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Abstract. The existence of Moller operators is proved for singular potentials
which decrease more rapidly at infinity than the Coulomb potential. The question of
their uniqueness is discussed.

1. Introduction

In the formal theory of scattering processes it is of fundamental
interest to investigate whether uniquely denned Moller operators exist.
Therefore several authors have dealt with this question, especially for the
case of potential scattering. COOK [1] was able to show the existence of
uniquely denned Miller operators, as long as the potential V (r) is square
integrable. This proof was extended by HACK [2] to locally square
integrable potentials which at infinity decrease faster than const • r~x~e,
i.e., more rapidly than the Coulomb potential, and by KTTRODA [3] to a
class of potentials which includes the cases investigated by COOK and
HACK (compare also JATJCH and ZINNES [4]). The physically important
points of these considerations are explained in the review article of
BRENIG and HAAG [5].

In all the above mentioned proofs it is required that V (r) be locally
square integrable. For other potentials which do not fulfill this require-
ment (in the following we will call them "singular"), scattering theory
recently has been developed more extensively. Most of these investiga-
tions were based on a discussion of the radial Schrodinger equation, i.e.,
the ordinary methods of stationary scattering theory were used. Although
several of the peculiarities connected with singular potentials have been
clarified by this procedure, a study from the more transparent view-
point of formal scattering theory seems desirable. As to the existence of
uniquely denned MMler operators some results for spherically symmetric
potentials have already been found in this framework. GREEN and LAN-
FORD [6] have shown the existence of MMler operators for potentials
which are less singular than r~2+e at the origin and LIMI6 [7] got the
same result for highly singular potentials that are repulsive at the origin.

In the following we shall give a relatively simple proof for the
existence of Miller operators, also valid for highly singular not spheri-
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cally symmetric potentials. It will be shown that these operators exist
under rather weak assumptions (essentially given by condition (2.2)
below).

The outline of our proof is the same as that in the article of BRENIG

and HAAG [5] and related to that by COOK [1], HACK [2] and KURODA [3].
As compared to these papers the following points are different respectively
more general in our investigation:

I) It is shown that the criterion used in [5] for the existence of
Moller operators can be replaced by a weaker one which allows the
treatment of highly singular potentials (cf. Eq. (2.21) and (2.22)).

II) The estimate of free Schrddinger wave packets which is done in
[5] by the stationary phase method, is replaced by a rigorous estimate,
Eq. (2.10), similar to the kind first used by RUELLE [8] for solutions of
the Klein-Gordon equation.

III) The important question whether the Moller operators are unique
depends on whether the symmetric differential operator, formally
defining the Hamiltonian on a suitable dense domain, has a unique self-
adjoint extension. For certain classes of singular potentials the extension
is not unique which makes this point rather crucial in our case (the well
known difficulties of scattering theory in the case of highly singular
attractive potentials originate in this point). Thus we will review the
most important results concerning this question in Section 3.

We should mention that shortly before completion of our manuscript,
N. LiMi6 [9] published an extension of his above cited proof [7] for the
case of not spherically symmetric potentials. Our proof, however, is
simpler and uses weaker assumptions for the potential.

2. Proof of existence

In the following we regard a Hamiltonian which is formally given by
the symmetric differential operator:

^ (2.1)

The potential V(r) is assumed to be a real, Lebesgue-measurable function.
The requirement of symmetry of Hr imposes a further restriction for
V(r). Essentially, V(r) must be of such a kind that Hr is defined on a
dense set in the Hilbert space L2 {R3). (It suffices to require the set of non-
locally square integrable points of V(r) to be of measure zero.)

The potential further fulfills the following condition: There exists
an s > 0, and a finite R ^ 0, such that

/ / / V2(r) (r + I)6"1 d3r<oo, (\r\ = r) . (2.2)

Without loss of generality we shall assume s ^ 1.
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The dense domain of H' in L2 (R3) is chosen to include all test func-
tions [10] of Sf (R3) which vanish for r < R.Asa, real symmetric operator
H' has a self-adjoint extension (cf.: e.g. [11] p. 312, [12] p. 361).

In the following H denotes such a self-adjoint, not necessarily unique,
extension of H'.

The kinetic energy operator is formally introduced by

where the domain of H'Q can be chosen to include the space £f (R3). Ho

then denotes the unique self-adjoint extension of H'o [13].
With the help of H and Ho one can form the unitary operator

U(t) = e^ie-iH^, (2.4)

which is defined everywhere in L2(R3). The strong limits of U(t) are the
Moller wave operators (compare, e.g., [5])

Q±= Km U(t). (2.5)
t->±oo

To prove the existence of D± one has to show the strong convergence of
U(t). Because the operators U(t) are uniformly bounded, it suffices to
give the proof on a dense set of functions in L2(R3). We consider func-
tions /(r) of the class £f(R3). These have the properties:

(2.6)

and

/(r, t) = e-<*'/(r) =~J^ J ^ ' ^

with f(p) e &, fir, t)^6e and

1/fr )̂ll2 = / l/(n 0|2 d*r = const. (2.8)
Furthermore, we have from (2.7), for t =# 0,

^ (2.9)

Equation (2.9) implies the uniform estimate, important for subsequent
use:

\f{r,t)\^C«(^f- \t\-*/2, (2.10)

which is valid for any a ^ 0 and \t\ ^to>O(Ca= Ca(t0)). We shall give
a proof of (2.10) at the end of this section (compare also the similar kind
of estimate given in [8] for solutions of the Klein-Gordon equation).

The strong convergence of U(t) is proved if for sufficiently large |^|
(with t2 > t± > 0 respectively t2< tx< 0) the expression

|| = I*"". f{r, t2) -***>/(r, h)\\ (2.11)
11*
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( £i* i

becomes arbitrarily small. For the estimate of (2.11) we introduce a
function F(r) with the properties

0 ^ F{r) g 1 (2.12)

10 for T ^ R

1 for r * * + • ! .

Furthermore we assume (1—F(v)) £ <9*(R3), and thus F(r) • f(r,t)
belongs to the domain of the originally given operator H'.

It follows

\\(U(t,) - C7fe)) /(r)|| g \\e^F{r) f(r, t2) - eiBt<F(r) f(r, y

+ ||(1 -F(r)) f(r, y|| + ||(1 ~F(r)) /(r, y|| .
Because of (2.10) the last two terms in (2.13) can be estimated by
const • |^|~3/2. Therefore it remains to investigate the expression

A (h, h) = \\eim> F(r) f(r, y - eiBt>F(r) f(r, ^)|| . (2.14)

This can be written in the form

(2.15)

because the integrand exists (cf. [1], p. 85) and depends continuously on
t in the i2-norm1.

Now we have
"1

/

dt (2.16)

and

< \\[H0,F]f(r,t)\\ + \\V(r)F(r)f(r,t)\\. (2.17)

From (2.9) respectively (2.10) we find

|[#0, F] /(r, 0| = T£T |/(r, 0 ^F(r) -

1^ const- |^|-3/2 for

= 0 otherwise .
This implies

and, with (2.17) and (2.16),

tJ £ const- |

^ const

(2.18)

(2.19)

\f\\V(r)F{r)f(r,t)\\dt\. (2.20)

1 The continuous f-dependence follows from estimates similar to (2.18) and
(2.23) if one takes into consideration that the functions Ff(r, t) and (r + l ) a /(r, t)
are continuous in t9 uniformly with respect to r .
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Thus we have shown that instead of the criterion usually given for the
convergence of £7(0,

(2.21)

(cf. [5] Eq. (1.11a)), it is sufficient to prove the corresponding property
with /(r, t) replaced by F(r) • f(r, t), i.e., to prove that

f\\V(r)F(r)f(r,t)\\dt, (t2>tl>0) (2.22)

becomes arbitrarily small for sufficiently large tv In contrast to (2.21)
this criterion allows the treatment of highly singular potentials. To show
that it holds for potentials which fulfill the condition (2.2) we regard

\\V(r)F(r) f(r, t)\\* <: / / / V*(r) \f(r, t)\* d*r

'""f J-. (2-23)
= Iff V2(r) (r + I)8'1 \(r + 1) f(r90|2

Considering (2.2) and the estimate

(r + l ) a |/(r, 0| ^ C'^-W for any a ^ 0 , (2.24)
which follows immediately from (2.10), one obtains

1 V(r) F{r) f(r, t)\\* < const • - j ^ . (2.25)

Thus the integral (2.22) vanishes for tx -> oo, i.e., our criterion for con-
vergence is fulfilled.

I t remains to show the validity of (2.10). With the help of (2.9) we get,
with \t\ ^ £0 > 0 and an integer n ^ 0 (remember f(r) g SP):

(2.26)

For 2n > a and \t\ ^ r this implies

\f(r, 0| < (jtf"" |/(r, 01 ̂  (^)*Cn\t\-*l* (2.27)
for a ^ 0 and \t\ ̂  r we get from (2.26), with n — 0,

|/(r, 01 < {^-)X \f(r, t)\ < (^)"co\t\-W, (2.28)
and therefore the estimate (2.10) holds, with Cx ~ max((70, Cn).

I t should be noted that the assumption for the potential in KURODA'S

paper [3]2 is given by (2.2) with E = 0 (in this case our proof can be
2 The potentials considered in COOK'S [1] and HACK'S [2] papers fulfill this

assumption.
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simplified by setting F(r) — 1). However, we have shown the existence
of Miller operators under much less restrictive requirements. Because in
our proof R is arbitrary (but finite) the only restriction for V(r) in the
region r ^ R is that H' be a real symmetric operator.

3. Uniqueness of H

As mentioned in Section 2, the originally given real symmetric
operator H' can always be extended to a self-adjoint operator H, such
that eiHt and therefore U(t) are defined. The uniqueness of U(t) and
hence of Q± depends on whether the self-adjoint extension of Hf is
unique. This is the case if and only if the closure Hf of H' is self-adjoint
(Hf is then called essentially self-adjoint [12]).

In the following we review the most important results concerning
this question.

a) The case of square integrable potentials, i.e., of potentials which
fulfill condition (2.2) with R = 0 and e = 1 was investigated by KATO

[13]. In KATO'S method first HQ is extended uniquely to a self-adjoint

operator Ho which acts as the multiplication operator ~— in momentum

space. I t follows that Ho + V is a self-adjoint operator defined on the
domain of Ho. Furthermore H' equals Ho + F, hence H' is essentially
self-adjoint. Under the weaker assumption (2.2) with R = 0 and e > 0,
a generalization of KATO'S proof yields the same result [3].

b) In the case of singular, i.e., not locally square integrable potentials
this method is not applicable3. However, for spherically symmetric
potentials some results concerning the question whether unique self-
adjoint extensions of Hr exist have been achieved by a study of the
radial Schrodinger equation, i.e., the extensions of the symmetric opera-
tors L'i (I = 0, 1, 2, . . .) defined in the space L2(0, oo) by

(r) (3.1)

have been investigated. The domain Dr of L[ is restricted to functions
(f> (r) that vanish in an individual neighborhood of the point zero and for
sufficiently large r (compare the definition of the operator L'Q given in
[14] p. 173).

For potentials which fulfill the condition
Rt

f\V(r)\rdr< oo, 0 < Rt< co (3.2)
o

and are locally integrable in the interval R± < r < oo the operator LQ is

3 The important point in KATO'S proof that V(r) is denned on the complete
domain of H'Q does not hold if V{r) is not locally square integrable.
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not essentially self-adjoint (compare [6], [15]). This result is valid also
for spherically symmetric potentials which are restricted by the conditions
given in Section 3a) because (3.2) holds for these potentials. We would
like to stress that there is no contradiction to KATO'S proof. Since the
functions of Df all vanish in a neighborhood of the point zero, the
operator L'o in comparison to the originally given operator H', has been
contracted so strongly that it can no longer be extended in a unique
manner. However, the unique extension of Hr given by Sf, can also be
deduced from L'o by choosing among all possible extensions of L'o the one
which fulfills the boundary condition that its proper and improper eigen-
functions are 0 (r) as r -» 0. Using this boundary condition also in the
case of singular potentials satisfying (3.2) and4

f\V(r)\dr<™, (3.3)

it is possible to select one extension to be physically meaningful (cf. [6],
[7]). The operators L\ are essentially self-adjoint for Z 4= 0. In this way
Moller operators can be defined uniquely, too.

Highly singular potentials with the restrictions:

V(r) =~+V0(r) for 0 < r <: Rx (3.4)

/ \V{r)\rdr< oo (3.5)

with oc ̂  2 and

/ |F 0(r) | rdr<oo (3.6)
0

have been studied by MEETZ [15] (compare also [7]). For a > 2 it was
shown5 that L\ and thus H' are essentially self-adjoint6 only in the case
of g2 > 0, i.e., if the highly singular part of the potential is repulsive (for
g2 < 0 the operators L[ are not essentially self-adjoint and no extension
can be selected as the physically meaningful one by the methods given in
[6] and [15]).

We note that the assumption (3.5) can be replaced by (3.3) or by

Jv*{r)dr< oo (3.7)
Ri

without any change of the results mentioned above. This follows if (3.3)
is valid under consideration of [14], p. 203, Satz 47 and if (3.7) is valid
with the help of [14], p. 305, Satz 7.

4 Eq. (3.3), as well as (3.7), is valid for potentials V(r) which fulfill (2.2) with
R< 22X.

5 Concerning the peculiarities in the special case a = 2 compare [15].
6 If a contraction of H' is essentially self-adjoint the same result holds for Hf

itself (cf. [13]).
7 The necessary condition of this theorem is not fulfilled.
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If the potential V(r) is of the form

V(r)= V^-h V2(r) (3.8)

where V^(r) is a bounded, but not necessarily spherically symmetric
function, it suffices to investigate the operator

by the methods given above. Because S[ and S[ + F2 {v) have the same
deficiency-index (cf. [14], p. 150), the statements concerning the unique
self-adjoint extension are equivalent for the two operators.

Thus uniquely defined Miller operators exist, e.g., for potentials which
fulfill the restrictions

F(* - )= | f+F a ( r ) , for 0<r<R1 (3.10)
and

\V(r)\^^, for R^TK™ (3.11)

with
g2 > 0, GC>2, p>0 and |F2(r)| ^ const .

Finally it should be noted that recently N. LIMIO proved the essential
self-adjointness of H' for a more general class of (at the origin) highly
singular repulsive potentials [16].

We are very indebted to Prof. H. ROLKNIK for valuable discussions. One of us
(J. K.) wants to thank the Bundesministerium fur wissenschaftliche Forschung for
a grant-in-aid.
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