of previous work

Lagrangians of the form (6) have been investigated by EppiNaToN
[1], Laxczos [2], [3] and several other workers [4], [6]. The basis of
their work is that the experimental tests of General Relativity all follow
from the Schwarzschild line element. Thus any theory that predicts this
form of the metric in the vicinity of a mass is in agreement with ex-
periment.

According to EppiNaeToN the Schwarzschild metric is solution of the
field equations

derivable from an action integral
Wy=[d'zR-})/—g (2a)

as well as from
Wy=[d*zR*)/—g,
which is straightforward since
W, = [ d*x R(R8)/—g + 2)/—g OR)
and thus 6 W,=0if R =0.
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It is our contention that EpinaToN’s proof is not valid since one does
not really want a solution of the free field equations (1a) but of equations
with a non-vanishing energy-momentum tensor. Since the exterior
solution for any spherically symmetric mass distribution is the Schwarz-
schild metric in General Relativity, one usually leaves out the less inter-
esting interior part of the solution and considers the Schwarzschild
metric to be valid down to r = 0. In the 4th order theory containing R?
terms there is a larger manifold of spherically symmetric vacuum solu-
tions that are asymptotically flat. (This is in contrast to the theory
containing only an R? term and no R terms, see BucHDAHL [4]). The
Schwarzschild metric is not the one that can be joined to an interior
solution corresponding to a positive definite mass distribution.

To study this problem closer we shall investigate the field equations
following from an action integral

W= [dia(/—g B2+ 5 - A(2)) (7a)
in the weak field approxmation. Following THIRRING’S notation [6]
we pub

Juv = 77/1v—2fw,uv (8)
where f = [/5 Then the gravitational part W, of the action becomes?!
Wy= [ d*a (i, —yif)? (—2])? 9)

and the field equations stemming from (7a) are easily obtained to be
20 i kum — Yhim — Tm ¥ ia % + Mm ¥ ED) = [Tim . (10)
If we impose the de Donder coordinate condition (Harmonic coordinates)

; 1 .
Pt = 5yl (1)
these equations simplify to
—wg,llilm + 77meg,%ﬁ = fTZm . (12)
For a mass point at rest at the origin the stress-energy tensor reads
1000
0000
Tin=mo(xX)|4 00]" (13)
0000
Inserting this into the contracted equation (12), i.e.
3yikl=fTi (12a)

we obtain it~ 1% and thus yZ%,5 =+ 0 while from (12) we get
92 210 = 0. Therefore the system (12) has no solution at all for a mass

! 7,y is the flat space-time metric (1, —1, —1, —1). In all weak field cal-
culations in this paper indices are raised and lowered by 7,,. A comma denotes
ordinary differentiation.
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point at rest at the origin. This is of course due to the fact that the ten
equations (12) contain only one variable, i.e. yi. For the Schwarzschild
metric B ~ 2} ~ §(x), and introducing this into (12) we see that it is a
solution for r 4= 0. But at r = 0 there is a 6ll(x) singularity, i.e. the mass
distribution is not positive definite, which is unacceptable. The require-
ments the energy-momentum tensor has to satisfy in order that a
solution of (12) exists are not only 7';,,* = 0, as usual, but also

nichT'—'T:ik:gDTik' (14)
This is not fulfilled for an extended mass distribution of the form
1000
0000
Tz‘k = Q(X) (0 00 0) (15)
0000
and p(x) = 0 for x = b. Taking ¢ = & = 0 in (14) we obtain
ATy =34T

and thus 4 (x) = 0. This implies g(x) = 0 as can be seen from Green’s
theorem

[Breu(x)dvx) + [ (Vu) (Vo)diz=fulVv-da.
Putting v = v = p and integrating over a sphere of radius b we obtain
[ #rex)do(x) + [ (Ve(x)?d®z=0.
Thus Vo (x) =0 and therefore p(x)= 0. Therefore there exists no
solution of (12) in the weak field approximation for an energy-momentum
tensor (15). We shall study the full, nonlinear field equations stemming
from the Lagrangian (7a) in the Appendix. The result is that even an
infinitesimal energy-momentum tensor 7';, leads in the R? theory to a
strong gravitational field and to a space-time that is not asymptotically
flat. Thus BucHDAEL’s theorem [4] that the Schwarzschild metric is the
only spherically symmetric asymptotically flat solution of the equations

1 -
RRik+Rlilk’"gik(DR+ZR2) =—%Ty (16)

stemming from (7a) is correct but irrelevant. The exterior solution that
corresponds to a nonvanishing localized 7';; in (16) will not be the
Schwarzschild metric but a strongly curved space that is not asympto-
tically flat.

In parentheses we remark that the condition (15) posing a restriction
on the energy-momentum tensor is present only in the linear approxi-
mation and not in the tull theory. Omitting quadratic terms in (16) leads
to

Rijp— g OB =—%- Ty
and here only one variable, i.e. R, is left, so that the equations will not
have any solutions in general.
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The situation is however entirely different if we consider the field
equations stemming from (6). There the linear approximation does
possess solutions which are asymptotically flat. The Schwarzschild
metric is of course among these solutions, but it is not the one that can
be matched to an interior solution that corresponds to a meaningful
energy-momentum tensor.

3. Derivation and solution of the field equations

In this section we will derive the field equations that stem from the
variation of ¢, in the action integral (6) and solve them for a point mass
at rest at the origin. Since the exact equations are too complicated to be
solved we shall immediately resort to the weak field approximation. (The
exact equations will be discussed in the Appendix.)

The weak field approximation for the standard field equations (1) is
in harmonic coordinates (see e.g. [5])

"/’ik,%’—’;f Niwvhm = fTir
where f = Vx.
This expression has to be augumented by the term stemming from
the R? part of (6), i.e. by the left-hand side of (12) multiplied by —a?/3.
Thus the field equations read finally

1 a?
wik,%_?nikw%,%_? axhmn— Yhmiz) = [Tz a7)
while the contracted field equations are
—aryl i — i =111 (18)

Inserting the energy-momentum tensor (13) and taking into account the
static character of the metric (18) becomes

A(—a2A + 1)y} = fmd(x) . (19)
Specializing to a centrally symmetric field and introducing polar co-
ordinates we get

0% 2 9 0t 4 o .
[W T'W‘“z(WJr?‘Wn ¥ =fmd(x). (20)

The general solution of the homogeneous part of (20) is

i = 6+ 5+ sin? (?l%l) + % sin (ﬁ) at <0
(21)

w§=c1+%+%e—f/“+%ef/“ a*>0.
It contains four constants of integration which can be determined from
the boundary conditions at infinity (requiring ¢; = 0, and ¢, = 0 for

a® > 0) and the conditions at the origin.
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These two requirements leave us with the following solutions for y?

fm

Vis— gt

fm
4mr

wﬁz—é%sinz(ﬁ)—{- sm(H) a*<0.
Thus the solution is not unique and strongly oscillating for a* < 0.
Therefore we shall restrict ourselves in what follows to a? > 0.

From the above we see that without due regard to the nature of the
singularity at the origin two of the four constants of integration in (21)
remain undetermined. This would happen in the usual philosophy of
deriving the Schwarzschild metric from R,, =0 and requiring only
boundary conditions ar infinity. Having derived y¢ we return to the
system (17). Inserting (22) one can easily solve these field equations.
The result for the line elements is

e-r/e a®>0

(22)

ds? [l_ﬂ_ﬁe r/a] diz —
r 3
[1+_+_‘£Ma2_e_r/a( 4aM+§ aM)]drz (23)

2 Ma? M 2aM 2 Ma® R

e L B | e

d$2* = d0*+ sin?0 de?
where M is the Schwarzschild radius of the mass m.

At this point we are able to show that the Schwarzschild solution is
not the exterior solution for an energy-momentum tensor of the form (15)
with positive definite but otherwise arbitrary p (). From (22) we obtain
in this case

l—e—lx—x’l/a) (24)

i f 7 ’
W =5 [ @ ox) (- g
This is an immediate consequence of the fact that (22) is — except for
the constant factor m — the Green’s function of (18). (24) deviates from
the corresponding expression in the Schwarzschild line element by
f ., e—Ix—xla
x(x) =Efd3$ e(X) =% -
For distances large compared to the spatial extension of the source this
becomes

y () = eTlo - 4; fe""s" o(x')d3a’

where & = J (x, X'). Since the integrand is positive definite y # 0 and
our statement follows.

The pressure terms in 7';; which are necessary for the hydrostatic
equilibrium of a mass distribution in higher order in x are of order v?/c?
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compared to the contribution of T, and are therefore neglected in the
linear approximation.

In General Relativity the solution of the field equations for a mass
point is also the exterior solution for an arbitrary spherically symmetric
mass distribution. This is not true here however. Nevertheless we can
integrate the field equations for an arbitrary mass distribution of form
(15). This is possible because the equations (17) are linear and are easily
solved by a Green’s functions method. The Green’s functions are implicitly
given by (23) (put g; = 7z + My in (23)). The solution of the field
equations for an extended mass distribution is therefore

pir(X) = f [ 9 (x — x') o(x') d®a’ .

For a sphere of radius & with homogeneous mass distribution ¢ = p,
0=109 <bpo=07r>b the result is

Goo = 1~%—%—e"’/“n(b/a) rb (25)
where

n(zx) = x~2(coshx — x~1sinha) .

The other g, are rather complicated functions of 7, which we shall not
write out explicitly. They have the same dependence on r as in (23), only
the numerical values of the coefficients differ.

4. Experimental tests of the theory

In this section we shall discuss experimental tests of the theory and
its restrictions on the constant a. Due to the additional term in g,, there
are deviations from the Newtonian approximation which we shall
discuss before entering on the three classical tests of General Relativity.

4.1. The Newtonian approvimation

In the non-relativistic limit only the g,, term of the line element is of
importance. From (24) we obtain the gravitational potential of a homo-

geneous sphere to be
m ym

U=—22 erlom (bla) . (26)

This differs by the second term from the standard expression. Under
which conditions is this term of importance ? (In the discussion below b
is the radius of the mass producing the gravitational field in each case;
e.g. for laboratory experiments b ~ 10 cm, for satellite experiments
b = 6370 km.)

For distance 7 > a the exponential term is obviously to be neglected
while for r — b < a it leads but to a renormalization of the gravitational
constant. The observable effects are the same as in the Newtonian

theory if % is replaced by % ». Thus any experiment gives an upper and
a lower bound for a. If @ < 1 cm, the effects can not be detected by
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present laboratory experiments. On the other hand ¢ = 1 km means

that the laboratory experiment will give a value ' = %% for the

gravitational constant. Does this have any observable effects ? Since our
knowledge of the masses of the planets and stars comes only from a
measurement of their gravitational fields and not from direct measure-
ments of their inertia, nothing on an astronomical scale changes (except

for star models) if we replace % by »’ and all masses by % m. Thus if a

has a value of say 10 km, the real mass of the earth would not be
6 x 10%¢ but 8 x 10%g.

Astronomical measurements set in only at larger values of a. If the
time of revolution of a satellite around the earth can be measured to an
accuracy of 10-8, then Kepler’s 3rd law excludes 50km < ¢ < 1500km.
The same law applied to the moons and planets of the solar system
excludes 1000km < @ < 10°km. This latter limit is already in conflict
with the validity of the weak field approximation for the dr? term. For

3
the metric to be approximately flat a* has to be smaller than bﬁ and

. b® . .
with M = _’E_g,tl we obtain a2 <~u1— . For an average density ¢ ~ 1g/cm?

we get ¢ - < 10%km. Thus the weak field approximation breaks down for
a = 107 km. For still larger values of ¢ the R? term will be the prominent
one in the Lagrangian. We shall see in the appendix that in this case the
metric is strongly curved even for an arbitrarily small mass distribution.
This is in obvious disagreement with experiment and therefore values of
@ > 10"km have to be excluded. Thus the Newtonian approximation
excludes lem < @ < 1km and 50km < a <. A value of a smaller
than 1 cm leads to no effects that can be tested by present laboratory
experiments. 1km < a < 50km leads to a renormalization of the gravita-
tional constant and thus to the prediction that the mass of the earth is
8 x 10%7g instead of 6 x10%7g. This is already in contradiction with geo-
physical evidence. Therefore, experimentally we can exclude a = lem.

From the experience with vacuum polarization one can estimate a
to be about 10-13 cm.

4.2. Relativistic effects

The three tests of General Relativity give us no new restrictions ona.
The red shift, being a consequence of the principle of equivalence tests
nothing but the Newtonian approximation.

The deflection of light is changed from ¢ = E}J;i tod= —J% ( 1—0.3 —%)

for ¢/R = 5. This excludes @ > 2 x 10%km.
Our approximation scheme does not permit us to calculate the
perihelion advance, since this effect is beyond the linear approximation.
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5. Some remarks on elementary particles

Since the effects discussed in this paper stem from vacuum polariza-
tion, which is a quantum phenomenon, their most important application
should be in the field of elementary particle physics. The calculations of
Brrura [7] indicate for a the value (we put % = 1, m is the electron mass)

a=2 ~10-%em. 27)
m
Let us consider an electron, possessing a Schwarzschild-radius M = s - m =~
=~ 10-% ¢cm. This means that the gravitational phenomena become
important only at that small @ radius, this being therefore the minimum
size for a bare electron (bare in this connection refers to the electro-
magnetic interactions).

If we consider, however, (23) to be the line element in the neighbor-

hood of the electron, the singularity with largest radius is due to the

4 oM . . .
—5 a;‘z e~"/% term in dr?. This term becomes unity for

res)/M-a=)x-m-efm=~10-%cm . (28)

Thus the quantum phenomena push out the effective radius of the
electron from 10-% cm to 10-3* cm. Since our calculations was done in
the weak field approximation we can not really tell whether a singularity
occurs at that radius or not. What we can say is just that gravitational
phenomena should become important at a radius as large as the one
given above.

We should like to thank Prof. W. TaigrinG for his constant interest in this
work and Prof. A. TraurtMaN and Prof. H. BucapanL for valuable comments.

Appendix
The nonlinear field equations

In this section we shall give a short discussion of the full field equa-
tions (16) with special regard to the role of the energy-momentum tensor,
which turns out to be crucial. Our starting point is (16)

RRilc+Riilk_gik(D R+71‘R2)=—'5Tik- (A1)
Upon contraction we get
3OR=xzT (A.2)
and thus (A.1) can be rewritten as
R(Rik‘—i_i‘:gikR)=—"7Tik—Rlilk +%gikT' (A3)
We now introduce a quantity D by
aD=1T (A4)
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and obtain
1 1
Ry —g9aBR=——5 BT+ Dyp—9:T) - (A.5)

The most remarkable feature about (A.5) is that the graviational con-
stant has dropped out. To rewrite the field equations in a form completely
analogous to EINSTEIN’s equations we use again (A.2) and (A.4) to obtain

Rik_%gikR = % (=372 — Digyz + 9 T) ‘—”i“gihi;“D . (A.6)
Here the dependence on % has reappeared. Putting the right hand side
equal to —x 17, we obtain

1
Rik_?gikR:—HHik (A7)
1 1 Z
Hik=ﬁ(3T1‘k+DYilk—gikT)+~1§gikD%' (A.8)

IT;, is thus the energy momentum tensor that appears in the correspond-
ing equations of General Relativity. We therefore can treat the field
equations (A.1) in the framework of the usual Einstein theory. We only
have to replace T';; by II;;. Of course the progress made is only formal,
because we have to know the metric before we can solve the equation
(A.4) for D. A formal solution of (A.4) is

D(x)= [ Gz, x') T(z') d*a’ (A.9)
where @ is the Green’s function of the [J-operator. D is a nonlocal
quantity different from zero even outside the mass distribution, where
we have for I7;,,
_ Diijx 1 %
Tiw==p + g 9aDs
Now we have to make an important point. For a localized not-too-dense
mass distribution the metric has to be flat, to a very good approximation,
in the interior and the exterior of the body. This just means that Eucli-
dean geometry is an excellent approximation in the interior and exterior
of the earth e.g. This is an observational fact not to be confused with the
weak field approximation used before to treat (1) or (16).

We shall show that the full nonlinear equations (A.1l) have no solu-
tions that are flat in the above sense. Let us assume such a solution
would exist. Then the Green’s function in (A.9) can be replaced in an
excellent approximation by the one of the flat [J-operator, yielding
D= —Z::—r, where m is the mass of the body. (This is valid for r>p
where p is the radius of the spherically symmetric body.) Therefore
:L—n x;f" i,k =1,2,3 and zero otherwise. Inserting this into

(A.10) we obtain in the exterior of the body
1
I =205 (1— 89) (1— 6)) + 45 i

rix

Dy ~

m
r

£, (A.12)
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Thus the local energy momentum tensor 7';, gives rise to an energy-
momentum distribution I7;, in (A.7) that is smeared out over all of the
space. Since the space integral of (A.12) diverges, the total mass that
enters into (A.7) will not be finite. Hence space-time will be strongly
curved, and not asymptotically flat. Therefore our initial assumption
that space-time is approximately flat in the presence of very small
masses leads to a contradiction. Thus even an infinitesimal energy-
momentum tensor leads to a strongly curved space in this theory. There-
fore the theory defined by the Lagrangian (7a) cannot be used as a
realistic theory of gravitation. It is, however, an interesting example of
a classical theory which possesses solutions that depend singularly on the
coupling constant.
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