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Abstract

In this paper, we consider the Neumann problem for the Laplace operator with a given
data containing a divergence of a vector field. We demonstrate the existence and reg-
ularity of a weak solution. As an application, we consider the existence and regularity
of a weak solution in regard to the Maxwell-Stokes type equation.
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1 Introduction

In this paper, we consider the Neumann problem for the Laplace operator with data con-
taining the divergence of a vector field of the form

∆u = div f +g in Ω,
∂u
∂n = f · n+ψ on Γ,∫
Ω

udx = 0,
(1.1)

where Ω is a bounded domain in Rn with a boundary Γ, n denotes the outer unit normal
vector to the boundary Γ, and f ,g and ψ are given functions. We demonstrate the existence
of a weak solution in the W1,p Sobolev and C1,α Hölder spaces and obtain W1,p estimates
and C1,α Schauder estimates. To the best of our knowledge, this result has not been explic-
itly proved in the previous research, although a similar result was given for the Dirichlet
problems by Gilbarg and Trudinger [10, Theorem 8.34].
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As an application of the above results, we consider the existence of a unique weak
solution and C1,β regularity of the weak solution in regard to the Maxwell-Stokes problem
containing a p-curl system.

In a bounded simply connected domain Ω in R3 without holes, Yin [18] considered the
existence of a unique solution for the so-called p-curl system

curl [|curlv|p−2curlv] = f in Ω,
divv = 0 in Ω,
n× v = 0 on Γ

(1.2)

where Γ denotes the C2,α (α ∈ (0,1)) boundary of Ω, p > 1, n the outer normal unit vector
field to Γ, and f is a given vector field satisfying the compatibility condition div f = 0 in Ω.
If f is a Cα-vector function, Yin [19] showed the optimal C1+β-regularity for some β ∈ (0,1)
of a weak solution. See also Yin et al. [20].

The equation (1.2) is a steady-state approximation of Bean’s critical state model for type
II superconductors. For further physical background, see [20], Chapman [8] and Prigozhin
[16].

Aramaki [3] extended the result of [19] on the C1+β regularity of a weak solution to a
more general equation, in a simply connected domain without holes to the following system.

curl [S t(x, |curlv|2|)curlv] = f in Ω,
divv = 0 in Ω,
n× v = 0 on ∂Ω

(1.3)

where the function S (x, t) ∈ C2(Ω× (0,∞))∩C0(Ω× [0,∞)) satisfies some structure condi-
tions. Hereafter, we denote ∂

∂t S (x, t) by S t(x, t).
However, in a multi-connected domain, the systems (1.2) and (1.3) are not well posed.

In fact, if the second Betti number is positive, for a weak solution v of (1.2) or (1.3), then
v+ z, where z satisfies curl z = 0,div z = 0 in Ω and z× n= 0 on Γ, is also a weak solution of
(1.2) or (1.3), respectively. Thus it is necessary to add some conditions to (1.2) and (1.3).
Aramaki [6] showed the unique existence and optimal C1+β-regularity of a weak solution
to the system (1.3) with additive conditions.

In the author’s previous paper Aramaki [4], we considered a system of quasilinear
parabolic type equations involving p-curl system associated with the Maxwell equations
in a multi-connected domain. We saw that the solution converges to a solution of the sta-
tionary problem as the time variable diverges to the infinity. The paper is a continuation of
[3] and [4]. For this type of operators, see also Aramaki [5].

We must impose the compatibility condition

div f = 0 in Ω (1.4)

for the existence of solution to (1.3). When (1.4) does not hold, we may consider the
following equation with a potential.

curl [S t(x, |curlu|2)curlu] = f +∇π in Ω. (1.5)

in a bounded multi-connected domain Ω ⊂ R3.
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In this paper, we consider the existence and regularity of a unique weak solution to (1.5)
under some conditions in a bounded multi-connected domain in R3.

The paper is organized as follows. In section 2, we consider the Neumann problem for
the Laplace operator of the form (1.1). In section 3, we specify some assumptions on the
domain and function S for application to the Maxwell-Stokes problem. In section 4, we
obtain the existence of a weak solution to the Maxwell-Stokes problem and its regularity.

2 Existence and regularity of weak solutions to the Poisson equa-
tion with the Neumann condition

In this section, we assume that Ω is a bounded domain in Rn (n ≥ 2) with a C1 boundary Γ
and 1 < p <∞.

Hereafter, we use the notations Lp(Ω),Wm,p(Ω) (m≥ 0, integer), W s,p(Γ) (s ∈R), C1,α(Ω)
and so on, for the standard Sobolev spaces and Hölder spaces of functions. For any Banach
space B, we denote Bn by the boldface character B. We henceforth use this character to
denote vectors and vector-valued functions, and we denote the standard inner product of
vectors a and b in Rn by a · b.

We consider the following Neumann problem to the Poisson equation. For given f ∈
Lp(Ω) satisfying div f ∈ Lp(Ω), g ∈ Lp(Ω) and ψ ∈W−1/p,p(Γ), find u ∈W1,p(Ω) such that

∆u = div f +g in Ω,
∂u
∂n = f · n+ψ on Γ,∫
Ω

udx = 0.
(2.1)

We note that if f ∈ Lp(Ω) and div f ∈ Lp(Ω), then f · n ∈ W−1/p,p(Γ) is well defined (cf.
Amrouche and Seloula [1]), and there exists a constant C > 0 depending only on p and Ω
such that

‖ f · n‖W−1/p,p(Γ) ≤C(‖ f‖Lp(Ω)+ ‖div f‖Lp(Ω)).

Now we give a notion of a weak solution of (2.1).

Definition 2.1. We say that u ∈W1,p(Ω) is a weak solution of (2.1), if u satisfies∫
Ω

∇u · ∇ϕdx =
∫
Ω

f · ∇ϕdx−
∫
Ω

gϕdx+
∫
Γ

ψϕdS (2.2)

for all ϕ ∈ C1(Ω), where dS denotes the surface area of Γ and the last integral of (2.2)
means the duality between W−1/p,p(Γ) and W1−1/p′,p′(Γ).

The compatibility condition becomes∫
Ω

gdx =
∫
Γ

ψdS . (2.3)

Remark 2.2. Lieberman [13] considered a more general elliptic equation, but he only
treated the case p = 2.

We obtain the following existence result.
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Proposition 2.3. Let Ω be a bounded domain in Rn with a C1 boundary Γ. For f ∈ Lp(Ω)
satisfying div f ∈ Lp(Ω), g ∈ Lp(Ω) and ψ ∈W−1/p,p(Γ) satisfying the compatibility condition
(2.3), the problem (2.1) has a unique weak solution u ∈W1,p(Ω), and there exists a constant
C > 0 depending only on n, p and Ω such that

‖u‖W1,p(Ω) ≤C(‖ f‖Lp(Ω)+ ‖g‖Lp(Ω)+ ‖ψ‖W−1/p,p(Γ)). (2.4)

For the proof, we apply the following proposition given by [1, Theorem 4.2].

Proposition 2.4. Let X and M be reflexive Banach spaces with the dual spaces X′ and M′,
respectively, and let a be a continuous bilinear form defined on X ×M. Let A ∈ L(X,M′)
and A′ ∈ L(M,X′) be bounded linear operators defined by

a(v,w) = 〈Av,w〉 = 〈v,A′w〉 for v ∈ X,w ∈ M.

Put V = KerA. Then the following statements are equivalent.
(i) There exists β > 0 such that

inf
0,w∈M

sup
0,v∈X

a(v,w)
‖v‖X‖w‖M

≥ β.

(ii) A : X/V → M′ is an isomorphism, and 1/β is a continuity constant of A−1.
(iii) A′ : M→ X′⊥V := { f ∈ X′; 〈 f ,v〉 = 0 for all v ∈ V} is an isomorphism, and 1/β is a

continuity constant of (A′)−1.

Proof of Proposition 2.3. We rely on the following inequality (cf. Kozono and Yanagi-
sawa [12, p. 3853] or Simader and Sohr [17, Theorem 1.3]). There exists a constant c0 > 0
such that

‖∇u‖Lp(Ω) ≤ c0 sup
v∈W1,p′ (Ω),∇v,0

∫
Ω
∇u · ∇vdx

‖∇v‖Lp′ (Ω)
(2.5)

for any u ∈ W1,p(Ω), where p′ is the conjugate exponent of p, that is, (1/p)+ (1/p′) = 1.
From now on, for any space B of functions defined in Ω, we denote

Ḃ =
{

u ∈ B;
∫
Ω

udx = 0
}
.

Let X = Ẇ1,p(Ω) and M = Ẇ1,p′(Ω) which are closed subspaces of reflexive Banach spaces
W1,p(Ω) and W1,p′(Ω), respectively. Therefore, X and M are also reflexive Banach spaces
(cf. Brezis [7, Proposition III, 17]). For any u ∈W1,p(Ω), v = u− 1

|Ω|

∫
Ω

udx ∈ Ẇ1,p(Ω). So it
can be easily seen that

{∇u ;u ∈W1,p(Ω)} = {∇v ;v ∈ Ẇ1,p(Ω)}.

Hence (2.5) also holds if we replace W1,p(Ω) and W1,p′(Ω) with Ẇ1,p(Ω) and Ẇ1,p′(Ω),
respectively. That is,

‖∇u‖Lp(Ω) ≤ c0 sup
v∈Ẇ1,p′ (Ω),v,0

∫
Ω
∇u · ∇vdx

‖∇v‖Lp′ (Ω)
(2.6)
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for any u ∈ Ẇ1,p(Ω), If we define a continuous bilinear form on X×M by

a(u,v) =
∫
Ω

∇u · ∇vdx for (u,v) ∈ X×M,

then it follows from (2.6) that (i) of Proposition 2.4 holds with β= 1/c0. Define A ∈L(X,M′)
by a(u,v) = 〈Au,v〉 for u ∈ X and v ∈ M. From (2.6), we can see that V = KerA = {0}.
Furthermore, we define a functional T by

〈T,v〉 =
∫
Ω

f · ∇vdx−
∫
Ω

gvdx+
∫
Γ

ψvdS

for v ∈ Ẇ1,p′(Ω). Since f ∈ Lp(Ω),g ∈ Lp(Ω) and ψ ∈W−1/p,p(Γ), we see that T ∈ M′. By
Proposition 2.4 (ii), there exists a unique u ∈ X = Ẇ1,p(Ω) such that

a(u,v) = 〈T,v〉 for all v ∈ M = Ẇ1,p′(Ω),

and
‖u‖X ≤ c0‖T‖M′ . (2.7)

For the Poincaré inequality, there exists a constant C = C(n, p,Ω) such that ‖v‖LP′ (Ω) ≤

C‖∇v‖Lp′ (Ω) for v ∈ Ẇ1,p′(Ω). Hence for v ∈ Ẇ1,p′(Ω), we have

|〈T,v〉| ≤ ‖ f‖Lp(Ω)‖∇v‖LP′ (Ω)+ ‖g‖Lp(Ω)‖v‖Lp′ (Ω)+ ‖ψ‖W−1/p,p(Γ)‖v‖W1−1/p′ ,p′ (Γ)

≤ C(‖ f‖Lp(Ω)+ ‖g‖Lp(Ω)+ ‖ψ‖W−1/p,p(Γ))‖v‖Ẇ1,p′ (Ω).

Therefore, we have

‖T‖M′ ≤C(‖ f‖Lp(Ω)+ ‖g‖Lp(Ω)+ ‖ψ‖W−1/p,p(Γ)).

For any v ∈ W1,p′(Ω), we have v− cv ∈ Ẇ1,p′(Ω), where cv =
1
|Ω|

∫
Ω

vdx. Hence it follows
from the compatibility condition (2.3) that∫

Ω

∇u · ∇vdx =

∫
Ω

f · ∇vdx−
∫
Ω

g(v− cv)dx+
∫
Γ

ψ(v− cv)dS

=

∫
Ω

f · ∇vdx−
∫
Ω

gvdx+
∫
Γ

ψvdS .

for all v ∈W1,p′(Ω). Therefore, u is a unique weak solution of (2.1) and the estimate (2.4)
holds. This completes the proof of Proposition 2.3.

For the regularity of the weak solution of (2.1), we want to prove the following estimate
of a C1,α weak solution.

Proposition 2.5. Let Ω be a bounded domain with a C1,α boundary Γ (0 < α < 1). Assume
that f ∈ Cα(Ω),g ∈ L∞(Ω) and ψ ∈ Cα(Ω) satisfying the compatibility condition (2.3). If
u ∈ C1,α(Ω) is a weak solution of (2.1), then there exists a constant C > 0 depending only
on n,α and Ω such that

‖u‖C1,α(Ω) ≤C(‖ f‖Cα(Ω)+ ‖g‖L∞(Ω)+ ‖ψ‖Cα(Ω)). (2.8)
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Proof. Since C1,α(Ω) ⊂W1,2(Ω), if we apply Lieberman [13, Theorem 5.54], then we have

‖u‖C1,α(Ω) ≤C(‖u‖C0(Ω)+ ‖ f‖Cα(Ω)+ ‖g‖L∞(Ω)+ ‖ψ‖Cα(Ω)). (2.9)

We must drop the first term on the right-hand side of (2.9). For this purpose, we use an
argument similar to Nardi [14, Proof of Theorem 4.1]. Let us suppose that (2.8) is false.
Then there exist {uk} ⊂C1,α(Ω), {gk} ⊂ L∞(Ω) and {ψk} ⊂Cα(Ω) satisfying the compatibility
condition

∫
Ω

gkdx =
∫
Γ
ψkdS , such that uk is a weak solution of

∆uk = div f k +gk in Ω,
∂uk
∂n = f k · n+ψk on Γ,∫
Ω

ukdx = 0,

‖uk‖C1,α(Ω) = 1, and

‖uk‖C1,α(Ω) ≥ k(‖ f k‖Cα(Ω)+ ‖gk‖L∞(Ω)+ ‖ψk‖Cα(Ω)).

Then f k→ 0 in Cα(Ω), gk→ 0 in L∞(Ω) and ψk→ 0 in Cα(Ω). Since ‖uk‖C1,α(Ω) = 1, there
exists a constant C(Ω) > 0 such that

|Dβuk(x)−Dβuk(y)| ≤C(Ω)|x− y|α for x,y ∈Ω, |β| ≤ 1.

Iterating the Ascoli-Arzelà theorem, there exists a subsequence {ukl} of {uk} such that ukl →

u0 in C0(Ω) and Dβukl→ uβ in C0(Ω) for |β|= 1. This implies that ukl→ u0 in C1(Ω). Hence
u0 is a weak solution of 

∆u0 = 0 in Ω,
∂u0
∂n = 0 on Γ,∫
Ω

u0dx = 0.

Thus we have u0 = 0. From (2.9), we have

1 = ‖ukl‖C1,α(Ω) ≤C(‖ukl‖C0(Ω)+ ‖ f kl
‖Cα(Ω)+ ‖gkl‖L∞(Ω)+ ‖ψkl‖Cα(Ω))→ 0.

This leads to a contradiction. Therefore the estimate (2.8) holds. �

We present the main theorem in this section.

Theorem 2.6. LetΩ be a bounded domain with a C1,α boundary Γ (0 < α < 1). Assume that
f ∈ Cα(Ω) satisfying div f ∈ Lp(Ω), g ∈ L∞(Ω) and ψ ∈ Cα(Ω) satisfying the compatibility
condition (2.3). Then a unique weak solution u of (2.1) belongs to C1,α(Ω), and there exists
a constant C > 0 depending only on n,α and Ω such that (2.8) holds.

Proof. Choose f k ∈ C3(Ω),gk ∈C3(Ω) and ψk ∈C3(Ω) such that
f k→ f with ‖ f k‖Cα(Ω) ≤ c‖ f‖Cα(Ω),
gk→ g in L1(Ω) with ‖gk‖L∞(Ω) ≤ c‖g‖L∞(Ω),
ψk→ ψ with ‖ψk‖Cα(Ω) ≤ c‖ψ‖Cα(Ω).
Moreover, choose the C2,α domain {Ωk} exhausting Ω such that Γk := ∂Ωk→ Γ and the

surfaces Γk are uniformly in C1,α (cf. [10, the proof of Theorem 8.34]). Since gk and ψk

might not satisfy the compatibility condition, we choose constants ck such that∫
Ω

gkdx =
∫
Γk

(ψk + ck)dS . (2.10)
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By the Lebesgue dominated convergence theorem, we can see that∫
Ωk

gkdx→
∫
Ω

gdx,
∫
Γk

ψkdS →
∫
Γ

ψdS .

Since |Γk| → |Γ|, we have ck→ 0 as k→∞. We consider the following smooth approximat-
ing Neumann problem 

∆u = div f k +gk in Ωk,
∂u
∂n = f k · n+ψk + ck on Γk,∫
Ω

ukdx = 0.
(2.11)

Now the compatibility condition (2.10) holds. Thus (2.11) is a regular problem with the
Neumann boundary condition. Hence, it follows from [14, Theorem 3.1] that (2.11) has a
unique solution uk ∈C2,α(Ω). Moreover using Proposition 2.5, there exists a constant C > 0
depending only on n,α and Ω such that

‖uk‖C1,α(Ω) ≤ C(‖ f k‖Cα(Ω)+ ‖gk‖L∞(Ωk)+ ‖ψk‖Cα(Ωk)+ ck|Ωk|)

≤ Cc(‖ f‖Cα(Ω)+ ‖g‖L∞(Ω)+ ‖ψ‖Cα(Ω))+ ckC|Ω|.

Letting k→∞ in the weak form of (2.11), we obtain in the limit a unique weak solution u
of (2.1) and u ∈ C1,α(Ω) which follows from [13, Theorem 5.54]. By Proposition 2.5, the
solution u satisfies the estimate (2.8). �

3 Assumptions to an application

In this and next sections, we consider the Maxwell-Stokes problem in R3. Since we allow
that the domain is multi-connected in R3, we assume that Ω has the following conditions
as in [1] (cf. Amrouche and Seloula [2], Dautray and Lions [9] and Girault and Raviart
[11]). Let Ω ⊂ R3 be a bounded domain of class C2,α with the boundary Γ and Ω be locally
situated on one side of Γ.

(1) Γ has a finite number of connected components Γ0,Γ1, . . . ,Γm with Γ0 denoting the
boundary of the infinite connected component of R3 \Ω.

(2) There exist n connected open surfaces Σ j, ( j = 1, . . . ,n), called cuts, contained in Ω
such that

(a) Σ j is an open subset of a smooth manifoldM j.

(b) ∂Σ j ⊂ Γ ( j = 1, . . . ,n), where ∂Σ j denotes the boundary of Σ j, and Σ j is non-
tangential to Γ.

(c) Σi∩Σ j = ∅ (i , j).

(d) The open set Ω̇ = Ω \ (∪n
i=1Σi) is simply connected and pseudo C1,1 class.

The number n is called the first Betti number, which is equal to the number of handles of
Ω, and m is called the second Betti number which is equal to the number of holes. We say
that if n = 0, Ω is simply connected, and if m = 0, Ω has no holes.
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Define two spaces by

K
p
N(Ω) = {v ∈ Lp(Ω);divv = 0,curlv = 0 in Ω,v× n= 0 on Γ},

K
p
T (Ω) = {v ∈ Lp(Ω);divv = 0,curlv = 0 in Ω,v · n= 0 on Γ}.

It is well known that dimKp
T (Ω) = n and dimKp

N(Ω) = m.
We assume that a function S (x, t) ∈C2(Ω× (0,∞))∩C(Ω× [0,∞)) satisfies the following

structure conditions: there exist a constant 1 < p <∞ and positive constants 0 < λ ≤ Λ <∞
such that for all x ∈Ω

S (x,0) = 0 and λt(p−2)/2 ≤ S t(x, t) ≤ Λt(p−2)/2 for t > 0. (3.1a)

λt(p−2)/2 ≤ S t(x, t)+2tS tt(x, t) ≤ Λt(p−2)/2 for t > 0. (3.1b)

If 1 < p < 2,S tt(x, t) < 0, and if p ≥ 2,S tt(x, t) ≥ 0 for t > 0. (3.1c)

We note that from (3.1a), we have

2
p
λtp/2 ≤ S (x, t) ≤

2
p
Λtp/2 for t ≥ 0.

When S (x, t) = tp/2, system (1.3) becomes (1.2), and by elementary calculations, we see
that S (x, t) = ν(x)tp/2, where ν ∈C2(Ω) and 0 < ν∗ ≤ ν(x) ≤ ν∗ <∞, satisfies (3.1a)-(3.1c).

4 An application to the Maxwell-Stokes type equation

Since we allow that Ω is multi-connected, (1.3) is not well posed. In our previous paper [6],
we considered the following equation.

curl [S t(x, |curlv|2)curlv] = f in Ω,
divv = 0 in Ω,
v× n= 0 on Γ,
〈v · n,1〉Γi = 0 for i = 1,2, . . .m,

(4.1)

where 〈·, ·〉Γi denotes the duality between W−1/p.p(Γi) and W1−1/p′,p′(Γi). We assume that f ∈
Lp′(Ω) satisfying div f = 0 in Ω and 〈 f · n,1〉Γi = 0 for i = 1, . . . ,m, where the bracket 〈·, ·〉Γi

means the duality between W−1/p′,p′(Γi) and W1−1/p,p(Γi). Though we use the same notation
as the duality between W−1/p,p(Γi) and W1−1/p′,p′(Γi), we should not be in confusion. We
showed the existence and regularity of a weak solution to the system (4.1). To explain the
result obtained precisely, we consider the space

Vp(Ω) = {v ∈ Lp(Ω);curlv ∈ Lp(Ω),divv = 0 in Ω,

v× n= 0 on Γ, 〈v · n,1〉Γi = 0, i = 1, . . .m}.

Then we have

Lemma 4.1. Let 1 < p < ∞. Then Vp(Ω) is a closed subspace of W1,p(Ω), and we can
regard Vp(Ω) as a separable, reflexive Banach space with the norm

‖v‖Vp(Ω) := ‖curlv‖Lp(Ω)

which is equivalent to ‖v‖W1,p(Ω).
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For the proof, see [6] and [1].
Moreover, we define a space

W1,p
t0 (Ω) = {v ∈W1,p(Ω);v× n= 0 on Γ}.

Definition 4.2. For given f ∈ Lp′(Ω) satisfying div f = 0 in Ω, we say v ∈ Vp(Ω) is a weak
solution of (4.1), if v satisfies∫

Ω

S t(x, |curlv|2)curlv · curlwdx =
∫
Ω

f ·wdx for all w ∈W1,p
t0 (Ω).

In the previous paper, we obtained the following proposition [6, Proposition 3.5] and
theorem [6, Theorem 2.2] on the existence and regularity of the weak solution. These results
are used later.

Proposition 4.3. Assume that f ∈ Lp′(Ω) satisfies div f = 0 in Ω and 〈 f · n,1〉Γi = 0 for
i = 1, . . . ,m. Then the system (4.1) has a unique weak solution v ∈ Vp(Ω), and there exists a
constant C > 0 depending only on λ, p and Ω such that

‖v‖Vp(Ω) ≤C‖ f‖p
′−1

Lp′ (Ω)
.

Theorem 4.4. Assume that Ω is a bounded domain in R3 with a C2,α boundary Γ satisfying
(1) and (2) for some α ∈ (0,1), and that a function S (x, t) satisfies the conditions (3.1a)-
(3.1c). Moreover, f satisfies the condition that f ∈ Cα(Ω) and

div f = 0 in Ω and 〈 f · n,1〉Γi = 0, i = 1, . . .m.. (4.2)

Then the unique weak solution v ∈ Vp(Ω) of (4.1) in the sense of Definition 4.2 belongs to
C1,β(Ω) for some β ∈ (0,1). Furthermore, there exists a constant C > 0 depending only on
p,Ω and ‖ f‖Cα(Ω) such that

‖v‖C1,β(Ω) ≤C.

When f does not satisfy the first equation of (4.2), the theorem is false. In this case,
we may consider the following Maxwell-Stokes problem (cf. Pan [15]): to find (u,π) ∈
Vp(Ω)× Ẇ1,p′(Ω) such that

curl [S t(x, |curlu|2)curlu] = f +∇π in Ω,
divu = 0 in Ω,
u× n= 0 on Γ,
〈u · n,1〉Γi = 0 for i = 1,2, . . .m,
∂π
∂n = − f · n on Γ

(4.3)

Definition 4.5. We say that (u,π) ∈ Vp(Ω)× Ẇ1,p′(Ω) is a weak solution of (4.3), if (u,π)
satisfies the following equality.∫

Ω

S t(x, |curlu|2)curlu · curlwdx =
∫
Ω

f ·wdx+ 〈∇π,w〉W1,p
t0 (Ω)′,W1,p

t0 (Ω) (4.4)

for all w ∈W1,p
t0 (Ω).
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First we obtain the following proposition on the existence of a weak solution.

Proposition 4.6. Assume that f ∈ Lp′(Ω) and div f ∈ Lp′(Ω). Then the system (4.3) has a
unique weak solution (u,π) ∈Vp(Ω)×Ẇ1,p′(Ω), and there exists a constant C > 0 depending
only on λ, p and Ω such that

‖u‖Vp(Ω)+ ‖π‖W1,p′ (Ω) ≤C(‖ f‖p
′−1

Lp′ (Ω)
+ ‖ f‖Lp′ (Ω)).

Proof. We first consider the Poisson equation with the Neumann boundary condition
−∆π = div f in Ω,
∂π
∂n = − f · n on Γ,∫
Ω
πdx = 0.

(4.5)

Applying Proposition 2.3, (4.5) has a unique weak solution π ∈ Ẇ1,p′(Ω), and there exists a
constant C > 0 depending only on p and Ω such that

‖π‖W1,p′ (Ω) ≤C(‖ f‖Lp′ (Ω)+ ‖div f‖Lp′ (Ω)).

Since f +∇π ∈ Lp′(Ω), div( f +∇π) = div f +∆π = 0 in Ω and ( f +∇π) · n= f · n+ ∂π
∂n = 0 on

Γ, the hypotheses of Proposition 4.3 replaced f with f +∇π hold. Hence (4.3) has a unique
solution u ∈ Vp(Ω), and that there exists a constant C > 0 depending only on λ and p such
that

‖u‖Vp(Ω) ≤C‖ f‖p
′−1

Lp′ (Ω)
.

The uniqueness of a solution (u,π) ∈ Vp(Ω)× Ẇ1,p′(Ω) is now clear. �

Now we obtain the regularity of the weak solutions of (4.3).

Theorem 4.7. Assume that Ω is a bounded domain in R3 with C2,α boundary Γ satisfying
(1) and (2) for some α ∈ (0,1), and that a function S (x, t) satisfies the conditions (3.1a)-
(3.1c). Moreover, f satisfies the condition that f ∈ Cα(Ω) and div f ∈ Lp′(Ω). Then the
weak solution (u,π) of (4.4) belongs to C1,β(Ω)×C1,α(Ω) for some β ∈ (0,1), and there
exists a constant C > 0 depending only on p,α,Ω and ‖ f‖Cα(Ω) such that

‖u‖C1,β(Ω)+ ‖π‖C1,α(Ω) ≤C. (4.6)

Proof. By Proposition 2.6, the solution π of the Poisson equation with the Neumann bound-
ary condition (2.1) is, in fact, in C1,α(Ω) and there exists a constant C > depending only on
α and Ω such that

‖π‖C1,α(Ω) ≤C‖ f‖Cα(Ω).

Since div( f +∇π) = 0 in Ω and ( f +∇π) · n= 0 on Γ, it follows form Theorem 4.4 that u is
in C1,β(Ω) for some β ∈ (0,1), and the estimate (4.9) holds. �

Next we consider a special case where Ω has no holes. We note that in this case, we
can adopt the Dirichlet boundary condition with respect to π. That is to say, we consider
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the following problem: to find (u,π) ∈ Vp(Ω)×W1,p′

0 (Ω) such that
curl [S t(x, |curlu|2)curlu] = f +∇π in Ω,
divu = 0 in Ω,
u× n= 0 on Γ,
π = 0 on Γ.

(4.7)

Since Ω has no holes, we can write

Vp(Ω) = {v ∈ Lp(Ω);curlv ∈ Lp(Ω),divv = 0 in Ω,v× n= 0 on Γ}.

For f ∈ Lp′(Ω), the following Dirichlet problem{
−∆π = div f in Ω,
π = 0 on Γ

(4.8)

has a unique weak solution π ∈W1,p′

0 (Ω) in the sense of∫
Ω

∇π · ∇ϕdx = −
∫
Ω

f · ∇ϕdx for all ϕ ∈W1,p
0 (Ω),

and there exists a constant C > 0 depending only on p and Ω such that

‖π‖W1,p′ (Ω) ≤C‖ f‖Lp′ (Ω).

These facts follows from the variational inequality (cf. [12, (2.16)])

‖∇ψ‖Lp′ (Ω) ≤ c1 sup
0,ϕ∈W1,p

0 (Ω)

∣∣∣∫
Ω
∇ψ · ∇ϕdx

∣∣∣
‖∇ϕ‖Lp(Ω)

for all ψ ∈W1,p′

0 (Ω),

where c1 is a positive constant depending only on p andΩ, and an application of Proposition
2.4 as in the proof of Proposition 2.3.

Furthermore, if f ∈ Cα(Ω), it follows from [10, Theorem 8.34, 8.33] that the weak
solutin π of (4.8) belongs to C1,α(Ω), and that there exists a constant C > 0 depending only
on α and Ω such that

‖π‖C1,α(Ω) ≤C(‖π‖C0(Ω)+ ‖ f‖Cα(Ω)).

By the arguments as in the proof of Proposition 2.5, we can improve the estimate as follows.

‖π‖C1,α(Ω) ≤C‖ f‖Cα(Ω).

When f ∈ Lp′(Ω), since f +∇π ∈ Lp′(Ω) and div( f +∇π) = div f +∆π = 0 in Ω, and Ω has
no holes, i.e., dimKp

N(Ω) =m = 0, it follows from Proposition 4.3 and Theorem 4.4 that we
can demonstrate the following.

Proposition 4.8. LetΩ be a bounded domain satisfying (1) and (2) with m= 0. Assume that
f ∈ Lp′(Ω). Then the system (4.7) has a unique weak solution (u,π) ∈ Vp(Ω)×W1,p′

0 (Ω),
and there exists a constant C > 0 depending only on λ, p and Ω such that

‖u‖Vp(Ω)+ ‖π‖W1,p′ (Ω) ≤C(‖ f‖p
′−1

Lp′ (Ω)
+ ‖ f‖Lp′ (Ω)).
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Now we also obtain the regularity of the weak solutions of (4.7), under the hypothesis
f ∈ Cα(Ω).

Theorem 4.9. Assume that Ω is a bounded domain in R3 with C2,α boundary Γ satisfying
(1) and (2) for some α ∈ (0,1) with m = 0, and that a function S (x, t) satisfies the conditions
(3.1a)-(3.1c). Moreover, if f ∈ Cα(Ω), then the weak solution (u,π) of (4.7) belongs to
C1,β(Ω)×C1,α(Ω) for some β ∈ (0,1), and there exists a constant C > 0 depending only on
α,Ω and ‖ f‖Cα(Ω) such that

‖u‖C1,β(Ω)+ ‖π‖C1,α(Ω) ≤C. (4.9)

Acknowledgments

The author thanks the referees for their careful reading of the manuscript and insightful
comments.

References

[1] C. Amrouche, N. H. Seloula, Lp-theory for vector potentials and Sobolev’s inequality
for vector fields. Application to the Stokes equations with pressure boundary condi-
tions, Math. Models and Methods in Appl. Sci. 23 (2013), pp 37-92.

[2] C. Amrouche, N. H. Seloula, Lp-theory for vector potentials and Sobolev’s inequality
for vector fields, C. R. Acad. Sci. Paris, Ser. 1. 349 (2011), pp 529-534.

[3] J. Aramaki, Regularity of weak solutions for degenerate quasilinear elliptic equations
involving operator curl, J. Math. Anal. Appl. 426 (2015), pp 872-892.

[4] J. Aramaki, Quasilinear parabolic-type system arising in electromagnetism in a multi-
connected domain, Int. J. Evol. Equ. 10(2) (2015), pp 119-144.

[5] J. Aramaki, Existence of weak solutions for a class of abstract coupling system as-
sociated with stationary electromagnetic system, Taiwanese J. Math. 22(3) (2018),
pp 741-765.

[6] J. Aramaki, Existence and regularity of a weak solution to a class of systems in a
multi-connected domain, submitted.

[7] H. Brezis, Analyse Fonctionnelle, Dunod, Paris, 2005.

[8] J. Chapman, A hierarchy of models for type-II superconductors, SIAM. Review 42
(2000), pp 555-598.

[9] R. Dautray, J. L. Lions, Mathematical Analysis and Numerical Method for Science
and Technology 3, Springer-Verlag, New York, 1990.

[10] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1998.



66 Junichi Aramaki

[11] V. Girault, P. A. Raviart, Finite Element Methods for Navier-Stokes Equations,
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1979.

[12] H. Kozono, T. Yanagisawa, Global Div-Curl lemma on bounded domains in R3, J.
Funct. Anal. 256 (2009), pp 3847-3859.

[13] G. M. Lieberman, Oblique Derivative Problems for Elliptic Equations, World Scien-
tific, Hackensack, New Jersey, 2003.

[14] G. Nardi, Schauder estimate for solutions of Poisson’s equation with Neumann
boundary condition, L’Enseignement Math. 60(2) (2014), pp 421-435.

[15] X. -P. Pan, Existence and regularity of solution to quasilinear system of Maxwell type
and Maxwell-Stokes type, Car. Var. 55(143) (2016), pp 1-43.

[16] L. Prigozhin, On the Bean critical-state model in superconductivity, European J.
Appl. Math. 7 (1996), pp 237-247.

[17] C. G. Simader, H. Sohr, A new approach to the Helmholtz decomposition and the Neu-
mann problem in Lq-space for bounded and exterior domains, Mathematical Problem
Relating to the Navier-Stokes Equations, Ser. Adv. Math. Appl. Sci. vol. 11, World
Sci. Publ., River Edge, NJ, (1992), 1-35.

[18] H. -M. Yin, On a p-Laplacian type of evolution system and applications to the Bean
model in the type-II superconductivity theory, Quarterly of Appl. Math. LIX (2001),
pp 47-66.

[19] H. -M. Yin, Regularity of weak solution to a p-curl -system, Diff. and Integral Equa-
tions, 19(4) (2006), pp 361-368.

[20] H. -M. Yin, B. Q. Li, J. Zou, A degenerate evolution system modeling Bean’s critical
state type-II superconductors, Discrete and Continuous Dynamical Systems, 8 (2002),
pp 781-794.


