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Abstract

In this paper, we study the well-posedness in scales of Hilbert spaces Eα,α ∈ R de-
fined by the non-coupled system partial differential operator of a chemotaxis model of
aggregation of microglia in Alzheimer’s disease for a perturbated analytic semigroup,
which decays exponentially in the large time asymptotic dynamics of the problem to
a finite dimensional set K ⊂ R3 of the spatial average solutions. Uniform bounds in
Ω× (0,T ) of solutions and gradient solutions to the system of equations are proved.
Thus via a bootstrap argument solutions to the problem are shown to be classical solu-
tions. Furthermore, under natural conditions on the coupled elliptic system quasilinear
differential operator, we prove the existence of a fundamental solution or evolution
operator for the model equations in cited function spaces. In conclusion numerical
simulation results are provided.

AMS Subject Classification: 35K50, 35K57

Keywords: Chemotaxis Model, Aggregation of microglia, Alzeheimer’s disease, Uniform
bounds, numerical simulation

∗Is also a collaborative researcher for BCAM-Spain. E-mail address: willier@ukzn.ac.za
†E-mail address: wacherabi@gmail.com



118 R. Willie and A. Wacher

1 Introduction

In this paper, we study the well posedness and asymptotic global dynamics of the following
chemotaxis system of equations modelling the aggregation of microglia in Alzheimer’s
disease {

Ut +AU = P(u)U
U(0) = U0 ∈ Eβ×Eγ ×Eγ,β ≤ γ < β+1,

(1.1)

where U = (u,v,w)> with components holding the following meaning

u := cell density of activated microglia,

v := chemical concentrations of attractant,

w := chemical concentrations of repellent,

A =

 −d1∆ 0 0
0 −d2∆+λ2 0
0 0 −d3∆+λ3

 ,

P(u)U =


−Div(u~d(∇v,∇w))

a2u
a3u

 , ~d(∇v,∇w) = χ2∇v−χ3∇w,

(1.2)

of di,λ j,a j,χ j ∈R
+ \{0}, i= 1,2,3= j, 1 all different constants with biophysical importance

of the following,

d1 := motility coefficient,

d j := diffusion coefficients,

χ2 := chemotactic coefficient towards attractant,

χ3 := chemotactic coefficient away from repellent,

λ j := rates of decay of chemicals, and

a j := rates of production of chemicals.

Let Ω be a smooth open and bounded subset of RN with boundary ∂Ω = Γ. We consider as
domain D(A) for the operatorA in (1.2) given by

D(A) :=


 z1

z2
z3

 ∈ H2(Ω) :

 d1∂~nz1
d2∂~nz2
d3∂~nz3

 = ~0 on Γ

 , (1.3)

where ~n denotes the unit normal vector pointing outwards of Γ. Still in (1.2), P(u)U
is a linearly coupled vector function, with the first entry featuring a divergence-0 operator
acting on a vector field ~d of concentrations of chemicals, while in the second and third
components productive effects on activated microglia cells. At this point we point out that
related systems of equations from biomedical chemotaxis have been previously studied
from a mathematical view point by many authors [8, 10, 16, 18, 19, 21, 36, 26, 42, 43, 44,
45] among others.
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Getting back to the system of equations (1.1)-(1.2) we note that neither proliferation,
nor death of cells has been considered. Also, we note that the decay of chemicals follows
a simple linear kinetic representing either an uptake by surrounding tissue, or deactivation
by some other mechanism. The production of chemicals is taken to be proportional to the
density of chemotactic cells. This represents in a non both exclusive manner a constant
rate of secretion by the cells or indirect production by other cell types in response to local
effects of the motile cells e.g. microglial IL-1β enhances the processing and production of
amyloid by neuronal tissue. The system of equations (1.1)-(1.2) see [13, 16, 20, 31, 32, 36]
and other references therein cited is a chemo-attraction and repulsion model of aggregation
of microlgia in Alzheimer’ s disease (AD for abbreviation).

This disease is characterized by a progressive decline of cognitive and mental function
that eventually leads one to death. It is known that the brain of Alzheimer’s disease sufferers
develop abnormal foci called senile plaques i.e. lesions composed of extracellar deposits
of the β− amyloid protein, degenerating neurons and other nonneuronal cells called glia.
Amyloid plaques are the major markers of Alzheimer’s disease. According to the amy-
loid cascade hypothesis initial stages of Alzheimer’s disease include local accumulation of
soluble β− amyloid protein with levels correlating with severity of the disease. This leads
to local deposits called diffuse plaques that over time build up to form relatively insoluble
dense plaques which from the view point of other researchers is believed to be the main
cause of the pathology with resultant stress and death of neurons in the central nervous
system. Alzheimer’s disease is known to be associated with inflammation involving cells
called microglia and astrocytes. Following activation, these glial nonneuronal cells prolif-
erate and migrate chemotactically to sites of injury where they secrete a host of chemicals
including cytokines. The paper by M. Lucas et al has treated the role of microglia early in
the development of diffusive senile plaques though astrocytes were also implicated in the
later stages. On more and most recent biomedical results relating to Alzheimer’s disease
see [13, 20, 31, 32, 33] and other references therein these given.

Before giving the organization of this paper, it is worthwhile noting that in space di-
mensions of Ω ⊂RN ,N = 2 it is well known [10, 42] that the solution to the equations in u,v
only of (1.1)-(1.2) blow-up in a finite time if

∫
Ω

u0 >
8πχ2a2

d2
and if

∫
Ω

u0|x− x0|
2� 1 is suffi-

ciently small with x0 ∈ Ω. In [36] relating to the system of equations as given in (1.1)-(1.2)
in Ω ⊂ RN ,N = 2, with λ2 = λ3, if attraction dominates repulsion i.e. if a3χ3−a2χ2 < 0 and
if

∫
Ω

u0 >
8π

a2χ2−a3χ3
then the solution U to the model system of equations blow- up again in

a finite time.
In this paper, we prove in twofolds that the model system of equations (1.1)-(1.2) par-

tial differential operator is an infinitesimal generator of an analytic semigroup acting on
U0 ∈ Zδ=β+2γ = Eβ×Eγ ×Eγ where Eα,α ∈ R are scales of Banach spaces in L2(Ω) defined
by the operator in (1.2). In this context Section 2 gives some preliminaries. In Section 3,
we prove the system model equations (1.1)-(1.2) defines a perturbed analytic semigroup to
the semigroup generated by the operator −A using from [9, 17, 24, 22, 29] abstract semi-
group theory results for semilinear evolution equations. Section 4, is devoted to proving
the existence of a priori uniform bounds in Ω× (0,T ) of solutions and gradient solutions to
the problem. It concludes using a bootstrap argument in proving that the solutions to the
problem are classical solutions.

In Section 5, we revisit the complete system of equations coupled partial differential
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operator (i.e. in (1.1) we consider the contribution of the term P(u)U of (1.2) appearing
in the left hand side of the equations) to prove that it is an infinitesimal generator of a
fundamental solution operator in scales of spaces Zδ, δ ∈R+ in as given by quasilinear partial
differential operators. Since we are considering positive time, the results agree with and are
much finer to those of Section 3. An immediate consequence, of our results is that the
large time asymptotic dynamics of the system of equations (1.1)-(1.2) are well-defined and
captured by a subset K in R3 of spatial average solutions. This conclusion coincides with
other well known results [18, 44, 34, 35, 36] related to the minimal chemotaxis model
or Keller-Segel chemotactic problem. In Section 6, we give a much simplified coupled
system of equations to (1.1)-(1.2) in which the Div operator in P(u)U is independent of u,
an assumption equivalent to studying of the problem (1.1)-(1.2) in case of when a priori
uniform boundedness of the solution component u in Ω× (0,T ) is known. Furthermore,
given that solutions to the simplified problem are classical solutions results relating to the
original problem can be obtained via maximum principle arguments.

In appreciation, it should be highlighted that the results of this paper imply nonlinear
diffusion, proliferation and death of cells can be incorporated into the system of equations.
A proposition which agrees with the study given in [20], we suppose also that this citation
is among others. In Section 7, to visualize the aggregation of microglia as in the model
equations, we numerically simulate the equations using a Gradient Weighted Moving Fi-
nite Element method. For the simulations shown in this paper we use the code developed
in [39] using a set of model parameters found in [16], where the parameters used there
are calculated from dimensional values found in Biology, Immunology and Neuroscience
publications referenced therein. In Section 8 we discuss the results of the numerical simu-
lations.

Lastly, we point out that throughout the paper we work in a slightly general setup i.e.
without loss of particularity we do not immediately assume positivity of the initial data to
the system of equations, which naturally imply positivity of the solutions. If positivity of
solutions is assumed note that most of the calculations in Section 4 are very much simplified
and are relatively easier.

2 Preliminaries

Now for a brief review of the functional setting. To this end, clearly by Lax-Milgram’s
Theorem [5, 14, 23, 40], A in (1.2) is a maximal monotone, self adjoint, sectorial operator
in L2(Ω) with spectrum

σ(A) =
3⋃

i=1

σ(−di∆+λi) = {µn = µn(di,λi);n ∈ N} ⊂ R+,λ1 = 0 (2.1)

where di,λi are sufficiently large (see Table 2 in Section 7), such that

0 < µ1 ≤ µ2 ≤ . . . ≤ µn↗∞ as n↗∞, and 0 ∈ σ(A). (2.2)

As µ ∈ σ(A) if for some i = 1,2,3 = j , 1, µ ∈ σ(−di∆+ λ j) we can choose associated
eigenfunctions

ϕn = ϕn ·~ei, where {~ei; i = 1,2,3} ⊂ R3 (2.3)
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is a canonic basis of R3, orthonormal in L2(Ω) and a Hilbert basis of this function space.
Thus, by [2, 9, 24, 22, 27] the scales of Banach spaces Eα,α ∈ R are well defined. Note

that the spaces Eα,α ∈ R− define the dual spaces of the scales of spaces Eα,α ∈ R+, and in
equivalent of norms we can identify the spaces

E1 ≡ D(A), E1/2 ≡ H1(Ω) and E0 ≡ L2(Ω), E−1/2 � H−1(Ω).

In general, Eα � H2α(Ω) and Sobolev type space embeddings [1, 4, 5, 12, 9, 22, 24],

Eα ⊂ Lr(Ω) ⇐⇒ r


≤ ∞ if N = 1
< ∞ if N = 2
≤ 2N

N−4α if N ≥ 3
are satisfied. (2.4)

Also Eα ⊂Cθ(Ω), θ ∈ (0,1) ⇐⇒ 2α− N
2 > θ. (2.5)

In addition, it holds
for any α,β ∈ R if α ≥ β, then Eα ⊂ Eβ (2.6)

continuously, densely, compactly if α > β, and constant of the inclusions iα,β := µβ−α1 . Fur-
thermore, if α,β ∈ R and θ ∈ [0,1], then for every u ∈ Eγ, γ =max{α,β} we have

‖u‖θα+(1−θ)β ≤ ‖u‖θα‖u‖
1−θ
β . (2.7)

Next, for every α,ε ∈ R, Aε : Eα+ε → Eα is a surjective isometry with (Aε)−1 =A−ε.
Moreover, for every α,β,γ ∈ R,AαAβ =Aα+β as operators between the spaces Eα+β+γ and
Eγ. In particular, for every δ ∈ R we can define the δ− product

≺≺ u,v ��δ:=
∞∑

n=1

µδnunvn (2.8)

for every ε ∈ R, u ∈ Eδ−ε,v ∈ Eε. Clearly, if α+ β+ 2γ = δ, then for every u ∈ Eα+γ and
v ∈ Eβ+γ,

≺≺ u,v ��δ= 〈Aαu,Aβv〉γ

and the 0− product describes all the dualities between the Eα spaces, while the δ− describes
among others the scalar product in E

δ
2 . Occasionally, we will use the notation

Zδ := Eα+β+2γ = Eα+γ ×Eβ+γ = Eα×Eβ×E2γ.

If there is no confusion caused we will simply write ϕ ∈ Eα with understanding that ∇ϕ ∈
Eα− 1

2 whenever its derivatives are involved.
It follows as well from [2, 9, 24, 22, 29], that the operator −A is an infinitesimal gener-

ator of an analytic semigroup {
S (t) = e−At; t ∈ R+ \ {0}

}
(2.9)

in the spaces Eα,α ∈ R, such that if α0,α1 ∈ R, S (t) : Eα0 → Eα1 it satisfies that

‖S (t)‖α0,α1 ≤


e−µ1t|µ1|

α1−α0 if α1 ≤ α0{ C
tα1−α0 for t ≤ t0

|µ1|
α1−α0e−µ1t for t > t0

}
if α1 > α0, (2.10)
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where C = C(β−α), C(σ) = σσe−σ, and t0 = t0(α1 −α0) = (α1 −α0)µ−1
1 . In particular, for

any
ω ∈ (0, inf{µ; µ ∈ σ(A)}),

whenever α1 > α0 we have that

‖S (t)‖α0,α1 ≤
Ce−ωt

tα1−α0
, ∀t > 0 (2.11)

for some C ∈ R+ \ {0}.
Getting, back to (2.1)-(2.2) since 0 ∈ σ(A), if we take V = (1,1,1)> in (1.1)-(1.2) as a

test function in the scalar product of L2(Ω), i.e. by integrating over Ω then followed by over
(0, t), we get as t↗∞ that

U = (u,v,w)> ∈ K :=
{

(φ,ϕ,ψ) ∈ [L1(Ω)]3 :
∫
Ω

φdx =
∫
Ω

φ0 = |Ω|φ0,

‖(ϕ,ψ)‖L1(Ω)×L1(Ω) ≤

(
a2

λ2
+

a3

λ3

)
|Ω|φ0

}
, (2.12)

which turns out [30, 40, 41] to be a closely approximate limit set for the long time asymp-
totic dynamics of the system of equations in large diffusion. Throughout this paper all
generic constants will be denoted by C ≥ 0, unless a distinction is necessary.

3 Well posedness of the system of equations

In this section, we first recall some abstract analytic semigroup theory results proved in
[9, 17, 22, 24, 27]. Then, we will prove the well posedness of the problem (1.1)-(1.2) in the
product scales of Banach spaces Zδ, δ ∈ R+.

To this end, consider the following Cauchy problem{
ϕt +Aϕ = f (t)
ϕ(t0) = ϕ0 ∈ Eβ (3.1)

where f : [t0, t1)→ Eβ, β ∈ R, A a maximal monotone, self adjoint and sectorial operator
with compact resolvent in L2(Ω).

Definition 3.1. A function ϕ(·) is a strong solution of (3.1) on [t0, t1) if and only if ϕ :
[t0, t1)→ Eβ is a continuous function satisfying that ϕt ∈ Eβ, ϕ(t) ∈ Eβ+1 on (t0, t1), ϕ(t0)= ϕ0
and the differential equation in (3.1) is verified on the open interval (t0, t1) as an equality in
Eβ,β ∈ R.

The the evolution problem (3.1) is well-posed in the sense given by following theorem.

Theorem 3.2. Consider the Cauchy problem (3.1). Assume f ∈ Lp(t0, t1,Eβ),1 ≤ p ≤ ∞.
Then, the solution to the problem (3.1) given by

ϕ(t) = e−A(t−t0)ϕ0+

∫ t

t0
e−A(t−s) f (s)ds (3.2)
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satisfies that
(i). ϕ ∈ C(t0, t1,Eγ) with γ < β+ 1

p′ where 1
p +

1
p′ = 1. If ϕ0 ∈ Eγ then ϕ ∈ C([t0, t1),Eγ), and

the mapping
Eγ ×Lp(t0, t1,Eβ) 3 (ϕ0, f )→ ϕ ∈C([t0, t1]; Eγ)

is Lipschitz continuous.
(ii). For any β ∈ R and γ ∈ [β,β+1) the mapping

Eγ ×Lp(t0,∞,Eβ) 3 (ϕ0, f )→ ϕ ∈ Lp(t0,∞; Eγ)

is Lipschitz continuous. In particular, if p = 2, and γ = β+ 1
2 . Then, the mapping,

Eβ+ 1
2 ×L2(t0, t1,Eβ) 3 (ϕ0, f )

−→ (ϕ,ϕt) ∈
(
C([t0, t1],Eβ+ 1

2 )∩L2(t0, t1,Eβ+1)
)
×L2(t0, t1,Eβ),

is continuous and the problem (3.1) is verified on (t0, t1) a.e.
(iii). If f : (t0, t1)→ Eβ is locally Hölder continuous of exponent 0 < θ ≤ 1 and if∫ t0+ρ

t0
‖ f (s)‖βds <∞, for some ρ > 0.

Then, ϕ in (3.2) is a unique solution of (3.1) such that

ϕ ∈C([t0, t1),Eβ)∩C(t0, t1,Eβ+1)∩C1(t0, t1,Eγ) for any γ < β+ θ.

Proof. The proof of the theorem is classical, see [9, 17, 24, 22, 27, 29] where most recently
in [29] the Bessel potential function spaces have been used.

Thus in the case of (i) if we consider the formula (3.2) and let γ ≥ β, then in estimating
from above we get that

‖ϕ(t)‖γ ≤ ‖e−A(t−t0)ϕ0‖γ +

∫ t

t0
‖e−A(t−s)‖β,γ‖ f (s)‖βds

where ‖e−A(t−s)‖β,γ denotes the norm of L(Eβ,Eγ). Since

‖e−A(t−s)‖β,γ ≤
M

(t− s)γ−β

on finite time intervals, it follows with γ = β if p = 1 or with β ≤ γ < β+ 1
p′ if 1 < p <∞ that

‖ϕ(t)‖γ ≤ ‖e−A(t−t0ϕ0‖γ +b(t)
(∫ t

t0
‖ f ‖pβ

) 1
p

where

b(t) = M
(∫ t

t0
(t− s)−p′(γ−β)ds

) 1
p′

≈ t
1
p′ −(γ−β)
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so it is bounded on finite intervals. Consequently, ϕ(t) ∈ Eγ for any t > 0. To prove the
continuity, fix t > t0 (or even t = t0 if ϕ0 ∈ Eγ). As

‖ϕ(t+h)−ϕ(t)‖γ

≤ ‖
(
e−Ah− I

)
ϕ(t)‖γ +

∫ t+h

t
‖e−A(t+h−s)‖β,γ‖ f (s)‖βds.

Since the linear semigroup is continuous we have that

‖
(
e−Ah− I

)
ϕ(t)‖γ→ 0 as h→ 0,

while also∫ t+h

t
‖e−A(t+h−s)‖β,γ‖ f (s)‖βds

≤ M
(∫ t+h

t
(t+h− s)−p′(γ−β)ds

) 1
p′

(∫ t+h

t
‖ f ‖pβ

) 1
p

= 0(h
1
p′ −(γ−β))

we obtain the continuity of (3.2). Further on, if ϕ0 ∈ Eγ we have

‖ϕ(t)‖C[t0,t1],Eγ) ≤ b(t1)
(
‖ϕ0‖γ + ‖ f ‖Lp(t0,t1,Eβ)

)
which proves the Lipschitz continuity of the mapping (ϕ0, f ) → ϕ. The proof if p = ∞
follows the same lines with obvious modifications and therefore we shall skip it.

To prove (ii) of the theorem, note that for every β ∈ R and γ such that β ≤ γ < β+ 1
(2.10)-(2.11) holds. Hence,

cβ,γ(t) := ‖e−At‖β,γ ≤
Me−ωt

tγ−β

and cβ,γ(t) ∈ L1(0,∞) but unbounded at zero, unless γ = β. Let p = 1, ϕ0 ∈ Eγ and f ∈
L1(t0,∞,Eβ). Since

e−A(t−t0)ϕ0 ∈ L1(t0,∞,Eγ)

we just need to prove that

ψ(t) :=
∫ t

t0
e−A(t−s) f (s)ds ∈ L1(t0,∞,Eγ) = Z.

To this end, set s = (t− t0)σ+ t0 to get that

ψ(t) =
∫ 1

0
e−A(t−t0)(1−σ) f ((t− t0)σ+ t0)(t− t0)dσ.

Therefore,

‖ψ‖Z ≤

∫ 1

0
‖e−A(t−t0)(1−σ) f ((t− t0)σ+ t0)(t− t0)‖Zdσ.

But for any fixed σ ∈ [0,1],

‖e−A(t−t0)(1−σ) f ((t− t0)σ+ t0)(t− t0)‖Z

=

∫ ∞

t0
‖e−A(t−t0)(1−σ) f ((t− t0)σ+ t0)(t− t0)‖γdt.
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Consequently, setting r = (t− t0)σ+ t0, we find that

‖ψ(t)‖Z ≤
∫ 1

0

∫ ∞

t0

r− t0
σ2 cβ,γ

(
(r− t0)

(
1−σ
σ

))
‖ f (r)‖βdrdσ.

Again, letting s = (r− t0) (1−σ)
σ and integrating over σ we get that

‖ψ(t)‖Z ≤
(∫ ∞

0
cβ,γ(s)ds

)(∫ ∞

t0
‖ f (r)‖βdr

)
,

yielding that
‖ϕ‖Z ≤ ‖cγ,γ‖1‖ϕ0‖γ + ‖cβ,γ‖1‖ f ‖L1(t0,∞,Eβ)

where ‖cβ,γ‖1 = ‖cβ,γ‖L1(0,∞) and the result is proved.
The case of p =∞, follows exactly as in (i), thus we have that

‖ϕ‖L∞(t0,∞,Eγ) ≤ ‖cγ,γ‖∞‖ϕ0‖γ + ‖cβ,γ‖1‖ f ‖L∞(t0,∞,Eβ).

Note that in fact it holds that ϕ ∈Cb([t0,∞),Eγ). Now from what is proved above we get by
interpolation that the results are valid for any 1 < p <∞. We skip the proof of (iii) as it is
excactly as in [9] pp. 50-52, with which the proof of the theorem is complete. �

Next, we consider the case of perturbations of analytic semigroups, for this assume that
P ∈ Llip(Eα,Eβ),0 ≤ α−β < 1 and let the evolution problem{

ut +Au = Pu,
u(t0) = u0 ∈ Eβ, t0 > 0,

(3.3)

be given. Then, following [9, 17, 24, 29] abstract semigroup theory results for semilinear
equations, let Y ⊂ Eα and P : Y → Eβ be locally Lipschitz continuous. We define as a
solution to (3.3) the following:

Definition 3.3. A continuous function u : [t0, t1)→ Eα satisfying that u(t) ∈ Eα, u(t0) = u0,
u(t) ∈ Eβ+1, ut ∈ Eβ on (t0, t1) and the evolution problem (3.3) holds on (t0, t1) as an identity
in Eβ is called a strong solution to the problem.

On existence of solutions to (3.3) we have the following proposition.

Proposition 3.4. Consider in the problem (3.3) with P ∈ Llip(Eα,Eβ),0 ≤ α−β < 1, and let
u ∈C([t0, t1),Eα) verify

u(t,u0) = e−A(t−t0)u0+

∫ t

t0
e−A(t−s)Pu(s)ds. (3.4)

Then,

(i) u ∈Cθ
loc(t0, t1,Eα) for some θ ∈ (0,1).

(ii) u ∈C([t0, t1),Eα) is a solution of the problem (3.3) if and only if (3.4) is verified.

(iii) u(t,u0) given by (3.4) is a C1 strong solution of (3.3) in Eβ, and

(iv) −A+P is an infinitesimal generator of an analytic semigroup {S p(t); t > 0} in the

spaces Eβ of β ∈ (α−1,α].
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Proof. See [29] Proposition 3.12 and Theorem 3.20, or follow semilinear evolutionary
equations results in [9, 17, 22, 29]. It suffices to prove (i) which is classical then apply
Theorem 3.2 (iii). Thus it remains only to prove (iv) which follows by using the references
cited on perturbations of analytic semigroups. �

A priori yielding the main theorem of this section, note that following Theorem 3.2 -
Proposition 3.4 we look for a solution to the problem (1.1)-(1.2) of the form

U(t;U0) = e−A(t−t0)U0+

∫ t

t0
e−A(t−s)P(u(s))U(s)ds, (3.5)

where

P(u) =

 0 −Div(uχ2∇·) Div(uχ3∇·)
a2 0 0
a3 0 0

 , and P(u)U :=

 Π(u)(v,w)
a2u
a3u


(3.6)

ofΠ(u)(v,w) :=−Div(u~d(∇v,∇w)) as in (1.2) and U = (u,v,w)>. It is also interesting to note
that the system of equations (1.1)-(1.2) have nice regularity features debited to their nature
of coupledness, see Remark 3.6. As for the system well-posedness we have the following
theorem.

Theorem 3.5. Consider the system of equations (1.1)-(1.2) for any β,γ ∈ R such that β ≤
γ < β+1. Assume that v0,w0 ∈ Eγ and u ∈C(t0, t1,Eβ). Then, v,w ∈C(t0, t1,Eγ).

Conversely, for any α ∈ R such that 0 ≤ α−β < 1, α′ = α+γ ≥ 1
2 +

N
4 , 2α+γ ≥ 1+ N

4 ,
and let v,w ∈C([t0, t1),Eγ). Then,

Π := Div : Eα′ → Eβ is well defined, Π(u) := Div(u~d(∇·,∇·)) ∈ Llip(Eα′ ,Eβ) (3.7)

and the solution of (1.1)-(1.2), u ∈C(t0, t1,Eβ). Furthermore, if 0 ≤ γ−α < 1, the mapping

Zα(γ) 3 U = (u,v,w)> 7−→ P(u)U ∈ Zβ(α) (3.8)

is well defined and Lipschitz continuous. If u0 ∈ Eα, then Proposition 3.4 holds in Zα(γ) with

‖P‖L(Zβ(α),Zα(γ)) := sup
{
|〈P(u)U,U〉|;‖U‖α(γ) ≤ 1

}
≤ Λ ≤ 1 (3.9)

where Λ =max
{
{χ2,χ3}µ

N
4 −β−2γ
1 , {a2,a3}µ

−β−γ
1

}
and Zδ(ν) := Eδ×Eν×Eν.

It is worthwhile pointing out that unlike in Proposition 3.4 the converse statements of
the theorem require an additional condition to be verified i.e. α+γ ≥ 1

2 +
N
4 for the proper-

posedness of the Div operator. Most important is that in view of the experimental data
given in the numerical sessions of the paper the last assertion in (3.9) is not restrictive but
consistent with that data.

Proof. This first part of the theorem follows by Theorem 3.2-(i). To prove the converse, let
ϕ ∈ Eα be a test function to for example the operator −Div(uχ2∇v) in the scalar product of
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L2(Ω), to conclude using the Sobolev type embeddings (2.4) and Hölder’s inequality that
the mapping

Eα×Eγ ×Eγ 3 (u,v,ϕ) 7−→ 〈−Div(uχ2∇v),ϕ〉 = χ2

∫
Ω

u∇v∇ϕ ∈ R (3.10)

is well defined and continuous, provided α+ γ ≥ 1
2 +

N
4 , u∇v ∈ Lr(Ω) with r = 2 if α ≥ 1

2 ,
and r > 2 if 1

2 > α. Also that −Div(uχ2∇v) ∈ Lp(Ω), of p ≥ max
{
2, 2N

N+4α ;α ∈ R
}
. More

concretely, as u ∈ Eα ⊂ Lr0(Ω), ∇v ∈ Lr1(Ω) then u∇v ∈ L2(Ω) if and only if

1
2
=

1
r0
+

1
r1
≥

N −4α
2N

+
N −4γ+2

2N
⇒ N ≥ 2N −4(α+γ)+2 (3.11)

of which we obtain 4(α+γ) ≥ 2+N i.e. α+γ ≥ 1
2 +

N
4 . But also ∇ϕ ∈ Eα− 1

2 ⊂ Lr2(Ω), r2 ≥ 2,
hence

1
2
≥

1
r2
≥

N −4α+2
2N

⇒ N ≥ N −4α+2.

Consequently α ≥ 1/2 with from α+γ ≥ 1
2 +

N
4 it is implied that γ ≥ N

4 and in the strict case
Eγ ⊂ L∞(Ω) using (2.5). If r > 2, as by Hölder’s inequality we need 1

r2
+ 1

r = 1 we get using
(2.4) embeddings that r ≥ 2N

N+4α−2 yielding 2N > 2N + 8α− 4 of which as a result implies
1/2 > α. On the other hand replacing 1/2 by 1/r in (3.11) gives 2 < r ≤ 2N

2N−4(α+γ)+2 with
condition α+ γ > 1

2 +
N
4 but as 1/2 > α we get Eγ ⊂ L∞(Ω). Thus by taking into account

either of the conditions on α leads to 2N
N+4α−2 ≤ r ≤ 2N

2N−4(α+γ)+2 , the condition in the theorem
2α+γ ≥ 1+ N

4 is obtained. The also part follows using (2.4) and Hölder’s inequality directly
from the inner product expression in (3.11) without passing the partial derivative to the test
function.

Now considering (3.6) we get that

P(u)U ∈ Zβ(α)∩Lp(Ω)×Eα×Eα,

for p ≥ 2,α ≥ 0, and U = (u,v,w)> ∈ Zα(γ) ⊂ Zβ(γ) since 0 ≤ α− β < 1. Next if we let V =
(φ,ϕ,ψ) ∈ Zα(γ) in the scalar product of L2(Ω), thanks to the space embeddings (2.6) we get
by Hölder’s inequality that the mapping

V = (φ,ϕ,ψ) ∈ Zα(γ) 7−→ 〈P(u)U,V〉 ∈ [L1(Ω)]3 (3.12)

is well defined and continuous.
Therefore, the linearity implies for any U1,U2 ∈ Zα(γ) of finite norm, P(u)U ∈ Zβ(α)

is Lipschitz continuous. Thus Proposition 3.4 or abstract semilinear evolution equations
results [9, 17, 24, 22, 27] yields the conclusion of the theorem. Moreover, see Theorem
5.1-(5.9)- (5.10) in the next sections (3.9) is true and the solution to the problem (1.1)-(1.2)
defines an analytic perturbated semigroup in the scales of spaces Zδ(ν), δ(ν)) ∈ R. The proof
of the theorem is complete. �

Now, for some remarks on the main condition yielding Theorem 3.5 we have the fol-
lowing.
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Remark 3.6. First we note that in the proof of the Theorem 3.5 if the test functions are taken
in Eγ the yielding condition changes to α+ 2γ ≥ 1+ N

4 and Eα ⊂ L∞(Ω) if α > N
4 i.e. for

γ < 1/2. Also note that using the minimal yielding condition α+γ ≥ 1
2 +

N
4 , if α,γ < 1 then

2 > 1
2 +

N
4 and we can solve the problem (1.1)-(1.2) in space dimensions of Ω ⊂ RN ,N ≤ 5.

In particular, if β = 0, since we require that ∇v,∇w ∈ L∞(Ω) i.e. γ > 1
2 +

N
4 and as γ < 1

this implies solvability of the problem (1.1)-(1.2) in space dimensions of Ω ⊂ RN ,N = 1.
Next, if in (3.7) we take α = β the necessary condition reads 2β+γ ≥ 1+ N

4 but β ≤ γ < β+1.
If we assume γ = β > 0 we get that 3β ≥ 1+ N

4 and if β = 1
2 then N ≤ 2. If γ = 3

4 > β =
1
2 then

N ≤ 3. If γ = β = 3
4 then N ≤ 5. If γ = 5

4 > β =
3
4 then N ≤ 7. Thus the higher the regularity

assumed on that data, the higher the space dimensions in which it is possible to solve the
problem (1.1)-(1.2). Lastly, we note that if 2β+γ > 3N

4 then Zδ=β+γ := Eβ×Eγ ⊂C(Ω)×C(Ω)
using (2.5) and also if 2β+γ > 1

2 +
3N
4 , then Zδ=β+γ− 1

2
= Eβ ×Eγ− 1

2 ⊂ C(Ω)×C(Ω) in both
these cases we can solve the problem in any space dimensions.

We conclude this section with the following corollary.

Corollary 3.7. Consider the system of equations (1.1)-(1.2). Assume the hypotheses of
Theorem 3.5 holds within (3.7)

α = θβ+ (1− θ)(γ−
1
2

), θ ∈ [0,1]. (3.13)

Then, (i). Theorem 3.2 holds in Zβ = Eβ×Eβ+ 1
2 ×Eβ+ 1

2 .
(ii). If 2β+γ > 3N

4 , then the solution to the problem (1.1)-(1.2), satisfies

U ∈C(0,∞,Cθ(Ω))∩C(0,∞,C2+θ(Ω))∩C1(0,∞,Cθ(Ω))

for some θ ∈ (0,1) and is a classical solution.

Proof. To prove (i) it suffices to note that if α is as given in (3.13) then β > α if and only if
β> γ− 1

2 and also α>β if and only if γ− 1
2 >β. Combining the two we find that γ= β+ 1

2 . We
prove (ii) of this corollary in the next section of the paper. An alternative, using a classical
approach, since by (2.5), U0 ∈ L∞(Ω), the conclusion follows by [2, 17, 10, 25, 36, 44, 45]
and Theorem 3.5. The proof of the corollary is complete. �

4 Uniform bounds of solutions

In this section, we study the existence of a priori uniform bounds inΩ×(0,T ) of solutions to
the system of equations (1.1)-(1.2). As an approach to this end, we use the Moser-Nash-De
Giorgi [3, 11, 15, 30] technique, and our first lemma is the following:

Lemma 4.1. Consider the evolution problem (1.1)-(1.2) in context of the Theorem 3.5.
Assume that the initial data of the system of equations U0 = (u0,v0,w0)> ∈ Zβ(γ)∩ [L∞(Ω)]3,
and that u ∈ L∞(0,T,Lr(Ω)), for some r > N

2 are finitely bounded in norms. Then v,w ∈
L∞(Ω× (0,T )) are also finitely bounded norms of the given function space.
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Proof. It suffices only to consider one of either of the last two equations of (1.1)-(1.2) in v
or w. We adopt here for simplification to use the function space H1(Ω). Thus considering
the equation in v and taking the inner product of L2(Ω) with |v|r−1v,r > 1 we get that

1
r+1

d
dt

∫
Ω

|v|r+1+

(
2
√

d2r
r+1

)2 ∫
Ω

|∇|v|
r+1

2 |2+λ2

∫
Ω

|v|r+1 ≤ a2|

∫
Ω

u|v|r−1v|

≤ a2

(∫
Ω

|v|
N(r+1)

N−2

)Θ1
(∫
Ω

|u|r
)Θ2

(∫
Ω

|v|r+1
)Θ3

≤ a2C
(∫
Ω

(|∇|v|
r+1

2 |2+ (|v|
r+1

2 )2
) NΘ1

N−2
(∫
Ω

|u|r
) 2Θ2

N−2
(∫
Ω

|v|r+1
)Θ3

(4.1)

where in the second inequality above we have used the Nakao-Hölder -Sobolev inequality
[3, 11], since there exists ϑ > 0 such that r = N

2 +ϑ and

Θ1 =
N −2
N +ϑ

, Θ2 =
2

N +ϑ
, Θ3 =

ϑ

N +ϑ
,

the third inequality is due to Sobolev space embeddings [1, 5, 12, 14, 15] i.e. (2.4) in
α = 1/2.

In what follows we first note that 2r > r+1 > 2, hence after multiplying throughout in
(4.1) by r+1, and using in the right hand side Young’s inequality [5, 11] i.e.

ab ≤ ηas+Cηbs′ ,a,b ≥ 0,η ∈ (0,1)

since
NΘ1

N −2
=

N
N +ϑ

,
NΘ1

N −2
+Θ3 = 1

we obtain if we let

β0 = inf{µ1,2d2−η,2λ2−η} > 0, µ1 ∈ σ(−∆+1), Ca2 = a2C

that

d
dt

∫
Ω

|v|r+1+β0

(∫
Ω

|∇|v|
r+1

2 |2+

∫
Ω

|v|r+1
)

≤ (2rCa2)
1
Θ3

sup
(0,T )

∫
Ω

|u|r
 4
ϑ(N−2)

∫
Ω

|v|r+1 ≤ (2rCa2)
1
Θ3

∫
Ω

|v|r+1, (4.2)

since the term in brackets from the last inequality right to left is finitely bounded from
above, and 1

Θ3
> 4

ϑ(N−2) we have incorporated the bounding from above constant with and/or
the given Ca2 ≥ 0.

Therefore, if ri = 2i, i ∈ N, and

Θi =
2(ri+1)

N(ri+1)− (N −2)(ri−1+1)
,Θ′i = 1−Θi,
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then by the Hölder’s inequality as well as from the Sobolev type inclusions [1, 5, 12, 14, 15]
and Young’s inequality [5, 11] one obtains∫

Ω

|v|ri+1 ≤

(∫
Ω

|v|
N(ri+1)

N−2

)Θ′i (∫
Ω

|v|ri+1
)Θi

≤ C
(∫
Ω

(|v|
ri+1

2 )2+

∫
Ω

|∇|v|
ri+1

2 |2
) NΘ′i

N−2
(∫
Ω

|v|ri+1
)Θi

.

Thus from (4.2) while still setting Ca2 =Ca2C, it follows that

d
dt

∫
Ω

|v|ri+1+β0(η)
(∫
Ω

|∇|v|
ri+1

2 |2+

∫
Ω

|v|ri+1
)

≤ (2rCa2)
1
Θ3

(∫
Ω

(|v|
ri+1

2 )2+

∫
Ω

|∇|v|
ri+1

2 |2
) NΘ′i

N−2
(∫
Ω

|v|ri+1
)Θi

≤ η

(∫
Ω

(|v|
ri+1

2 )2+

∫
Ω

|∇|v|
ri+1

2 |2
)
+ (2riCa2)

N+2
2Θ3

(∫
Ω

|v|ri−1+1
)si

,

and because NΘ′i
N−2 < 1 we have used Young’s inequality [5, 11].

Now set si =
ri+1

ri−1+1 and since N+2
2 ≥

Nri−1+ri+2
ri+2 , therefore

d
dt

∫
Ω

|v|ri+1+β

(∫
Ω

|∇|v|
ri+1

2 |2+

∫
Ω

|v|ri+1
)
≤ (2riCa2)σ

(∫
Ω

|v|ri−1+1
)si

where σ = N+2
2Θ3

,β = β(µ1,d2,λ2,2η) > 0. Applying Poincaré inequality and defining yi(t) =∫
Ω
|v|ri+1 we obtain

dyi

dt
+βyi ≤ (riC)σ (yi−1)si . (4.3)

If M = M(‖v0‖∞) > 0 is such that yi(0) ≤ M(ri−1+1)si). Then, solving (4.3) as

yi(t) ≤ (riC)σ
yi(0)+

 sup
t∈(0,T )

yi−1(t)
si


we obtain from (a+b)p ≤ 2p(ap+bp),a,b, p ≥ 0 with i = k ≥ 1 that

yk(t) ≤ (2C)1+2sk+2sk−1 sk+...+2s2 s3...sk (2C)kσ+(k−1)σsk+...+σs2 s3...sk M2s1 s2...sk +

+ (2C)1+2sk+2sk−1 sk+...+2s2 s3...sk (2C)kσ+(k−1)σsk+...+σs2 s3...sk

 sup
t∈(0,T )

∫
Ω

|v|2
s1 s2...sk

≤ (2C)2Ak (2C)σBk M2χk + (2C)2Ak (2C)σBk

 sup
t∈(0,T )

∫
Ω

|v|2
χk

where χk = sk . . . s1 ≤
rk+1

2 ,

Ak = 1+ sk + sksk−1+ . . .+ sksk−1 . . . s1 ≤ (rk +1)
∞∑

i=1

1
ri+1

,

Bk = k+ (k−1)sk + (k−2)sksk−1+ . . .+ sksk−1 . . . s1 ≤ (rk +1)
∞∑

i=1

i
ri+1

,
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and the series in the right hand sides converge since ri = 2i. Let

ω1 =

∞∑
i=1

1
ri+1

, ω2 =

∞∑
i=1

i
ri+1

to conclude that

yk(t) ≤

(2C)2ω1(2C)σω2 M+ (2C)2ω1(2C)σω2

 sup
t∈(0,T )

∫
Ω

|v|2
 1

2


rk+1

≤

(2C)2ω1(2C)σω2 M

 sup
t∈(0,T )

(∫
Ω

|v|2
) 1

2

+1




rk+1

.

This implies

sup
Ω

|v(t,v0)| ≤ lim
k→0

(∫
Ω

|v|rk+1
) 1

rk+1

≤ (2C)2ω1(2C)σω2 M

 sup
t∈(0,T )

(∫
Ω

|v|2
) 1

2

+1

 ,
and the proof of the lemma is complete. Note that this proof in general scales of spaces
Eα,α ∈ R implies the results since γ ≥ β ≥ 1/2, but this will be more complicated. �

Next we observe that due to the linearity of the system of equations in v,w and Lemma
4.1 we have as a corollary the following:

Corollary 4.2. Consider the evolution problem (1.1)-(1.2) in the context of Theorem 3.5
and Lemma 4.1. Assume the initial data u0 ∈ L∞(Ω), ∇v0,∇w0 ∈ [L∞(Ω)]N , and that ∇u ∈
L∞(0,T,Lr(Ω)),r > N

2 are finitely bounded in norms of the given spaces. Then, the gradient
solutions ∇v,∇w ∈ L∞(Ω× (0,T )), and u ∈ L∞(Ω× (0,T ) are also finitely bounded in norms.

Proof. It suffices to note that from one of v,w system equations of (1.1)-(1.2), if one dif-
ferentiates these equations with respect to the x variable, and takes as test function say
|∇v|r−1∇v ∈ H1(Ω),r > 1. Then, Lemma 4.1 holds due to the linearity of these system equa-
tions and weak coupledness.

So we only need to prove that u ∈ L∞(Ω× (0,T )) is finitely bounded in norm. To this
end, consider the u equation of the system (1.1)-(1.2) and take the inner product of L2(Ω)
with test function |u|r−1u ∈ H1(Ω),r > 1 to find that

1
(r+1)

d
dt

∫
Ω

|u|r+1+

(
2
√

d1r
r+1

)2 ∫
Ω

|∇|u|
r+1

2 |2 = χ2r
∫
Ω

|u|r−1u∇u∇v−χ3r
∫
Ω

|u|r−1u∇u∇w

≤ (C1χ2+C2χ3)r
∫
Ω

||u|r∇u| =
2(C1χ2+C2χ3)r

r+1

∫
Ω

||u|
r+1

2 ∇|u|
r+1

2 |.
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This yields that

d
dt

∫
Ω

|u|r+1+2d1

∫
Ω

|∇|u|
r+1

2 |2 ≤ 2(C1χ2+C2χ3)r
∫
Ω

||u|
r+1

2 ∇|u|
r+1

2 |

≤ η

∫
Ω

|∇|u|
r+1

2 |2+
(C1χ2+C2χ3)r

2η

∫
Ω

|u|r+1, (4.4)

by Young’s inequality

ab ≤ ηas+ (ηs)−
s′
s s′−1bs′ ,a,b ≥ 0,

1
s
+

1
s′
= 1

and if β0 := 2d1−η > 0 or 0 < η� 1 is adequately chosen then Poincaré inequality implies
that

d
dt

∫
Ω

|u|r+1+β

∫
Ω

|u|r+1 ≤
(C1χ2+C2χ3)r

2η

∫
Ω

|u|r+1 (4.5)

where for µ1 ∈ σ(−∆), we defined β := µ1β0 > 0. From this point one can proceed as in the
proof of Lemma 4.1 to conclude that u ∈ L∞(Ω) is finitely bounded in norm.

Alternatively, we notice that by interpolation for ϕ ∈ H1(Ω), it holds that

‖ϕ−ϕ‖2L2(Ω) ≤C‖∇ϕ‖2θL2(Ω)‖ϕ‖
2(1−θ)
L1(Ω)

(4.6)

where θ = N
N+2 , and Young’s inequality yields

‖ϕ‖2L2(Ω) ≤ η0‖∇ϕ‖
2
L2(Ω)+C(1+η

− N
2

0 )‖ϕ‖2L1(Ω).

Consequently, setting ϕ = |u|
r+1

2 , η0 =
r

(r+1)2Cη
with Cη =

(C1χ2+C2χ3)
2η we obtain that

rCη

∫
Ω

|u|r+1 ≤
r

(r+1)2

∫
Ω

|∇|u|
r+1

2 |2+ (22Cη)
N
2 C(1+ rN)

(∫
Ω

|u|
r+1

2

)2

since r > 1,2r > r+1, and 0 < η� 1 sufficiently small implies Cη� 1.
Therefore, Cη ≥ C and because 1+ rN ≤ (1+ r)N we obtain from (4.4) the following

iterative inequality type of (4.5) with β0−
1
4 > 0,

d
dt

∫
Ω

|u|r+1+β

∫
Ω

|u|r+1 ≤ (2Cη)N(1+ r)N
(∫
Ω

|u|
r+1

2

)2

implying
=⇒

∫
Ω

|u|r+1 ≤

∫
Ω

ur+1
0 + (2Cη)N(1+ r)N sup

(0,T )

(∫
Ω

|u|
r+1

2

)2

.

Next defining

K(p) :=max

‖u0‖L∞(Ω), sup
(0,T )

(∫
Ω

|u|p
) 1

p
 (4.7)

leads to that

K(r+1) ≤ [(2Cη)N(1+ r)N]
1

r+1 K(
r+1

2
),∀r ≥ 1,
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of if we let ri+1 = 2i, i ∈ N∗ we conclude that

K(2i) ≤ (2Cη)N2−i
(2i)

N
2i K(2i−1) ≤ . . . ≤ (2Cη)N

∑i
k=1 2−k

(2i)2−iN . . . (1+2)2−1N K(1)

≤ (2Cη)N
[
2i2−iN(2−i)2−iN

]
. . . . . .

[
22−1N(2−1)2−1N

]
K(1)

≤ (2Cη)N2N
∑i

k=1 k2−k
×2N

∑i
k=1 2−k

K(1) ≤C23N K(1).

Consequently, taking the limit as i→∞ yields

‖u‖L∞(Ω) ≤C23N K(1) ≤C23N max
{
‖u0‖L∞(Ω),‖u0‖L1(Ω)

}
<∞,

and the proof of the corollary is complete. �

The following is a particular converse lemma to Corollary 4.2, since its conclusion holds
for all r ∈ [2,∞].

Lemma 4.3. Consider the evolution problem (1.1)-(1.2). Assume the hypotheses of Corol-
lary 4.2 and that ∇u0 ∈ L∞(Ω) is finitely bounded in norm. If ∇v,∇w ∈ L∞(Ω× (0,T )) are
finitely bounded in norm, then ∇u ∈ L∞(0,T,Lr(Ω)),∀r > N

2 is also finitely bounded in norm.

Proof. Differentiate the system equation in u with respect to x. Then, take the inner product
of L2(Ω) with the test function |∇u|r∇u ∈ H1(Ω),r ≥ 0 to find that

1
r+2

d
dt

∫
Ω

|∇u|r+2+
4d1(r+1)
(r+2)2

∫
Ω

|∇(|∇u|
r+2

2 |2

=
r+2

2
χ2

∫
Ω

(
|∇u|

r+2
2 ∇v∆u+u|∇u|

r+2
2 −2∇u∆u∆v

)
−

r+2
2

χ3

∫
Ω

(
|∇u|

r+2
2 ∇w∆u+u|∇u|

r+2
2 −2∇u∆u∆w

)
≤

r+2
2

χ2

(∫
Ω

||∇u|
r+2

2 ∇v∆u|+
∫
Ω

|u|∇u|
r+2

2 −2∇u∆u∆v|
)
+

+
r+2

2
χ3

(∫
Ω

||∇u|
r+2

2 ∇w∆u|+
∫
Ω

|u|∇u|
r+2

2 −2∇u∆u∆w|
)

≤
r+2

2

(
Cχ

∫
Ω

|∇(|∇u|
r+2

2 )∇u|+Cu

∫
Ω

||∇u|
r
2∆u(∆v|+∆w|)

)
, (4.8)

where Cχ = (χ2C∇v +χ3C∇w) ≥ 0, with C∇v,C∇w,Cu constants for the upper bounds of the
variables in L∞(Ω). Multiplying throughout by r+ 2, and since 1

2 +
1

r+2 ≤ 1, for any r ≥ 0
we get by Holder’s inequality that

d
dt

∫
Ω

|∇u|r+2+2d1

∫
Ω

|∇(|∇u|
r+2

2 |2

≤
(r+2)2

2

(
Cχ

∫
Ω

|∇(|∇u|
r+2

2 )∇u|+Cu

∫
Ω

||∇u|
r
2∆u(∆v|+∆w|)

)
≤

(r+2)2

2

Cχ

(∫
Ω

|∇(|∇u|
r+2

2 )|2
) 1

2
(∫
Ω

|∇u|r+2
) 1

r+2

+

+
2Cu

r+2

(∫
Ω

|∇(|∇u|
r+2

2 )|2
) 1

2
(∫
Ω

|∆v|2
) 1

2

+

(∫
Ω

|∆w|2
) 1

2

 . (4.9)
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We recall at this point the Young’s inequality

ab ≤ ηas+η−
s′
s s′−1bs′ ,a,b ≥ 0,η ∈ (0,1),

1
s
+

1
s′
= 1

with which if we let η1 := 2η2
(r+2)2Cχ

where by [9, 12] Nirenberg-Gagliardo’s inequality 0 <
η2 ≤ 1 and ∫

Ω

|∇u|r+2 ≤ η2

∫
Ω

|∇(|∇u|
r+2

2 )|2+CΩη−m
2

(∫
Ω

|∇u|
r+2

2

)2

for m > N
2 , CΩ =C(Ω,m), η3 :=

16η2
2

(r+2)4C2
χ |Ω|

1− 2
r+2

we get that

(r+2)2

2
Cχ

∫
Ω

|∇(|∇u|
r+2

2 )∇u| ≤
(r+2)2

2
Cχ

(∫
Ω

|∇(|∇u|
r+2

2 )|2
) 1

2
(∫
Ω

|∇u|2
) 1

2

≤
(r+2)2

2
Cχ

(
η1

∫
Ω

|∇(|∇u|
r+2

2 )|2+ (4η1)−1
∫
Ω

|∇u|2
)

≤ η2

∫
Ω

|∇(|∇u|
r+2

2 )|2+
(r+2)2

2
Cχ|Ω|

1− 2
r+2

(
8η2

(r+2)2Cχ

)−1 ∫
Ω

|∇u|r+2

≤ 2η2

∫
Ω

|∇(|∇u|
r+2

2 )|2+
(r+2)2

2
Cχ|Ω|

1− 2
r+2

(
8η2

(r+2)2Cχ

)−1

CΩ(η3)−m ×

×

(∫
Ω

|∇u|
r+2

2

)2

= 2η2

∫
Ω

|∇(|∇u|
r+2

2 )|2+ (r+2)4mΓ1CΩ

(∫
Ω

|∇u|
r+2

2

)2

,

where Γ1 =

(
C2
χ |Ω|

1− 2
r+2

16η2
2

)m+1

.

As for the last expression in (4.9) we need a control from above of the integrals involv-
ing −∆ of v,w. To this end multiplying either stationary equations in v or w by −∆ of the
variable one obtains that

d2

∫
Ω

|∆v|2+λ2

∫
Ω

|∇v|2 = a2

∫
Ω

∇u∇v ≤ a2

(∫
Ω

|∇u|2
) 1

2
(∫
Ω

|∇v|2
) 1

2

≤ η4

∫
Ω

|∇u|2+a2(4η4)−1
∫
Ω

|∇v|2 ≤ η4|Ω|
1− 2

r+2

∫
Ω

|∇u|r+2+a2(4η4)C2
∇v|Ω|

≤ η4
|Ω|1−

2
r+2

µ1

∫
Ω

|∇(|∇u|
r+2

2 )|2+a2(4η4)−1C2
∇v|Ω|.

Note this remains true even if one had considered the entire equation involving the time
derivative, since by Theorem 3.5 the solutions are continuous in time. Let η4 ≤ η5 and set

η6 :=
1

(r+2)Cu

(
2η5+

η4

2µ1η5

(
1
d2
+

1
d3

)
|Ω|1−

2
r+2

)
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to find that

(r+2)Cu

(∫
Ω

|∇(|∇u|
r+2

2 )|2
) 1

2
(∫
Ω

|∆v|2
) 1

2

+

(∫
Ω

|∆w|2
) 1

2


≤ (r+2)Cu

(
2η5

∫
Ω

|∇(|∇u|
r+2

2 )|2+
1

4η5

(∫
Ω

|∆v|2+
∫
Ω

|∆w|2
))

≤ (r+2)Cu

((
2η5+

η4

2µ1η5

(
1
d2
+

1
d3

)
|Ω|1−

2
r+2

)∫
Ω

|∇(|∇u|
r+2

2 )|2 +

+

(
a2(C∇v+C∇w)|Ω|

16η5η4

))
≤ η6

∫
Ω

|∇(|∇u|
r+2

2 )|2+
a2(r+2)(C∇v+C∇w)|Ω|Cu

16η2
4

 .
Thus, from (4.9) if we let η7 = 2η2+η6, Γ2 =

a2(C∇v+C∇w)|Ω|Cu
16η2

4
and Γ =max {Γ1,Γ2} we are led

to conclude that

d
dt

∫
Ω

|∇u|r+2+2d1

∫
Ω

|∇(|∇u|
r+2

2 |2

≤ η7

∫
Ω

|∇(|∇u|
r+2

2 )|2+ (r+2)4mΓ

(∫
Ω

|∇u|
r+2

2

)2

+1


implying
=⇒

d
dt

∫
Ω

|∇u|r+2+β

∫
Ω

|∇u|r+2 ≤ (r+2)4mΓ

(∫
Ω

|∇u|
r+2

2

)2

+1


implying
=⇒

∫
Ω

|∇u|r+2 ≤

∫
Ω

|∇u0|
r+2+ (r+2)4mΓ

sup
(0,T )

∫
Ω

|∇u|
r+2

2

2

+1


following from the use of the Poincaré inequality and that β := 2d1−η7 > 0.

Next proceeding as either in proof of Lemma 4.1 or as in proof of Corollary 4.2 yields
that ∇u ∈ L∞(Ω× (0,T )) is finitely bounded in norm.

To complete the ideas, consider (4.7) in gradient functions and take p = r+2 to get that

K(r+2) ≤ [Γ(r+2)4m]
1

r+2 K(
r+2

2
),∀r ≥ 0.

Then, let ri+2 = 2i, i ∈ N to obtain that

K(2i) ≤ Γ2−i
(2i)4m2−i

K(2i−1) ≤ . . . ≤ Γ
∑i

k=1 2−k
(2i)2−i4m . . . (2)2−14mK(1)

≤ Γ
[
2i2−i4m(2−i)2−i4m

]
. . . . . .

[
22−14m(2−1)2−14m

]
K(1)

≤ Γ24m
∑i

k=1 k2−k
×24m

∑i
k=1 2−k

K(1) ≤C212mK(1).

Thus taking the limit as i→∞ yields

‖∇u‖L∞(Ω) ≤C212mK(1) ≤C212m max
{
‖∇u0‖L∞(Ω),‖∇u0‖L1(Ω)

}
<∞,

and the proof of the lemma is complete. �
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Now we prove (ii) of Corollary 3.7.

Proof. We use a bootstrap argument. By Theorem 3.5 taking into account that the space
inclusions (2.5) imply Eβ,Eγ ⊂ C(Ω), we get that u ∈ C(Ω× (0,T )). Thus, viewing either
equations in v or w variables, we get for example that vt ∈ L∞(Ω), consequently g(t) :=
a2u− vt ∈ Lp(Ω) for all p ≥ 1. Thus, v ∈ W2,p(Ω) for all p ≥ 1 and ∇v ∈ W1,p(Ω) for all
p ≥ 1, in particular ∇v ∈W1,p(Ω) for some p > N yielding ∇v ∈ Cθ(Ω), for some θ > 0. In
fact, if p < N, as ∇v ∈ W1,p(Ω) ⊂ Lq1(Ω), q1 =

pN
N−p if p > N

2 then q1 > N and the above

statements hold. If not we repeat the process, with W1,p(Ω) ⊂ Lq2(Ω), q2 =
q1N

N−q1
=

pN
N−2p and

if p > N
3 we are done as q2 > N.

In the otherwise case we repeat the iterative process to find qm =
qm−1N

N−qm−1
=

pN
N−mp and

if p > N
m+1 then we are done. Thus in a finite number of steps it is always possible to get

qm > N and the above Hölder smoothness of gradient solutions are obtained.
The next immediate result from Corollary 4.2 is also that u ∈ L∞(Ω), now if ∇u0 ∈

L∞(Ω), then Lamma 4.3 implies ∇u ∈ L∞(Ω). Furthermore, f (t) = −div(u~d(∇v,∇w)) ∈
W2,p(Ω) for all p > 1. Thus viewing the equation in u as an elliptic problem, we get
∇u ∈ W1,p(Ω) ⊂ Cθ(Ω) for some θ > 0 since in particular using a bootstrap iteration argu-
ment as in the above lines W1,p(Ω) ⊂ Lqm(Ω) it is possible to get qm > N provided p > N

m+1 .
Consequently, u ∈ C2+θ(Ω). Getting back to the v equation, we obtain g(t) ∈ Cθ(Ω) and so
v ∈ C2+θ(Ω) for some θ > 0. By similarity, of the equations we also have w ∈ C2+θ(Ω) for
some θ > 0. Combining all of the above, we conclude the solution to the problem (1.1)-(1.2)
verifies regularity properties given in Corollary 3.7 and is a classical solution. �

5 Equations in system coupled elliptic differential operator

In this section, we view the problem (1.1)-(1.2) in the form
Ut +A(t)U = ~0

U(0) = U0 ∈ Eβ×Eγ ×Eγ,

1/2 ≤ β ≤ γ < β+1
(5.1)

whereA(t) =A(u) is the coupled elliptic partial differential operator associated to the prob-
lem by passing all terms in the right hand side to the left hand side of the system of equations
i.e.

A(u) =

 −d1∆ Div(uχ2∇·) −Div(uχ3∇·))
−a2 −d2∆+λ2 0
−a3 0 −d3∆+λ3


=

 −d1∆ 0 0
0 −d2∆+λ2 0
0 0 −d3∆+λ3

+
 0 Div(uχ2∇·) −Div(uχ3∇·))
−a2 0 0
−a3 0 0


= A−P(u).

(5.2)
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Next if in (5.2) we let the left hand side of the operator be a function of Θ ∈ Eβ, and set
U = (u,v,w)> then

A(Θ)U =

 −d1∆u+Div(Θχ2∇v)−Div(Θχ3∇w)
−d2∆v+λ2v−a2u
−d3∆w+λ3w−a3u

 .
Consequently, if we define

B : Zβ(γ)×Zβ(γ)→ R,Zβ(γ) := Eβ×Eγ ×Eγ,2β+γ ≥ 1+
N
4

(5.3)

by

B(Θ;U,V) := 〈A(Θ)U,V〉 = 〈AU,V〉+ 〈P(Θ)U,V〉

= d1

∫
Ω

∇u∇φ+d2

∫
Ω

∇v∇ϕ+d3

∫
Ω

∇w∇ψ−χ2

∫
Ω

Θ∇v∇φ+χ3

∫
Ω

Θ∇w∇φ+

+ λ2

∫
Ω

vϕ+λ3

∫
Ω

wψ−a2

∫
Ω

uϕ−a3

∫
Ω

uψ (5.4)

where V = (φ,ϕ,ψ)> ∈ Zβ(γ), it hence holds the following theorem:

Theorem 5.1. Let Θ ∈ Eβ be fixed. Then, there exists
M(‖Θ‖β) = max

{
d1µ
− 1

2−β

1 ,d2µ
− 1

2−γ

1 +λ2µ
−γ
1 ,d3µ

− 1
2−γ

1 +

λ3µ
−γ
1 , {χ2,χ3} ‖Θ‖βµ

N
4 −2β−γ
1 , {a2,a3} ‖Θ‖βµ

−β−γ
1

}
> 0,

ω(‖Θ‖β) = min
{
{d1,di+λiµ1 : i = 2,3}−2Λ1‖Θ‖β

}
> 0

(5.5)

where Λ1 =max
{
{χ2,χ3}µ

N
4 −2β−γ
1 , {a2,a3}µ

−β−γ
1

}
> 0, and

(i). |B(Θ;U,V)| ≤ M(‖Θ‖β)‖U‖β(γ)‖V‖β(γ)

(ii). B(Θ;U,U) ≥ ω(‖Θ)‖β)‖U‖2β(γ)

(iii). 〈A(Θ)U −A(Θ)V,U −V〉 > 0,∀U,V ∈ Zβ(γ).

Moreover, for fixed (U,F) ∈ Zβ(γ)× [Zβ(γ)]∗ arbitrary and if considered (5.4) for any V ∈ Zβ(γ)
then,

(iv). A(Θ)U = F ∈ [Zβ(γ)]∗ has one and only one solution U = TF(Θ) ∈ Zβ(γ).

(v). A(Θ)U depends continuously on Θ for each U ∈ Zβ(γ) fixed.

(vi). TF(·) ∈ L(Zβ(γ)) is well-posed and U = TF(u) is a unique solution of

A(u)U = F ∈ [Zβ(γ)]∗.

(vii). TF(·) ∈ K([Zβ(γ)]∗,Zβ(γ)) is a compact operator.

Proof. First we notice that for any β,γ ≥ 1/2, by Sobolev type space embeddings [2, 9, 24,
28, 29] i.e. (2.4) the mapping

(U,V) 3 Zβ(γ)×Zβ(γ)→ 〈AU,V〉 ∈ L1(Ω) (5.6)
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is well defined and continuous. In fact, it holds that

|〈AU,V〉| ≤ d1‖∇u‖Lr1 (Ω)‖∇φ‖Lr1 (Ω)+d2‖∇v‖Lr2 (Ω)‖∇ϕ‖Lr2 (Ω)+d3‖∇w‖Lr2 (Ω)‖ψ‖Lr2 (Ω) +

+ λ2‖v‖Lr3 (Ω)‖ϕ‖Lr3 (Ω)+λ3‖w‖Lr3 (Ω)‖ψ‖Lr3 (Ω)

≤ d1µ
1
2−β

1 ‖u‖β− 1
2
‖φ‖β− 1

2
+d2µ

1
2−γ

1 ‖v‖γ− 1
2
‖ϕ‖γ− 1

2
+d3µ

1
2−γ

1 ‖w‖γ− 1
2
‖ψ‖γ− 1

2

+ λ2µ
−γ
1 ‖v‖γ‖ϕ‖γ +λ3µ

−γ
1 ‖w‖γ‖ψ‖γ

≤ d1µ
− 1

2−β

1 ‖u‖β‖φ‖β+d2µ
− 1

2−γ

1 ‖v‖γ‖ϕ‖γ +d3µ
− 1

2−γ

1 ‖w‖γ‖ψ‖γ
+ λ2µ

−γ
1 ‖v‖γ‖ϕ‖γ +λ3µ

−γ
1 ‖w‖γ‖ψ‖γ

≤ max
{
d1µ
− 1

2−β

1 ,d2µ
− 1

2−γ

1 +λ2µ
−γ
1 ,d3µ

− 1
2−γ

1 +λ3µ
−γ
1

}
×

×
(
‖u‖β‖φ‖β+ ‖v‖γ‖ϕ‖γ + ‖w‖γ‖ψ‖γ

)
≤ Λ0‖U‖β(γ)‖V‖β(γ), (5.7)

where Λ0 ∈ R
+ \ {0} is the value expressed in the max argument, and since the norm of

‖W‖β(γ) is greater than or equal to the partial summed norms of elements constituting the
product space sum of norms.

Also we have for any Θ ∈ Eβ, that the mapping

(U,V) 3 Zβ(γ)×Zβ(γ)→ 〈P(Θ)U,V〉 ∈ L1(Ω) (5.8)

is well defined and continuous provided 2β+ γ ≥ 1+ N
4 again by Sobolev type space em-

beddings (2.4). Note that this implies from (5.6) that if β = γ = 1/2 then (5.8) holds only in
N ≤ 2. Now proceeding as above we have that

|〈P(Θ)U,V〉| ≤ χ2|〈Θ∇v,∇φ〉|+ |χ3|〈Θ∇w,∇φ〉+a2|〈u,ϕ〉|+a3|〈u,ψ〉|

≤ χ2‖Θ‖Lr4 (Ω)‖∇v‖Lr2 (Ω)‖∇φ‖Lr1 (Ω)+ |χ3|‖Θ‖Lr4 (Ω)‖∇w‖Lr2 (Ω)‖∇φ‖Lr1 (Ω) +

+ a2‖u‖Lr5 (Ω)‖ϕ‖Lr3 (Ω)+a3‖u‖Lr5 (Ω)‖ψ‖Lr3 (Ω)

≤ χ2µ
N
4 +1−2β−γ
1 ‖Θ‖β‖v‖γ− 1

2
‖φ‖β− 1

2
+χ3µ

N
4 +1−2β−γ
1 ‖Θ‖β‖w‖γ− 1

2
‖φ‖β− 1

2
+

+ a2µ
−β−γ
1 ‖u‖β‖‖ϕ‖γ +a3µ

−β−γ
1 ‖u‖β‖‖ϕ‖γ. (5.9)

Consequently,

|〈P(Θ)U,V〉| ≤ χ2µ
N
4 −2β−γ
1 ‖Θ‖β‖v‖γ‖φ‖β+ |χ3|µ

N
4 −2β−γ
1 ‖Θ‖β‖w‖γ‖φ‖β +

+ a2µ
−β−γ
1 ‖u‖β‖‖ϕ‖γ +a3µ

−β−γ
1 ‖u‖β‖‖ψ‖γ.

Next if we set
Λ1 =max

{
{χ2,χ3}µ

N
4 −2β−γ
1 , {a2,a3}µ

−β−γ
1

}
,

then

|〈P(Θ)U,V〉| ≤ Λ1‖Θ‖β
(
‖v‖γ + ‖w‖γ

)
‖φ‖β+

(
‖ϕ‖γ + ‖ψ‖γ

)
‖u‖β

≤ Λ1‖Θ‖β
(
‖u‖β+ ‖v‖γ + ‖w‖γ

)
‖V‖β(γ)+ ‖V‖β(γ)‖u‖β

≤ Λ1‖Θ‖β
((
‖u‖β+ ‖v‖γ + ‖w‖γ

)
‖V‖β(γ)+ ‖V‖Zβ(γ)‖U‖β(γ)

)
≤ 2Λ1‖Θ‖β‖U‖β(γ)‖V‖β(γ). (5.10)
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Combining, this with the estimate from above in (5.7) taking M :=max {Λ0,2Λ1} ∈ R
+ \ {0}

we conclude we have proved that (i) holds.
First observing that Zβ(γ) is endowed with the norm 〈(u,v,w)>, (u,v,w)>〉β(γ) = ‖u‖2β +

‖v‖2γ + ‖w‖
2
γ, if we take in (5.3) the scalar product V = U ∈ Zβ(γ), we get from (5.10) that

B(Θ;U,U) ≥ d1‖u‖2β− 1
2
+d2d3

(
d−1

3 ‖v‖
2
γ− 1

2
+d−1

2 ‖w‖
2
γ− 1

2

)
+λ2µ1‖v‖2γ− 1

2

+ λ3µ1‖w‖2γ− 1
2
−2Λ1‖Θ‖β‖U‖2β(γ)− 1

2

≥ min
{
{d1,di+λiµ1 : i = 2,3}−2Λ1‖Θ‖β

}
‖U‖2

β(γ)− 1
2

= ω(‖Θ‖β)‖U‖2β(γ)− 1
2
,

since u ∈ Eβ ⊂ Eβ− 1
2 , v,w ∈ Eγ ⊂ Eγ− 1

2 using the inclusions (2.4) and (ii) is verified, taking
V = U ∈ Zβ(γ)+1/2. From, (ii) if U , V it also follows the conclusion (iii) of the theorem.
To obtain (iv), it suffices to notice from (i)− (ii) that for each Θ ∈ Eβ fixed, (5.3) defines an
isomorphism

A(Θ)U := B(Θ;U, ·) ∈ Z∗β(γ) for any U ∈ Zβ(γ) by 〈A(Θ)U,V〉 = 〈F,V〉, ∀V ∈ Zβ(γ),

and F ∈ Z∗β(γ). This proves (iv) with uniqueness of the solutions being given by (ii).
Also we get using (5.10) that (v) is proved for any two Θ1,, Θ2 ∈ Zβ(γ) and U ∈ Zβ(γ)

fixed. To prove (vi) we observe that the mapping F 3 Z∗β(γ)→U ∈ Zβ(γ) by (ii) is continuous.
It is also compact since the space inclusions Zβ(γ) ⊂ Z∗β(γ) are compact, this proves (vii).
Thus, the mapping F 3 Zβ(γ) → TF(·) =A−1(·)F ∈ L(Zβ(γ)) and the problem U = TF(u) =
A−1(u)U by Schauder -Tychonoff theorem ( see [5, 4] pp.179, pp.120 respectively) has a
unique fixed point U ∈ Zβ(γ). The rest is trivial, and the proof of the theorem is complete. �

If in what follows, we let D(A(t)) = Zβ(γ)+1/2 := Eβ+ 1
2 × Eγ+ 1

2 × Eγ+ 1
2 . Then, operator

A(t) : Zβ(γ)+1/2 ⊂ Zβ(γ)→ Z∗β(γ) ⊂ E−1/2×E−1/2×E−1/2 is closed and densely defined. Also
by Theorem 5.1 for each t ∈ R+, the resolvent operator

R(A(t), κ) = (A(t)− κI)−1 : Z∗β(γ)→ Zβ(γ)

exists for any κ ∈ C, with Re(κ) ≤ 0 such that

‖R(A(t), κ)‖L(Z∗
β(γ),Zβ(γ)) ≤

C
|κ|+1

.

Furthermore, by Theorem 3.5 Hölder continuity of the solution for any 0 ≤ s ≤ τ ≤ t <∞
we have that

‖[A(t)−A(s)]A−1(τ)‖L(Zβ(γ),Z∗β(γ)) ≤C(t− s)θ (5.11)

for θ ∈ (0,1). Consequently, by [2, 6, 7, 12, 9, 24, 28], we obtain that (1.2) is an infinitesi-
mal generator of a fundamental solution operator {G(t, s) : t > s} : Zα0 → Zα1 satisfying the
following:
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Lemma 5.2. Let Js := (s,T ), s ≥ 0. Then, G(t, s) ∈ L(Zα0 ,Zα1) uniformly for any t ∈ Js

verifies that

‖G(t, s)‖α0,α1 ≤ c(α0,α1)e−ω(t−s)(t− s)α0−α1 and G(·, s) ∈Cβ−α(Js,L(Zα1 ,Zα0))

whenever −1 ≤ α0 ≤ α1 ≤ 1 where ω ∈ R+ \ {0} and if

Ut +A(t)U = ~0, in Js, U(s) = Us ∈ Zα0 (5.12)

then,
U(t, s,Us) =G(t, s)Us ∈C1(Js,Zα0)∩Cα1−α0(Js,Zα1)

is a unique solution of (5.12).
Moreover, if Us ∈ Y where either Y = Z∗α0

, or [Lr(Ω)]3 it holds that

‖G(t, s)Us‖Y


≤ C e−ω(t−s)

(t−s) ‖Us‖Z∗α0
, t > s

≤ C e−ω(t−s)

(t−s)
N
2 ( 1

q −
1
r )
‖Us‖Lq(Ω), t > s

(5.13)

within last estimates Y = Lr(Ω) following a bootstrap argument for any 1 ≤ q ≤ r ≤ ∞ and
the evolution operator is in Lq(Ω) for any 1 < q <∞.

Remark 5.3. It is not difficult to see that the coupled system of equations (5.1)-(5.2) with
initial data (u0,v0,w0) ∈ W1,p(Ω)×H1(Ω)×H1(Ω), p > N will be well-posed in a sense
similar to Lemma 5.2. Also the long time dynamics of the problem are captured by the set
(2.12) given for all this section we assuming that the functions are orthogonal to constant
functions and there is decay following the given lemma to null solutions as t↗ +∞.

6 A much simplified model of coupled system equations

We conclude this analysis sections by considering a much simplefied system of equations
of (1.1)-(1.2), which in view of results of Section 4 is realistic i.e.

∂u
∂t −d1∆u+χ2∆v−χ3∆w = 0 in Ω× (0,T )

∂v
∂t −d2∆v+λ2v = a2u in Ω× (0,T )

∂w
∂t −d3∆w+λ3w = a3u in Ω× (0,T )

d1
∂u
∂~n = d2

∂v
∂~n = d3

∂w
∂~n = 0 on Γ× (0,T )

u(0) = u0,v(0) = v0,w(0) = w0 in Ω,

(6.1)

where Di,λ j,χ j = χ j(‖u‖∞) ∈ R+ \ {0} for i = 1,2,3 = j , 1. Corresponding to the homoge-
neous system of equations of (6.1) is the matrix

A =

 −d1∆ χ2∆ −χ3∆

−a2 −d2∆+λ2 0
−a3 0 −d3∆+λ3

 (6.2)
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of which it is not difficult to find more precise conditions for its well-posedness of (5.3)-
(5.4) with no restrictive assumption on taking β = γ = 1/2 and Θ = 1 in Theorem 5.1 in
nature of (i)− (ii). As clearly, in this case the bilinear form (5.3)-(5.4) is symmetrical, Lax-
Milgram’s theorem [5, 14, 40], impliesA is a maximal monotone, self-adjoint operator with
compact resolvent in L2(Ω) and by [9] is a sectorial operator also in L2(Ω). Furthermore,
the spectrum of (6.2), using [5, 14, 40] can be characterized by real numbers in R as

σ(A) =
{
µn;n ∈ N∗ : 0 < µn−1 ≤ µn↗∞ as n↗∞,∀n ≥ 2

}
and we can choose associated eigenfunctions Ψn ∈ H1(Ω) orthonormal in and to constitute
a basis for the space L2(Ω). Since the scales of Hilbert spaces Eα,α ∈ R associated with the
operator (6.2) are well defined, −A is an infinitesimal generator of an analytic semigroup
as in (2.9) satisfying in operator norm estimates similar to ones given in (2.10)-(2.11). In
conclusion, for any initial data in Eα,α ∈ R we can solve the coupled systems of equations
(6.1) for values in Eβ and by (2.11) the long time asymptotic dynamics are determined
by the set (2.12) as solutions orthogonal to constant functions will decay to the null state.
Lastly, we remark that (6.1) considered in the context of Sections 3 and 4 is much easier to
treat directly from the H1(Ω) functional setting.

7 Numerical simulation

To visualize the aggregation of microglia as in the model equations, we numerically simu-
late the equations using a Gradient Weighted Moving Finite Element method.

Gradient Weighted Moving Finite Element methods (GWMFE) are numerical moving
mesh methods which are designed for tracking moving shocks and complex structures with
a fixed number of mesh nodes. These methods are well suited to modelling aggregation
of microglial cells, where the cells aggregate into sharp peaks which need to be resolved.
For details of the generalized SGiteWS2. Also see [38] for a comparison of SGWMFE
and a Parabolic Moving Mesh Partial Differential Equation method, for solutions of Partial
Differential Equations.

In [39] the authors extend the String Gradient Weighted Moving Finite Element (SG-
WMFE) method in order to include the non-linear diffusion of different variables, necessary
for the chemo-attraction-repulsion model equations. For the simulations shown in this paper
we use the code developed in [39] using a set of model parameters found in [16].

7.1 Parameter values

The parameter values used in the numerical simulations are calculated from [16], where the
parameters used there are calculated from dimensional values found in Biology, Immunol-
ogy and Neuroscience publications referenced therein. From the set of data found in [16]
the corresponding parameter values chosen for the simulations in this paper are summarized
in Tables 1 and 2.

The equations are defined on a real and bounded domain Ω, where the boundary is
denoted by Γ. Our numerical domain is a two dimensional square of length and width 10.
The boundary conditions which hold are zero flux through the boundary Γ. No proliferation
or death of microglial cells is considered in this model.
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Table 1. Biological parameters from [16], found in literature or calculated therein.

Parameter Description Value

µ Microglia random motility 33
µ m2

min

χ̃1 Chemoattraction 6−780
µ m2

nM ·min
χ̃2 Chemorepulsion Not available

D1 IL-1β diffusion 900
µ m2

min

D2 TNF-α diffusion 900
µ m2

min
ã1 IL-1β production rate per microglia cell 6.25×10−6 pg

min
ã2 TNF-α production rate per microglia cell 8.33×10−6 pg

min
b1 IL-1β decay rate 0.003−0.03min−1

b2 TNF-α decay rate 0.002−0.03min−1

L1 Spatial range for chemoattraction
√

D1/b1

L2 Spatial range for chemorepulsion
√

D2/b2

m̄ Average microglial cell density 10−6−10−4 cells
µ m3

The contour plots for the three unknown variables are shown in Fig 1. The correspond-
ing evolving meshes are shown in Fig 2 where we also show a slice of the solutions, where
the slice is taken along y = 7 of the computational domain.

Summarizing the relation between the non-dimensional variables used in the model
equations in this paper and the dimensional variables (as derived from [16]): the charac-
teristic cell density used is the average cell density m̄. One can calculate the dimensional
variable for density, from the non-dimensional density u as udim = m̄u. The average chem-
ical concentrations at which production and decay balance, form the characteristic scales
for chemical concentrations v̂ = a1m̄/b1 and ŵ = a2m̄/b2. In order to obtain the dimensional
chemical concentrations one can then calculate vdim = v̂v and wdim = ŵw.

L2 is close in value to L1, and so L2 is taken as the characteristic length scale of the prob-
lem, with L2 =

√
900/0.01 = 300µ m. This value corresponds to the distance over which

chemicals spread during the characteristic time of decay. The 10 by 10 non-dimensional do-
main used for the simulations corresponds to a physical domain of length and width equal
to 3,000µ m.

The characteristic time scale for the problem is t̂ = L2
2/µ, which is the time needed for

a cell to move over one unit of the characteristic length scale L2 [16]. Then in order to
calculate the dimensional time tdim, from the non-dimensional time t found in the equations
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Table 2. Model parameter values in relation to biological parameters from Table 1.

Dimensionless
variable

Expression in terms of
variables in Table 1

Variable values
from data Set 3,
Table 10 in [16]

χ2
χ̃1ã1m̄
µb1

37.14

χ3
χ̃2ã2m̄
µb2

27

ε1
µ

D1
0.0367

ε2
µ

D2
0.0367

a
L2

L1
1.1

a2
a2

ε1
32.970027248

a3
1
ε2

27.2479564033

d2
1
ε1

27.2479564033

d3
1
ε2

27.2479564033

λ2
a2

ε1
32.970027248

λ3
1
ε2

27.2479564033
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of the model, we calculate tdim = t̂t. In the simulations shown in this paper, we compute up
to a non-dimensional time t = 0.8, which corresponds to a dimensional time of

tdim = ((300µ m)2min/33µ m2)×0.8 = (2.727×103min)×0.8 ≈ 1.5days

i.e. one and a half days.

8 Discussion of results

Fig 1 shows the contour plots of the microglia, attractant and repellent solutions to the
equations in system 1.1, at five different times, t = 0, t = 0.2, t = 0.4, t = 0.6 and t = 0.8. As
in the one dimensional results found in [16], we see similar behaviour in that small initial
perturbations increase in amplitude and decrease in spatial frequency, so that a few peaks
evolve in each of the solutions. We observe that the microglial cells merge locally due to
the attractant and form sharp peaks. This feature can also be observed in the slice plot in
Fig 2.

The numerical solutions, resulting from the application of SGWMFE, shown in Fig 1,
mimic the behavior of microglia observed in both in vitro and in vivo experiments, specifi-
cally the migration in response to chemoattraction.

We show numerical simulations up to a time t=0.8, corresponding to a dimensional time
computation of 36hrs. This time frame is of interest because studying the early changes
in the Alzheimer’s disease affected brain is critical, especially given the prospect of new
disease-modifying drugs. It should be noted that this time frame is believed to be sufficient
to induce early Alzheimer’s disease pathology in experimental models, as is recently shown
in the development of AD-like pathology at 24hrs in a novel model for sporadic Alzheimer’s
disease [13].

Fig. 1 below is of contour plots of the numerical solutions of the model equations (1.1)-(1.2)
solved with SGWMFE using a mesh of 21 by 21 nodes. At time t = 0 the cells and concen-
trations of attractant and repellent are initialized randomly in the interval (0.998,1.002).

Fig.2 following after Fig 1 is of mesh plots from (a) to (e) and of slice plots from (f) to (j)
corresponding to the numerical solutions in Fig 1. The slice is taken along the line y = 7
of the computational domain. The microglia, attractant and repellent are represented by the
starred line, the solid line and the dash- dot line respectively.
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Figure 1. Contour plots.
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