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Abstract. The explicit determination of the matrix elements of the S UΆ irredu-
cible tensors is carried out by a purely algebraic method. These expressions may
be used to compute the Clebsch-Gordan coefficients by orthogonalisation. For
the special case of (0, q) tensors simple formulas are derived.

I. Introduction

Recently compact Lie groups of rank Ξ> 2 have found wide applica-
tions in elementary particle physics. In view of concrete physical pro-
blems, for each group the following main problems have to be solved:
(a) determination of the irreducible representations (I.R.) and the matrix
elements of the group generators, (b) decomposition of the direct product
of two I.R. and hence the computation of the Clebsch-Gordan (C.G.)
coefficients. It is well known that the groups of rank ^ 2 are not multi-
plicity-free (the same representation may occur in the direct product
more than once) so that the C.G. coefficients are not completely specified
by the basis vectors. The Wigner-Eckart theorem is also modified:
the number of reduced matrix elements appearing there is equal to the
multiplicity of the equivalent representations.

The simplest of the above groups is S U3. In this case the problem (a)
has already been solved by a number of authors [1, 2, 3, 4, 5], while
problem (b) has received until now only an incomplete solution.
MOSHINSKY [6] has derived a compact expression for the C.G. coeffi-
cients corresponding to the product (p, q) ® (p'9 0), which is multi-
plicity-free, while KUBIASΓ, LTJBIE and MACFABLANE [7] have tabulated
the coefficients for the simple product (p, q) ® (1, 1), BAIBD and BIEDEN-
HABN [8] for the cases (p, q) <g> (1, 0), (p, q) Θ (0, 1), (p, q) <g> (1, 1) and
PANDIT and MTJKUNDA [9] for the case (p, q) <g> (3, 0). We must also
mention the numerical tables of SU3 C.G. coefficients [10,11,12, 13] for
the products of lowest representations. However, the general problem
of deriving a simple analytical formula analogous to the Wigner-Racah
expression for S U2 has not yet been solved and it is doubtful if such a
task is really possible.
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In the present paper we establish an analytic expression for the matrix
elements of an arbitrary irreducible tensor (I. T.). A method used by LURIE
and MACFARLANE [15] for the (1,1) tensor is generalised. The method
consists in solving the commutation relations (C.R.) which define the
I.T. We obtain equations with finite differences whose solutions contain
the number of arbitrary constants corresponding to the equivalent
representations which occur in the direct product. The constants are
connected with the reduced matrix elements of the tensors. The C.G.
coefficients are obtained by orthogonalisation.

It seems that the method used in this paper for S Z73 may be extended
to other higher rank groups.

In the Sections II— V we establish the expression of the matrix ele-
ments of the I.T. in the general case while in Sec. VI, the formula for the
(0, q) irreducible tensors, which are multiplicity -free, is derived. These
last expressions are obtained in a much easier way and are simpler than
those of MOSHINSKY [6]. A brief version of the present paper has been
published elsewhere [14].

II. Preliminary remarks

The irreducible tensors T$ corresponding to a representation μ — (p,q)
of the S U3 group and labelled by v = (/, Iz, Y) are defined by their
C.R. with the infinitesimal operators X:

[X, Tζ] = (μ, v' \X\ μ, v) T$ . (I)

The general structure of the eigenvalue diagram and hence the range
of /, Iz and Y may be deduced from the paper of GINIBBE [16] and is
represented in Fig. 1.

The matrix elements of the eight infinitesimal operators may be
found in DE SWABT'S paper [17]. We shall mention only those which
are used in the present paper,

(μ; Γ,IZ + 1/2, Y + 1 \K+\ μ'} I, Iz, Y)

nit 1/2,7' ΓΛ

 Aβ(χ) $ Bμ(y) 1 (2 a)
- ~ )i/2 J,f 1/2,1; [°Γ,I+H2 (21 + 2)1/2 ~ °Λi-ι/2 (2 /)i

+1/2, r-l | i_ |/ι;/,J s > Y)

( °>Γ, 1 + 1/2 (2/ + 2)1/2 l'> I-1/2

where C\fyjt are the C.G. coefficients of the S Uz group and

Aμ(x) =[(a-x)(b + x + 2)(c + x+ I)]1/* (3)

Sμ(y) = [(α + y + 1) (6 - y + 1) (- c + t/)]1/* (4)
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where

s = I + -Γ; y = I- Γ.

From Fig. 1 follows
— c ̂  x ̂  a', c ̂  y ̂

(5)

(6)

Fig. 1. Eigenvalue diagram for an irreducible representation (p, q). The numbers denote the eigen-
value multiplicity. The maximum multiplicity is m = 1 4- min(p, q)

The matrix elements (2) being expressed in the variables x, y instead
of /, Y, we shall adopt the former to label the matrix elements of the
I.T. Using the Wigner-Eckart theorem for S U2 we find [17]:

v Iv IZl, Y,)

= <y 8, Fl + Γa / /*!, ι̂? 2/ι μ2> ̂ 2>

where we have used the well known triangle rule :

I^^ + Iz-r (r = 0 5 l , . . ., 2 mi

(8)

(9)
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and the additivity of the hypercharge. The rather asymmetric notation
of the new matrix element is more fashionable; we shall return to a
symmetric notation in the final result.

We must also have in view the selection rules for μ which are given
by SPEISEB'S [17] graphical multiplication rules or by the rather in-
tricate expressions in [18, 19, 20, 21, 22] and [9].

We shall mention only the following relations :

a± + a2 — α3 = τ; δx -f 62 — δ3 = σ (10)

where τ and a are nonnegative integers while the multiplicity of the
equivalent representations is given by the expression :

M = N+l-n (11)
where 3

N = 62 - c2 + Σ M(-%) (12)
with ί = l

u± — α3 — % + <y, u2 = &! — bz + c2; % = cx — c3 + c2 (13)

and n is a nonnegative integer which vanishes for p^^ p& q± ̂  ^2

 an(^
whose concrete expression can be deduced from the above mentioned
papers.

A careful examination of the commutation relations (1) suggests
the following way of solving the system of equations which determine
the matrix elements of the I.T. :

a) Find the matrix elements with r = 0 of the tensor
(B in Fig. 1).

b) Determine by recurrence the matrix elements with r — 0 of the
tensor Tμ^ ^ (running from B to A).

"Γ T"'61

c) Solve the finite difference equations which determine all the matrix
elements of the tensor Tμ£ Pa (A in Fig. 1).

"F'"F"ί&2

d) Obtain by recurrence the tensors Tμf l (running
-^(P2+s).~(pa + s),b2-s

from A to B).
e) Determine by recurrence the matrix element of the tensors

Tμ^ l (running parallel to BC).
- (Pa + 8 ~ 0, (»3 + « - 0, δa - S - t

III. The matrix elements of the tensor Tμ* „
Pz Pz ,

Let us consider the matrix elements fμ3, /ι + -o"(2>2+ #2+ 1)>

+ 4-(^2 + ^2 + 1)» î + ca ± 1| . . . I #L, /!, 4, Γx) of the C.R.:
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\E+,T» j 1=0 (14a)
[ y (2>2 + ffa), -g (Ps + ft), C2J

IX-, T* ! 1 = 0 (14b)
[ Yd>. + ft),-2-(Pi + flfi),e,J

and the change of function

yi + 1)! /(q8» 63, c3; Si + a

> 2/ι 1^2> «2» 62l ^3> 0) = (15)
; Si + a>) /(68> «3> — c3; & + 62)-|l/2
! /K ̂  c,; ̂ ) /(δ,, %, - cι; yj J ^ ̂ ' ̂ '

where

we obtain the system of finite difference equations

,̂ yx) (17 a)

with the obvious solution

In the last expressions μ stands for μl5 μ2, μ^. Consider now the matrix

elements 8, 1^ + (p2 + * + 1), -4, + (ft + * + x)' yι + δ2 ~ 5 ±

(19a)
~2>.

ix-, r? ! 1
ή-(P + β),T (Pι + «).6ι-β

γ(2?2 + s +1), γ(p. 4- s + I),δ2 - s - 1

we make the change of function

= Γ (

L c2 + 5 -f 1) ! f(al9 bl9 cx;

s

 (20)

and find the system of finite difference equations

Gs(μ, xl+l,yί) = Gs(μ, xί9 2/ι) (21 a)

Q8(μ> χ^ Vi +l) - Q*(μ> χι> 2/1) = - Q8+ι(μ> χι> 2/1)
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Since from (15), (18) and (20) it results that the f unction Gbz_C2(μ^x
is independent of x1 and ylt for s — 0 we get :

where T'γ(μ) are undetermined constants.

Let us take now the matrix elements ίμ3, /x + -^(Pz + 1) ~ r >

4+ y (£2 + 1), F! + & a + 1 I I μiJiJzs YI) of the C.R.:

-F ΊΓ'
and make the change of function :

(A*I» %> 2/1 \μ& ^2> Cal ^3> ^)

= Γ (^2 — <?«)! fa + 2/1+1) (̂  + yι -f qa + c, — r + 1)! Ίi/2
L ((aά + yi + Oi + c, — 2r +!)!)« (3^ + yι — r)! J

V Γ /(g8» ^3> C3; a?! + «2 — ^) /(&!> «1» — C l> yi) 11/2 r / x
X L /K δi, cι; ̂ ) /(6,, α,, -c3; yx + c2 - r) J /-^' ̂ ' ̂

we obtain then the equations

(a;,.
(25)

__ _
(«ι + 2/ι + «2 + C2 — 2r + 3) (a?! + 2/ι + «2 + c2 — 2r + 2) '

Equations (20) and (22) give

U(μ, ̂  Λ) = f , ( μ , Λ) = ̂ m'Γ-c1^ ^TW y\ (26)
A°ι> αι> — cι> i/i; y = o

One observes that for r = α2 + c2 + 1 the left side of (25) vanishes so that
we obtain an identity which is easily verified. Consider the function

From (25) we then obtain f or r = α2 + c2 + 1 :

H(xv yι + 1) = ̂ (α;l3 yx) = ̂ (0^) . (28)

The general solution of the system of equations (25) is

k Ό

+ g« + c2 — 2r + 2? + 1)!



Irreducible Tensors for the Group S U3 127

where φ0 = fo(μ, 2/ι) and ψι(yι) (Z = 1, 2, . . ., r) are arbitrary functions.
One can see by direct calculation that for the supplementary condition
(28) we have φl (yj Ξ= 0 if I =j= 0 and /0 ( ,̂ ̂ ) must be a polinomial of
degree p2 in t/^ From the Speiser-Goldberg selection rules we then obtain
some relations between the constants T'γ (μ) so that instead of (26) we have

where
aί = αι + % θ (wι) "» &i = δι - ^2 θ W *> cί = cι - us θ (u9) (30)

Ty(μ) are arbitrary constants and ^V is given by (12).

Summarising the results, we have

N

8, r) - 27 ίΓy(μ) (^x, «!, yl \μ2, αa, ca| ^8, r)y (31)

where :

2 — r) /(&ι» Q^ι> — Cι> yi) I
, αa, -c3; ̂  + c2 - r) J/(%,&!,(?!;:

X

IV. The matrix elements for an arbitrary I. T.

Let us consider the matrix elements Iμ3, Il + ~^(p^ + s -{- 1) — r,

*+!)> F1 + 6 1-«-l |..JΛ,J 1,/ f l, Γj of the C.R (19b)

and make the change of functions :

= [r! (αa + ca + β - r)! (αa

/(α3, 6t,β,;»l + α1 — r)

/(^> q8» — c3; yi + c2 + 8 — r) 11/2
,, αa, ~C2; ca + β) /(6lf αx, ̂ c,; yj J
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We obtain the recurrence relation

(μ9^yi) (34)

gΐ.f(μ, a?ι» ft + 1) + gl,-ι(μ, a?ι — 1, ft)

in which g^r(μ) xv yj is known from (32) and (33). The solution of the
recurrence relation is :

^+^1+1 + ^,3 — ̂ • . 4 - 1 8~ 3 -1 4~mί 4

X ffΰ,r-m0t2-m0tί (/*> ^ ~ ^0,4? 1̂ + W 0 > 8)

( α = l , 2 , 3 , 4 ; i = 0, 1, . . . , β ) ; εt=Σ^i,^ (35)
α = l

Choosing 72ι — I± — r and taking the matrix elements

of the C.R.

[(P2 + S — t+l)(p2 + s — ί + 2)J

[j
x T* l + (36)

-^(Pz+s-t + l), -(p2 + s-t-l),b2-s-t-l

pz + s — t+l

- p a s - - ,

we make the change of function

/\^2> ^2> ^2> ^2 ~ί~ ^) /(^3> ^3> ^3>

/(63, α3, —c3; ft -f c2 + 5 — r) "11/2

- r) Π1/2 x

- t - Γ) l X

(37)

11/2
tf,8,r(μ>χι>
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and find the recurrence relation

AM,r(A *!» 2/l) = - Af-l,β + l,r + l(μ» *1» 2/l) + K + C2 + S - £ + 2) X

X W- !,*,>> *1> 2/l) + (*1 +Vl+ i)"1 X

X ( v -

where &o,s,r(^> #1* 2/ι) *s known from (33) — (35) and (38).
The solution of the recurrence equation is :

1 " 4 + yι - r -

V Hlh r Q Ή 1A C/^2 — C2 — 6 — "Ό,lJ
? — 1

(α« -4- c» + β 4
χ \2-rz-r—n—ii± , , .

(*ι 4- 2/ι 4- 1 — %.4 4- %)3)^-ι,3+^-ι,4-^ 3-%4 Λ

V Λ ^ (it Ύ -M /I/ _L /M \ /^Q\
^ 0, S + W O J l , f + n0»ι + W 0 ,3 VA*' 1 /ί/0»4' "l i /eΌ,3/ \OVJ

and so all the matrix elements are known.

V. Final result

Noting that x1 + #2 — α:3 = ̂  + f/2 — y% = r, we shall write the final
result in a more symmetric manner :

= ^fi SvΊ,, ̂ l? ̂ i' ̂  l^2' ^2? ̂ 1 ̂ 3? ̂ 3ί ^3^
The expression derived for the /^-independent matrix element is

(μι> *ι» yi 1^2. ^2J ya| /w35 »8» %)
^ (41)

= 27 2V(/*i> ^a> ̂  (μ>v χv y\ \μ*> χ& v* \μ*> χ& VB)Y
y=0

The coefficients Tγ are related to the reduced matrix element. The formula
for the (nonorthonormalized) isoscalar coefficients is :

(/*i> #ι> 2/ι |/*2» ^2' 2/2! /w3, ^3J 2/3)7 (42a)

= [(xι + 2/ι + 1) (»2 + 2/2 + 1) (2/ι - ^2 + ^3) ! (~ xι + 2/2

where
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/\ (/ \OΛ ~~~ y& ~~~ ^o 1 / ^ \^2 " I 2 — 1 ~~" 2 "τ~ 3 ~~" 0»1"~~ 0«3 ' 0>2 ' 0»4/ ^

m ' II Ύ tl\ Λ/ (11 ' Ύ 7? — *W7
v,-,, 0,β> ft) X>y) Xγ\r> Xl 7ίΌ,4 /7l'0t4>

2/1 4- ^0,3 + ™<>,3> ^3 + ^0,2 + ^0,2, 2/3 ~ ^0,l) ̂  -

and

v

(α-1,2,3,4)

-f

(42 e)

_
<ί—-k+ I ) l f ( b 1 9 a l 9 —c^ ^—k) *

We note that if the selection rules correspond to a multiplicity smaller
than N + 1, the functions appearing in (40) are no longer linearly in-
dependent.

The expression given above may be used to compute the C.G.
coefficients if we use the orthonormality relations [17]. The computation
of the general expression for the C.G. coefficients, a very difficult task,
must be done for each concrete case individually.

VI. The special I. T. corresponding to the representation (0, q)

The matrix elements of these tensors which are multiplicity-free
can be obtained directly without making use of the general formula given
in Sec. V. This is preferable because it is difficult to observe the simpli-
fications which occur in this case in the intricate expression (42). We
shall return to Sec. Ill observing that in the present case the sum (31)
contains a single term :

5 > 3 ' 3

while eq. (32) gives

»r)3' /o

„ IL —9*
t**> 3 ' 3

— Λ Γ /(ga» 63* c3; αa + xj f(bl9 al9 —c^ yj 1
Tί ° L /(%, &!, Cj; Xj) /(68, a3ί — cs; yτ + c2) J

(44)
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T0 (μ) is an undetermined constant. To determine the matrix elements of
the other tensors we shall use a method other than that of Sec. IV. From
the commutation relation (19b) and the change of functions (33) we
shall determine the matrix elements (μlt x^ yl \ μz, α2, c2 -j- s \ μ3, 0)0.

The recurrence relation (34) with r = 0 is :

We make the change of function :

and obtain the recurrence relation

u,+ιfa, yi) = M*ι> 2/1) - Wjto, 2/1 + 1) (47)
which has the solution:

From (46) and (48) we find finally:

X fe + 2/ι + * + 1) SW^i* 2/ι + *)

The function ^0,0(^1? 2/ι) ^s derived from (33) and (44):

_ /„ .. x 1 /(α3, 63, c3; az +

Using the relations (33), (49) and (50), the matrix elements
(//!, a?!, 2/j |^2j

 α2> C2 + s\ /^3? ^)o are completely determined. To find the
other ones we consider the C.R. :

\Z+,TV.«l 2, 1 = 0 (51)
L 2 ' 2 ' 3 Ί

and the same method as in Sec. III. We than obtain the matrix elements

(μi, #1, 2/1 μ2, |f- , 2/2 ^3» ^35 2/3J expressed in terms of (μv xlt y± \μ^ a2,

c2 + s\ μ& 0) derived above.
Expressed in the variables x and y the final result is :

, > 2/2

+ 2/1+1) (a?i + x2 + 2/3

_ v , (a?ι + ^2 — a?s) ! f(^2 2/2; - _ 6ι> Cι. ̂  (6>> αs) _Ca

, + 2/2 -/J!]-1 X

2/2 —
2/3 — &) ! /(δ8, α3, — c3; yt + c2 — k
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To compare the present result for the I.T. corresponding to a re-
presentation (0, q) with MOSHINSKY'S one [6] corresponding to a re-
presentation (g, 0) we have to use the symmetry properties of the C.G.
coefficients [17]. We then observe that the former is more convenient,
containing fewer terms.

Acknowledgement. The authors would like to express their gratitude to Pro-
fessor V. NOVACU for critical discussions.
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