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Abstract

We generalize the concept of biorthogonal wavelets to a localKiedflpositive char-
acteristic. We show that if the translates of the scaling functions of two multiresolution
analyses are biorthogonal, then the associated wavelet families are also biorthogonal.
Under mild assumptions on the scaling functions and the wavelets, we also show that
the wavelets generate Riesz based fqK).
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1 Introduction

The concept of wavelet is defined and studied extensively in the Euclidean $paces

see [10, 14, 21, 31, 32, 37, 38] and references therein. Subsequently, it has been extended
to many diferent setups. Dahlke [13] introduced this concept on locally compact abelian
groups. This was generalized to abstract Hilbert spaces by Han, Larson, Papadakis and
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Stavropoulos [20, 35]. Lemarie [28] extended this concept to stratified Lie groups. Re-
cently, R. L. Benedetto and J. J. Benedetto [6, 7] developed a wavelet theory for local fields
and related groups.

A field K equipped with a topology is called a local field if both the additive and mul-
tiplicative groups oK are locally compact abelian groups. The local fields are essentially
of two types (excluding the connected local fieRlendC). The local fields of character-
istic zero include theg-adic fieldQ,. Examples of local fields of positive characteristic are
the Cantor dyadic group and the Vilenkpagroups. Even though the structures and met-
rics of local fields of zero and positive characteristics are similar, their wavelet and MRA
(multiresolution analysis) theory are quitdtdrent.

Khrennikov, Shelkovich and Skopina [23] constructed a number of scaling functions
generating an MRA of_Z(Qp). But later on in [3], Albeverio, Evdokimov and Skopina
proved that all these scaling functions lead to the same Haar MRA and that there exist no
other orthogonal test scaling functions generating an MRIE(D,,) except those described
in [23]. Some wavelet bases fdl?(Qp) different from the Haar system were constructed
in [15] and [2]. These wavelet bases were obtained by relaxing the basis condition in the
definition of an MRA. Moreover, these systems form Riesz bases without any dual wavelet
systems.

Haar type wavelets can also be constructed on certain metric-measure spaces without
any algebraic structures, namely on a spaXel,(«) of homogeneous type. A space of
homogeneous type is a quasi-metric spAogith quasi-metriad such that thel-balls are
open sets, and is a regular measure defined on thalgebra containing thd-balls that
satisfies the “doubling condition”, i. e., there is a constastich that the measure of a ball
of radius 2 is at mostA times the measure of the ball of radiuwith the same centre. We
refer to [1] for the details of this construction. Novikov and Skopina have observed that
this can also be done in the absence of a metric. In [33] they showed the existence of Haar
MRA on a measure spac@Z,u) equipped with a topology such thatcontains all the
open sets and satisfies some other conditions.

On the other hand, Lang [25, 26, 27] constructed several examples of compactly sup-
ported wavelets for the Cantor dyadic group. Farkov [16, 17] has constructed many ex-
amples of wavelets for the Vilenkip-groups. Several examples of biorthogonal wavelets
on the Vilenkin groups were constructed by Farkov in [18] and by Farkov and Rodionov
in [19]. By choosing the parameters appearing in these constructions suitably, we can see
that these wavelets are not orthogonal. Also, in [19], the authors have provided an algorithm
to construct biorthogonal wavelets on such groups.

For related works on zero-dimensional groups, we refer to [30] and references cited
there.

Jiang, Li and Jin [22] gave the definition of an MRA on a local fieldof positive
characteristic and constructed the wavelets from an MRA. In [4], among other results, we
characterized the scaling functions of MRAs of local fields of positive characteristic, and
in [5], we constructed the wavelet packets and wavelet frame packets associated with such
MRAs.

The concept of biorthogonal wavelets plays an important role in applications. We refer
to [11, 12, 24] for various aspects of this theoryRnFor the higher dimensional situation
onR", we refer to the articles [8, 9, 29].
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In this article we generalize the concept of biorthogonal wavelets to a localKield
positive characteristic. We show thatgdfand ¢ are the scaling functions of two multires-
olution analyses (MRAS) such that their translates are biorthogonal, then the associated
families of wavelets are also biorthogonal. Under mild decay conditions on the scaling
functions and the wavelets, we also show that the wavelets generate Riesz basd@s)or

The article is organized as follows. In section 2, we give a brief introduction to local
fields and Fourier analysis on such a field. In section 3, we find necessary féicgestu
conditions for the translates of a function to form a Riesz basis for its closed linear span. We
give the definition of an MRA in section 4, where we also define the projection operators
associated with the MRAs and show that they are uniformly bounde@). In the
last section, we prove that the wavelets associated with dual MRAs are biorthogonal and
generate Riesz bases 107(K).

2 Preliminaries on local fields

Let K be a field and a topological space. Th€iis called docally compact fieldr alocal
field if both K* andK* are locally compact abelian groups, whété andK* denote the
additive and multiplicative groups & respectively.

If K is any field and is endowed with the discrete topology, tKeis a local field.
Further, ifK is connected, theK is eitherR or C. If K is not connected, then it is totally
disconnected. So by a local field, we mean a fl€ldrhich is locally compact, nondiscrete
and totally disconnected.

We use the notation of the book by Taibleson [36]. Proofs of all the results stated in this
section can be found in the books [36] and [34].

Let K be a local field. Sinc&™* is a locally compact abelian group, we choose a Haar
measuraxfor K*. If @ # 0,a € K, thend(eX) is also a Haar measure. Leéfax) = |o|dX
We call|e| theabsolute valuer valuationof «. We also let0] = 0.

The mapx — |X| has the following properties:

(@) Ix =0ifand only ifx=0;
(b) Ixy = |x|lyl for all X,y € K;
(©) Ix+yl <max|x,lyl} for all x,y € K.

Property (c) is called thaltrametric inequality It follows that
X+ Yyl = max{|x, yl} if [x] # [yl.

The setd = {xe K : x| < 1} is called thering of integersin K. It is the uniqgue maximal
compact subring oK. Definesy = {xe K : |x| < 1}. The setp is called theprime idealin
K. The prime ideal irK is the unique maximal ideal i®. It is principal and prime.

SinceK is totally disconnected, the set of valygssas x varies ovel is a discrete set
of the form{s* : k € Z} U {0} for somes > 0. Hence, there is an elementPfof maximal
absolute value. Let be a fixed element of maximum absolute valu&inSuch an element
is called aprime elemenbf K. Note that as an ideal i, = (p) = pD.
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It can be proved thad is compact and open. Hencgjs compact and open. Therefore,
the residue spacg/® is isomorphic to a finite fiel& F(q), whereq = p® for some primep
andc € N. For a proof of this fact we refer to [36].

For a measurable subsgtof K, let |E| = fKXE(x)dx, whereyg is the characteristic
function of E anddx is the Haar measure &f normalized so thg®| = 1. Then, it is easy
to see tha3| = g1 and|p| = g1 (see [36]). It follows that ifk # 0, andx € K, then|x| = ¥
for somek € Z.

LetD"=D\B ={xe K :|x =1}. D" is the group of units irkkK*. If x# 0, we can write
x = pkx’, with X’ € D*.

Recall thatd /P = GF(q). LetU ={g :1=0,1,...,g— 1} be any fixed full set of coset
representatives of in ©. Let PX = p*D = {x e K : |x < q ),k e Z. These are called
fractional ideals Each$3* is compact and open and is a subgroupKof(see [34]).

If K is alocal field, then there is a nontrivial, unitary, continuous characterK™*. It
can be proved th&* is self dual (see [36]).

Let y be afixed character dd* that is trivial on® but is nontrivial ot . We can find
such a character by starting with any nontrivial character and rescaling. We will define such
a character for a local field of positive characteristic. ¥arK, we defineyy(x) = x(yX),
xe K.

Definition 2.1. If f € L1(K), then the Fourier transform dfis the functionf defined by

f(f)=ﬁf(x)mdx
Note that
fe) = fK F (@) dx= fK F (O (-£x) dx

Similar to the standard Fourier analysis on the real line, one can prove the following
results.

(@) The mapf — f is a bounded linear transformationlof(K) into L*(K), and|| f|l. <
l1£ll1.

(b) If f € LY(K), thenf is uniformly continuous.
(©) If f e LY(K)NL2(K), then||fll> =fll.

To define the Fourier transform of function irf(K), we introduce the function®y.
Fork € Z, let @, be the characteristic function &¥.

Definition 2.2. For f € L2(K), let f, = f®_x and

flo= im )= Jm | 100v00 c.

(o)

where the limit is taken in?(K).
We have the following theorem (see Theorem 2.3 in [36]).

Theorem 2.3. The Fourier transform is unitary on3(K).
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A set of the formh+ 5% will be called aspherewith centreh and radiusy . It follows
from the ultrametric inequality that 8 andT are two spheres i, then eithelS andT are
disjoint or one sphere contains the other. Also, note that the characteristic function of the
sphereh+ $5¥ is @y (- — h) and thatdy(- — h) is constant on cosets 8.

Definition 2.4. The setS is the space of all finite linear combinations of functions of the
form dy(-—h),he K, ke Z.

This class of functions can also be described in the following way. A fungiet if
and only if there exist integeis| such thay is constant on cosets & and is supported
on{'.

It follows that S is closed under Fourier transform and is an algebra of continuous
functions with compact support, which is dens€Ci(K) as well asLP(K),1 < p < 0. We
have the following theorem (see [36]).

Theorem 2.5. If g € S is constant on cosets & and is supported off', theng e S is
constant on cosets &' and is supported o .

Let yy be any character o*. Since® is a subgroup oK™*, the restrictionyy|o is a
character orD. Also, as characters dd, y, = yv ifand only ifu—ve ®. Thatis,y, = xv
if u+® =v+Dandyy # yv if (U+D)N(vV+D) = ¢. Hence, iffu(n)};’, is a complete list of
distinct coset representative ®fin K*, then{yyn)}; , is a list of distinct characters dd.
It is proved in [36] that this list is complete. That is, we have the following proposition.

Proposition 2.6. Let {u(n)}”, be a complete list of (distinct) coset representative® of
in K*. Then{yun}., is @ complete list of (distinct) characters ah Moreover, it is a
complete orthonormal system @n

Given such a list of charactefg,n) - ,, we define the Fourier céiecients off € LY(D)

as

0"
f(u(m) = L F (e 0IdX

The seriesio] f (u(M)xumy(X) is called the Fourier series ¢f From the standart?-theory
n=0

for compact abelian groups we conclude that the Fourier seriesarfiverges td in L?(D)
and Parseval’s identity holds:

[ 1teaPax= Y i
® n=0

Also, if f € L1(D) and fA(u(n)) =0foralln=0,1,2,...,thenf =0 a. e.

These results hold irrespective of the ordering of the characters. We now proceed to
impose a natural order on the sequefuf@)}’ ,. Note thatl’ = D/ is isomorphic to the
finite field GF(q) andGF(q) is a c-dimensional vector space over the figd-(p). We
choose a sdftl = ep, €1, €2, -, ec—1} € D* such that spge; 19;3 =~ GF(q). LetNg =NU{0}.
Forn € Np such that & n< g, we have

n=ag+ap+--+a-1p”!, O<a<pk=01-,c-1
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Define
u(n) = (ao+ager + -+ +ac 1€6c-1)p - (2.1)

Note that{u(n) : n=0,1,...,q— 1} is a complete set of coset representative®of L.
Now, forn> 0, write

n=bo+big+bog?+---+bsg®, 0<by<qk=0,12,s

and define
u(n) = u(bg) + u(bl)p‘l +---+U(bg)p~°. (2.2)

This definesu(n) for all n € No. In general, it is not true thaim+ n) = u(m) + u(n). But
it follows that

u(rg“+s) = u(r)p ™ +u(s) if r>0k>0and0< s<

In the following proposition we list some properties{atn)} which will be used later.
For a proof, we refer to [5].

Proposition 2.7. For n € Ny, let un) be defined as if2.1)and (2.2). Then
(@) u(n)=0ifand only if n=0. If k> 1, then|u(n)| = ¢ if and only if ¢ < n < ¢¥;
(b) {u(k) : ke No} = {~u(K) : k e No};
(c) for a fixed le No, we haveu(l) + u(k) : k € Np} = {u(K) : k € Np}.

For brevity, we will writey, = yun) for ne No. As mentioned befordy, : ne No} is a
complete set of characters @n

Let K be alocal field of characteristig> 0 andep, €1, . .., ec_1 be as above. We define a
characteyy onK as follows (see [39]):

“iy_ | exp(Zi/p), u=0andj=1,
x&p )‘{ 1, p=1--c-lorj#L

Note thaty is trivial on ® but nontrivial on{3 2.

In order to be able to define the concepts of multiresolution analysis and wavelet on local
fields, we need analogous notions of translation and dilation. Sinee!® = K, we can

J€Z

regardp~' as the dilation (note thaw~1| = ) and sincqu(n) : n € Ng} is a complete list of
distinct coset representatives®in K, the sefu(n) : ne Ng} can be treated as the translation
set. Note that it follows from Proposition 2.7 that the translation{s@t) : n € Np} is a
subgroup oK™.

Since the dilation is induced by and|p‘1| =(, as in the case d&", we expect the
existence ofj— 1 number of functiongy 1,2, - ,q-1} to form a set of basic wavelets.

For f € L2(K), j € Z, andk € Np, we define the dilation operatéf and the translation
operatorry as follows:

6if()=q"2f(r1x) and 7cf(x) = f(x—u(k)).
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Let fjx = oj7«f. Then
fix(¥) = g2 f(pIx-u(K), jeZkeNo.
It is easy to see that

Ifiull2 =11fll2,<6jf,6;9) = (f,9).(f,6;9) = (6-; f,0).

and S
(F10") = a1 2(pig) f (p1€).

A function f on K will be calledintegral-periodicif

f(x+u(k)) = f(x) for all k e No.

3 Riesz bases of translates

In this section we consider translates of a single function and find necessaryfhcie su
conditions when they form Riesz bases for their closed linear span.

Definition 3.1. Let {, : n € Np} and{i, : n € N} be two collections of functions ib?(K).
We say that they are biorthogonal if

(Yn, rm) = onm for everymn e Np.

A collection {y, : n € No} of functions inL?(K) is said to be linearly independent if for
any£?-sequencéa, : n € No} of codficients with 3 anyn = 0 in L2(K), we havea, = 0 for

neNp
all ne No. It is easy to see that biorthogonal sets are linearly independent.

Lemma 3.2. Let{yn : n € Ng} be a collection of functions inA(K). Suppose that there is a
collection{,, : n € No} in L2(K) which is biorthogonal tdun : n € No}. Then{y,, : n € No}
is linearly independent.

Proof. Let {a, : n € No} be anf?-sequence satisfying, a.n = 0 in L?(K). Then for each
neNp
m e Ng, we have

0=(0.thm) = ( ), @ntnim) = D, @nlWn, Yim) = 8m.

neNg neNp

Hence {y, : n€ N} is linearly independent. O

Definition 3.3. Let {X, : n € Ng} be a subset of a Hilbert spakk Then{x, : ne Np} is said
to form a Riesz basis fd if

(@) {X,:neNg}is linearly independent, and
(b) there exist constansandB with 0 < A< B < oo such that

AlIXI5 < Z K%, xn)|? < BJIX[5  for everyx e H.

neNp
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Note. The condition in (b) is known as the “frame condition”.

Remark3.4. The above definition is equivalent to the following definition. A suliggt
n € Np} of a Hilbert spacéd forms a Riesz basis fdt if

(a) spanx,:neNg}=H, and

(b) there exist constansandB with 0 < A < B < oo such that

A Z lcnl® < ” Z CnXn ‘B Z lcal?  for every{cn} € £2(No).

neNg neNp neNp

In the following lemma, we provide a necessary anfiisient condition for the trans-
lates of two functions to be biorthogonal.

Lemma 3.5. Letg,$ € L2(K) be given. Thefiy(- —u(n)) : n € No} is biorthogonal to{@(- —
u(n)) : n e Np} if and only if

D pErumE+um) =1 ae

neNp

Proof. For a fixedl € Ny, we have{u(l) + u(k) : k € No} = {u(k) : k € No} (see Proposi-
tion 2(c)). Hence, it follows thate(- — u(n)),@(- —u(m))) = dnm if and only if (¢, (- —
u(m))) = do,m. Since

(.3 —um)) = fK OB m(E)dE
- f 5 3(e + uFE+ Uz,

® 1eNg

the result follows from the uniqueness of the Fourier series and the fadjthatn € Ng}
is an orthonormal basis far?(D). |

The following lemma provides a flicient condition for the translates of a function to
be linearly independent.

Lemma 3.6. Lety € L2(K). Assume that there exist constantscs > 0 such that

C1 < Z 1pE+uk)?<c, forae&ek. (3.1)
keNg

Then{e(- —u(n)) : n € Nop} is linearly independent.

Proof. By Lemma 3.2, it sffices to find a functiop Whose translates are biorthogonal to
the translates af. We defines by

¢(¢)
% 16 +u(k)
keNp

&(6) =
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By (3.1), this function is well-defined. Now

. = . +u(m
% fles umIErum) = 3% dleum)— i
mEZN 0|¢(§ +u(m)?
S ZREruF
By Lemma 3.5{¢(- —u(n)) : n € Np} is biorthogonal tdg(- — u(n)) : n € No}. O

Lemma 3.7. Suppose thap satisfieq3.1). Any f insparie(- —u(n)) : n € Np} is of the form
f= Y anp(-—u(n)), where{a,} is a finite sequence. Létbe its Fourier transform, that is,
neN

a¢)= 3 awra(©). Then

neNg

& L AR dé <112 < cz L A dé.

Proof. By Placherel’s theorem, we have

lef(x)lzdx fK|Z anp(x—u()| dx

neNg

|13 arderete e

neNg

[ 1] Y s ae

neNp

[ eerriaerr o
| D et utorae de

( keNg

The result follows by (3.1). O
Remark3.8. In particular, for a finite sequendae,}, we have
2
1> anel—um| < c2 Y laal.
neNg neNp

Theorem 3.9. Let{¢(- —u(n)) : n € Np} be a Riesz basis for its closed linear span. Suppose
that there exists a functiop such thaf{g(- — u(n)) : n € Ng} is biorthogonal to{e(- —u(n)) :
ne Ng}. Then

(a) for every fe Spane(- —u(n)) : n € Ng}, we have

f= > (F.3(—um)e(-—un);

neNg
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(b) there exist constants, B > 0 such that for every € Sparie(- —u(n)) : n € Ng}

AIFIE< D ICEE(—um)I < BIFIE.
n=1

Proof. Since{y(-—u(n)) : n € Np} forms a Riesz basis for its closed linear span, there exist
constantg; andc; such that (3.1) holds (see Lemma 3.4 in [5]). We will first prove (a) and
(b) for f € sparfe(- — u(n)) : n € Np} and then generalize the resultssfmarie(- — u(n)) : ne
No}.

(a) Let f e sparje(- —u(n)) : n € Np}, then there exist a finite sequeni@g} such that
f= 3 ane(-—u(n)). Using biorthogonality, we have

neNg

(> anp(- = u(), &(- - u(k)))

neNg

D ane(- = u(m), &(-— u(k)))

neNg

= .

(f.8(-—u(k))

(b) Since (3.1) is satisfied, by Lemma 3.7, for evérg spare(- — u(n)) : n € Ng}, we
have

SR < L a0z < cYIfI2.

By Plancherel formula for Fourier series and the fact tat (f, (- — u(n))),

[ @R = 3 tad = 3 K83 umpP

neNp neNp
So (b) is proved.
We now generalize the results$panie(- — u(n)) : n € Ng}. First we will prove (b). For

f eSpanie(-—u(n)) : ne N}, there exists a sequendg, : me N} in spare(-—u(n)) : ne Np}
such that|f,,— f|lo — 0 asm — 0. Hence, for each € N,

(fm, @(- —u(n))) — (f, (- —u(n))) asm — co.

The result holds for each,. Hence,

N N
D KEGC—umDP = D lim (G~ u(m))
n=0 n=0

N
= lim > (fm B~ um))?
n=0

< Blim |fml3
m—oo

= B|If|5.
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Letting N — oo in the above expression, we get

2, KE.G(—um)F < Bl

neNg

Hence, the upper bound in (3.9) holds. Now

(D> Kfm (- u(n))>|2)%

neNp

< (3 Kl .36~ umpR)? +( 3 K36 umpP)’.

neNp neNo

Since the upper bound in (3.9) holds for edgh- f and the lower bound holds for eaéh,
we have

1
P3| frll2 < B2l fn— Fllo+ (> K. B(—u(m)HP)”.
neNp

Taking limit asm — oo, we get

AIFIE< > KEG(—um)P.

neNg

Now, we will prove (a) forf € Sparig(- —u(n)) : n€ Ng}. Lete > 0 andg € spane(- —
u(n)) : n € No} such that|f — g|l> < €. Since (a) holds fog, for large enoughN € Ny, we
have

N
f= > (E (= um))e(- - u(n)
n=0

N N
f=g+ D (@& —umNe(-—um) = > (F.E(— um))e(-— u(n)
n=0 n=0

N
f-g+ > (g— f,B(-— um))e(- - u(n)).
n=0

Hence,

Ji- i(f@('—u(n)»sﬂ('—“(n))Hz

N
< =gl + || > (9= £.3( —um)e(- —um)|,
n=0
N 1
< IIf —dl2+ ve2( ), Kg— f.&(- —u(m)))* (by Remark 3.8)
n=0
< NIf—glla+ V& VBIf —gll2 < (1+ Vc2B)e.

Sincee is arbitrary, the result follows. O
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4 Multiresolution analysis on a local field

Definition 4.1. LetK be a local field of characteristig> 0, p be a prime element d€ and
u(n),n € Ng, be as defined in (2.1) and (2.2). A multiresolution analysis (MRA)%K) is
asequencgV; : j € Z} of closed subspaces bf(K) satisfying the following properties:

(@) VjcVjsforall jez,
(b) U Vjis dense in-3(K);
jez
() NV;=1{0}
JEZ
(d) fevjifandonlyif f(p~1) e Vj,q forall j € Z;

(e) there is a functiop € Vy, called thescaling function such thafe(- — u(k)) : k € Np}
forms a Riesz basis fof.

In the usual definition of an MRA, it is required thas(- — u(k)) : k € Np} forms an
orthonormal basis fovy. In [5], we proved that if (- — u(k)) : k € No} forms a Riesz basis
for Vi, then we can find another functign € Vo such thafe;(- —u(k)) : k € Ng} forms an
orthonormal basis fovp. In the same paper, we also proved the following result.

Lemma 4.2. Lety € L2(K) be such thate(- —u(k)) : ke No} forms a Riesz basis of its closed
linear span. Then, there exist@nd G such that for a.e¢ € D,

Ci< ) 1B +u)’ < Ca

keNg
We can use the condition (e) in the definition of an MRA to get Riesz bas&4 for

Lemma 4.3. Let ¢ be the scaling function for an MR@; : j € Z}. Then, for each § Z,
{pjk - ke No} is a Riesz basis for V

Proof. If we defineg by

o)
Y (€ +u(k)P

keNg

o) =

then{@(-—u(k)) : ke N} is biorthogonal tde(- —u(K)) : k€ Ng} (see the proof of Lemma 3.6).
Hence,

(@in@im) = (0je(- —u(n),6;@(- — u(m))) = (e(- — u(M), ¢(- — u(mM)) = dnm.

Thatis,{®jk : ke No} is biorthogonal tdyj « : k€ No} for everyj € Z. Hence, by Lemma 3.2,
{¢jk : ke No} is linearly independent.

We need to show thdtpjk : k € No} satisfies the frame condition. For afy V;, we
have

D K@l = > I 8je(—uRNP = > K6 f.e(-—u(k))P.

kENo kGNo kGNo
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Since{p(- —u(k)) : ke No} is a Riesz basis fovg ands_; f € Vo, there are constants B> 0
such that for everyf € Vj,

AlS-FIE < D 166-; f.e(- —uDI® < Bl .
keNp

This is equivalent to

AIIE< > KE.8je(- = u@DI < BIIfI3.
keNp

Hence {¢jk : k € No} satisfies the frame condition. O

Lemma 4.4. Suppose thalVv; : j € Z} is an MRA with scaling functiop. Then there exists
a sequencéh,, : n e No} in 12(Np) such that

e() = > a™ (e x—u(n)

neNp

and an integral periodic function grsuch that

@(£€) = mo(pé)@(pé).
Proof. Sinceqt¢(p-) € V_1 ¢ Vo, by Theorem 3.9(a), we have

ae(PX) = D (F,3(— um)p(x—u(m) = > hnp(x—u(n).

neNg neNg

By Theorem 3.9(b)ih,} € £2(Np). Taking Fourier transform, we get
G710 = D @) = Mo)@(&).

neNg

This is equivalent to
@(&) = mo(p)@(pé).

As in Proposition 3 in [22], we can show thay is integral-periodic. O
Definition 4.5. A pair of MRAs{V; : j € Z} and{\7j . | € Z} with scaling functiong andy

respectively are said to be dual to each othép(f— u(k)) : k € No} and{@(- — u(k)) : k € Ng}
are biorthogonal.

Definition 4.6. Let ¢ andg¢ be scaling functions for dual MRAs. For eagh Z, define the
operatorP;, Pj on L?(K) by

Pif = Z(f,¢j,k>90j,k,
keNg

Pif = Z(f,soj,k)s?j,k-
kENo

We first note that the series defining these operators are converget{ihand that
these operators are uniformly boundedld(K).
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Lemma 4.7. The opeartors PandP; are uniformly bounded.

Proof. Since the translates @f and¢ form Riesz bases for their closed linear spans, by
Lemma 4.2, there exist consta@s andC, such that

Ci< ) IBE+ul)P<C, and Ci< ) IG(E+u()P <Co

kENO kENO

Now, let{cy : k € No} € £2(Ng). Then, by Remark 3.4, there exi®s> 0 such that

2 2
15 coml=53
K

€Ng keNg

Now, for f € L?(K), we have

Yool = Y| [ fem@e ¢l

keNg keNp

= [ flerunmETume def

kENo |€No

= D, f F(Exw(©) d<f|2=Zlﬁ(u(k))|2=||F||52@)

keNg ° keNog
> fE+ u)EE+u))

L 1eNg

fb (3 1fE+um?)(S e+ uiiR) de

1eNp leNp

Ca [ (3 If(e+ut)p) ce

1eNg

- G fK )P de = Cll I

2
dg

IA

IA

Similar estimates hold fap."Hence, forf € L?(K), we have

IPofI3 =] 3 <. dowwox[, <B S (TG00l < BEITIE:
keNg keNp

Thus, Py is a bounded operator drf(K) with norm at mostyBC, = C, say. Now, since
the dilation operators are unitary and since

Pif = Z(f,t,??j,k)soj,k = Z(é—jf@o,k)é—jsoo,k,

keNg keNg

we conclude that the operator normRyfis at mostC. Similar arguments work fo?;. This
finishes the proof of the lemma. O

In the following lemma, we prove some useful properties of the oper&joasd |5,-.
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Lemma 4.8. The operators Pand I5j satisfy the following properties.
(@) Pjf = fifand only if fe Vj andP;f = f if and only if fe Vj;
(b) lim|Pjf—fllo=0and lim ||P;f|l> =0for every fe L2(K).
j—oo0 j—o—o0

Proof. (a) Pjf = fifandonly if f = } (f,®jn)¢jn. Since{p;n:neNp}is a Riesz basis
neNg

for V; and{p;n} is lgiorthogonal to{pjn}, the result follows from Theorem 3.9. Similar
argument works foP; f.

(b) Let f € L?(K) ande > 0. SincerZVj is dense ir_?(K), there exists) € Z andg e V;
€

such that|f —gll2 < 17z, whereC is as in Lemma 4.7. 1§ € Vj, thenP;g = g for every
j>J. Thusforj > J,

If-Pjfll2 I —dll2+1IP;(f —g)Il2
@+1P;IDIF —gll2

(L+O)lIf -l <e.

INIA

A

This shows that
lim ||P;f - f]2=0.
j—oo0

Now consideth € S (see Definition 2.4). Then

PG = || S thgoeix]. < B K0P

kGNo kGNo

In Theorem 4.1 in [5], we proved thatlife S, then 3, |<h,¢j’k>|2 — 0 asj — —oco. Hence,
keNp

IPjhllz — 0 asj — —oo. SinceS is dense ilL3(K), givene > 0, there existd € S such that
[If —hl|> < e. Hence,

IPj fllz < IPj(f —h)ll2+1IPjhilz2 < Cllf —hil2 +|IP;hil2.

Therefore||Pjf|l, » 0 asj — —co. O

5 Biorthogonality of the wavelets

Let{Vj:]eZ} and{\N/j . ] € Z} be biorthogonal MRAs with scaling function and ¢ re-
spectively. By Lemma 4.4, there exist integral periodic functiogsand iy such that

(&) = mo(pé)(p€) and@(€) = Mo(pE)G(pE). Assume that there exist integral periodic func-
tionsm andm, 1< | < g-1, such that

M@EM* @) =1, (5.1)
g-1

~ -1
whereM(&) = (my(p¢ + pu(k)))l o andM() = (M(pe+ pu(k)))lqkzo. Now for 1<1<q-1,
we define the associated wavelgtsandy; as follows:

01(&) = mpo@re) and §i(€) = M (PE)F(pé).

We have the following lemma.
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Lemma 5.1. Let ¢ and $ be the scaling functions for dual MRAs andy, 1<1<q-1,
be the associated wavelets satisfying the matrix cond{@ah). Then the following hold.

(@) {¥1.0n: N e Np} is biorthogonal to{y o : N € No};
(b) ¥1.0mEom) = (U100, 0m) = 0 for all m,n € No.
Proof. (a) We have

D (e +um)in (€ + u(m)

neNp

= > mM(pé+ pu(m)G(p + pu(n)m(pé + pu(m)@(pé + pu(m))

neNp
q-1

= > > m(ré+pu(ak+ 9)@(pé + pu(ak+ 9))
s=0 keNp

X T (p€ + pu(qk+ 5))B(pé + pu(gk+ )

q-1
- Z Z M (p& + pu(s))@(ps + pu(s) + u(k))

s=0 keNgp

X T (p€ + PU()@(pé + pu(s) + u(K))

g-1

= > m(p¢ -+ pu(s)m(pé + pu(s)
s=0

= 1.

Hence, by Lemma 3.8y 0, : n € Np} is biorthogonal thzLoﬂ :neNp}.
(b) Form,n € Ny, we have

<¢I,0,n, 9~00,m>

WA — (). 3 - um)))

= ixm GXm)

fK M (8B (0E) () To P B(0E (&) dé

3 e s mu)ze + suoyz

® keNg

o(p€ + PU(K)@(pé + pu(k))ym(€) d¢

q-1
27 mee (s + u)atot + su(s) + o))

s=0 kENo

Mo(pé + pu(s) + u(k))@(pé + pu(s) + u(k))xm(&) dé
X

= 0.

[N

o

M (p& + pu(9))To(pE + PU(S)) rn(Em(€) dé
0

f
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Similarly, we can show thai o, om) = O. O

Our aim is to show that the wavelets associated with dual MRAs are biorthogonal and
they form Riesz bases far(K). The following proposition is crucial for the proof of the
main result.

Proposition 5.2. Let g, andyy, g for 1<1 < g—1be as in Lemm&.1 Denoteyq = ¢
andio = . Then for every & L%(K), we have

q-1

P f=Pof +Z Z (F.dn 000010k (5.2)
1=1 keNg
and
gq-1
Pif = Pof +Z Z(f,llfl,o,kﬂl/l,o,k, (5.3)
=1 kGNo

where the series converge id(K).

Proof. It is enough to prove (5.2) as the proof of (5.3) is similar. Moreover, it is enough to
prove (5.2) in the weak sense, that is, forfaty € L?(K)

g-1
(Pif.0) = (Pof,gy+ > > (1oK@ U0k

1=1 kENO
q-1
= ZZ(del,o,ng,lﬁl,o,k)-
1=0 keNg
We have
q-1
(£ 91,0640 ¥1.0)
1=0 kENO
g1 i
= f 7 d = ~ _d
P | f@h@mens) | s@nend@e)
q-1 R —
= SN[ fleruapiner umm@d)
1=0 kENo ® QGNO

<[> B e+ @)

BeNg

=

5

g

= > (D] fe+u@)ine+u@))( D’ 8E+uB)in(E +u())de

1=0 a€Ng BeNg
.
DD e+ u(e))MpE + pu@)@(ee + pu(a))

1=0 (IENO

[y

Il
5
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x >, GE+U(B)m (€ + pu(B))@(pé + pu(B)))dé

BeNg

[y

g-1

o
- L (> D) fe+u(@a’) +uE)M(pg +u@) + pu()
0

v=0a’ ENO

XG(pé + u(e’) + pu(»))

g-1
X >0 > BEFU@B) + up )M (pé + u(B) + pu())

V'=0p'eNg

X@(p&+U(B") +pu(v')))de
= [ 33 S A sueIm e+ )
o« B v VvV |

xf(€ +u(ga’) + u()G(pé + u(a’) + pu(v))
X+ U(Q8) + U(V))@(pé + U(B') + pu(v')) )de

:LZZZW&mwwwmﬁmwww
v o f
XBE + UGB + U)P(0 + U(B') + pu(y)) e
= D[ DD e e R + U N U@+ UG (5.9
v ﬁ/

+U(V) o

On the other hand, we have

PSRCIACRETS

keNg

Y[ fedtamvoe) | F@sema)

keNg

2 (L_l 2 fle+ v u(@)E(pe + u@)(pe))

keNg

X fb D8 + v B + UB)K(pE)K)
"B

L 2.2 feru@a)d(né + u@)3E +u@B)e(ve +u(B)ds.  (5.5)
@ B

Since the right sides of (5.4) and (5.5) are same, the proof is finished. m|
Combining Lemma 4.8 and Proposition 5.2, we have the following proposition.

Proposition 5.3. Lete,» andy,y for 1 <1 < q—1 be as above. Then for everyz1.2(K),
we have

g-1

f

q-1
Z Z (Fodn oW jk = Z Z Z(f,l//I,j,kﬂZ’I,j,k, (5.6)

I=1 jeZ keNg =1 jeZ keNg
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where the series converge iR(K).
We now prove the main results of the article.

Theorem 5.4. Let ¢ and § be the scaling functions for dual MRAs apgly, 1 <1 <
g- 1, be the associated wavelets satisfying the matrix cond{bat). Then the collections
W jk:1<1<g-1jeZke No} and{&u,k :1<1<qg-1,j€Zke Np} are biorthogonal.
In addition, if

1B(E)] < C(L+1¢)"2 %, 13(E)] < C(L+1¢) 2%, (&)l < Cll, and (@) <Clel,  (5.7)

for some constant G 0, e > 0 and for a. e.£ e K, then{y jx:1<1<q-1,jeZke No}
and{y jk:1<1<q-1,jeZke Np} form Riesz bases for(K).

Proof. We begin by proving thafi), jx : 1<1<q-1,j € Z,ke No} and{z,ZLj,k 1<l<qg-
1,j € Z,k € Ng} are biorthogonal to each other. First we will show that,Iferl,2...,q-1
andjeZz,

Wk k) = Ok -

We have already proved it fgr= 0 in Lemma 5.1(a). Ifi # 0, then

(6= 1.0k O 1.0K)
W10k ¥1.0K)

Ok k-

Wik P k)

Letk,k’ € Ng be fixed and lef, j’ € Z. Assume thaj < j’. We will show that

Wik jx) =0,

It can be shown thap ok € V1. Hencey jx = d_j¥i ok € Vj+1 € Vj. Therefore, it will
be enough to show that j. v is orthogonal to every element of. Let f € V.. By
Lemma 4.3{pj « : ke No} is a Riesz basis fov;.. Hence, there exists dfrsequencécy)

such thatf = 3 ckepj  in L3(K). By Lemma 5.1(b),
keNg

W jr s pir k) = G—jphr ok 0-jpak) = W1 ok pok) = 0.

Hence,
W jrwe, Ty = @l',j',ku Z CkSDj',k) = Z T jr @ k) = 0.
keNp keNp

In order to show that these two collections form Riesz basek@¢), we must verify
that they are linearly independent and satisfy the frame condition. Since they are biorthog-
onal to each other, both the collections are linearly independent by Lemma 3.2.

To show the frame condition, we must show that there exist constaBt#, andB > 0
such that for everyf e L?(K),

gq-1
AIFIZ< 3T Kol < BIFIS, (5.8)
=1

J€Z keNg
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and

AllfI3 < ZZ DK P < B3, (5.9)

=1 jeZ keNp

We first show the existence of upper bounds in (5.8) and (5.9). We have

PSRN

keNg
= > f fOT 2 (pie ') dg‘
keNp
_ JZ|f Z £+ p UM (M€ + um)p(pie) d§|
keNg P
_ fB |2 fes p‘ju(m))M| o
meNg
= f (Z (& + P~ um)Pn (! 5+U(m))|26 Z 1 (p€ + u(n))|2& 6))
. meto neNg

[ @R Y 1n(wle+ )P

neNg

We have assumed thigt(¢)| < C(1+ |.f|)‘l‘E hence we havey (&) < C(1+ |p§|)‘l‘f
So 3 IWi(pié +u(n)29) is uniformly bounded i < 2¢(1+ 2¢)~1. Hence, there exists

neNg

C > 0 such that

D2 K

JEZ keNg

[ If@F Y e de

jez

IA

IA

Csug > (&) : £ e B\ DIFI,

jez
The last step follows becauséis a disjoint union ofB!, j € Z, and the functiorF(¢) =
3 W (p1€)[% has the property tha(¢) = F(p¢). Note that® = $°. For& e =1\ D, we
jez
have 1< |¢| < g. Hence,

0 ~ .
D (PP

j:—oo

Z (1+ |p ]+1§|)6(l+26)

Z (1+ qj 1)6(1+26)

025 25 q6(l+25)
qUi-1)(1+2¢) =C 1—qo(+2)°

j=0



72 B. Behera and Q. Jahan

Also,
> WEOP < Y Calleh®
=1 i=1
26 -j+1)25 _ ~26
< C¥)d-c 1-q2

=1

These two estimates show that §8p|j(pi&)|% : ¢ e B~1\ D} is finite. Hence, there exists
jez

i
B > 0 such that the second inequality in (5.8) holds. Similarly, we can show that the upper
bound in (5.9) holds.

Using the existence of the upper bounds, we now show that the lower bounds in (5.8)
and (5.9) also exist. It follows from Proposition 5.3 thatf & L2(K), then we have

q-1

g-1
=20, 2 diwwiin= D > D vk

=1 jeZ keNg I=1 jeZ keNg

Therefore,

IflI5 = (f,f)

= <Z|: Z ;(f,@l,j,km,j,k, f)
=Z$?mem>
< (zl] > Ek: K., ,-,k>|2)%(z|] > Zk: KEn o)’
] ]
s@mwgz;mmmf
]
Hence,
%wkZ;;mmM
Similarly, we can show that
%wk;;;mmm
This completes the proof of the theorem. O
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