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Abstract

A Carleman estimates is established to prove a unique continuation property of the
solution of the Boussinesq system. We can prove that if the solution of the Boussinesq
systems vanishes in an open subset, then this solution is identically equal to zero in the
horizontal component of the open subset.
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1 Introduction

The two-way propagation of small amplitude, long wavelength, gravity waves in shallow
water, described by its surface n and its velocity u, was first derived by Boussinesq [5] as a
system of the form

nt+“x+(nu)x 0
U+ +uny—Uyy = 0.

In this paper, we consider the following generalized regularized Boussinesq system, pro-
posed in [2, 3], for p > 1 an integer,

nt+”x+(77pu)x+auxxx_bnxxt =0
Up+ Ny + Uty + ey —dityyy = 0.

The purpose of this work is to prove a unique continuation property. More precisely, we
show that if (n,u) = ((x, 1), u(x,1)) is solution of the system and (1, u) vanishes on an open
subset Q) of R X R, then u vanishes identically on the horizontal component Q, := {(x,t) €
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RxR;dx; with (x1,1) € Q} of Q.
Carleman estimates can be used. These estimates are based on exponential weight for the
solution of the equation. More precisely, if v is solution of Lv = Vv, with £ a linear operator,
V a well-defined potential, the Carleman estimates is written for ¥ a convex function and
7 > 0 to choose

le™ ] < Clle™ Lyl

Saut and Scheurer [12] proved such a result for a general class of dispersive equations,
including the Korteweg-de Vries one. An alternative approach was suggested by Bourgain
[4]. The method here is based on an analytic continuation of the Fourier transform using
the theorem of Paley-Wiener. We proved therefore a unique continuation property of the
solution of the Boussinesq systems with b = d = 0 [10]. The method of Bourgain depends on
the dispersion relation o- which has to satisty the following growth property: YR > 0,d|k| >
R such that
o’ (k) > f(k) with |kl|1_r)r(1)o f(k) = +c0.

In the case of the Boussinesq systems, we obtain

o (k)

\/(1 —ak?)(1 - ck?)
k :
(1 +b2)(1 +dk?)

and the property holds if b =d = 0.

We propose here to prove a unique continuation property using a Carleman estimate. We are
inspired by a work of Davila and Menzala [7] who proved a unique continuation property of
the scalar one-dimensional Benjamin-Bona-Mahony equation. The first section is devoted
to the local well-posedness of solution of the generalized Boussinesq system. We estab-
lish a Carleman estimates in the second section. The third section deals with the unique
continuation property.

2 Initial value problem

We consider the initial value problem, for x € R, € R,p > 1 an integer,

N+ uyx+ (npu)x +auy—bnyy = 0
U +1y+ upux +CMxx—dly = 0

1(x,0) = 1o(x), u(x,0) = uo(x).

If p = 1, it has been proved the existence and uniqueness of local in time solution [2, 3]. We
denote H*(R) the Sobolev space of order s equipped with the norm ||u||;.

Theorem 2.1.
Let a,b,c,d >0, s > 1/2 and (ng,up) € H*(R) Xx H*(R). There exists a constant Cy > 0,
depending only on s, such that for

C
7=— 90
(lImolls + lleeoll5 )
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there exists a unique solution (n,u) € C([-T,T]; H*(R)) X C([-T,T]; H*(R)) of the Boussi-
nesq system with (o, uo) as initial datum.

Moreover, for all M > 0 with ||nolls + lluolls < M and ||uolls + [|[volls £ M, there exists C; >0
such that solutions (n,u) and (u,v), of initial data (ny,ug) and (ug,vo) respectively, satisfy
forte[-T,T], withT = Co/MP,

lIn(0) = u@lls + llu(®) = v(Dlls < Cr ({10 = prolls + 1o = volls)-

Proof. Let T > 0. The Duhamel’s formula implies that (1, ) is the solution of the initial
value problem if and only if (1,u) is the solution of the following equation, for 7 € [0, T],

O:(u) 9.(w*)/(p+1)
1-b3%" 1-dé>

(,w)(1) = Q@ u)(1) := S 1110, o) — j; S t—‘r( )(T) dr, (2.1

with

oo 0 1—ak?
S:(nu) = f e_lkA(k)t(n,l/t)dk and A(k) = [ ek 1+bk? ] (2.2)
oo iz O

The eigenvalues of A(k) are

Ja—aey a-ae)
olk) ==+ \/(1 bk (1+di2)’

and the matrix e~*4® i uniformly bounded.

We aim at applying the fixed point theorem. We deduce, for 7 € [0, T],

" O () Ot
O(n,u)@®lly; < C s+ s)+C dr.
D7, )OI (IImolls + lluolls) j; —b . l—da,%) S(T) T
For b > 0, the definition of the Sobolev norm provides
. 172
axf +00 ) ik — 2
Hl_ba% - ([ aver| sl | <an.

Since s > 1/2, the Sobolev space being an algebra, the Sobolev embedding implies that
there exists a constant C; > 0, depending only on s, such that

P, w)Olls < C(Ilno||s+||uo||s)+CxT(Sgl;](llullsllnll'?+IIM(I)II?+1))- (2.3)

refl

Then there exists Cy > 0 such that for T = Co/(||n0lls + |luolls)F, the closed ball Br defined
by

IA

sup [In(®lls 2C(lImolls + llueolls)

te[0,7]

sup |lu()lly < 2C(lImolls + lluolls)
1€[0,T]

A
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satisfies (D(ET) C Br. Indeed, let (n,u) € Br, the inequality (2.3) becomes
DG, w)Dlls < (molls + lloll)C(1 +2°+2CPCCy),

and C(|[nolls + lluolls)C(1 +2°72CPCCo) < 2C(IInolls + lluolls) if Co < 1/(2P+2CPCy).
Let (n,u) and (u,v) be in By. The Duhamel’s formula (2.1) provides, for ¢ € [0, T,

Oy
1-bd?

(1u—pv)

+

N

(t)dr.

s

Ox
‘ 1 _daz (up+1 _vp+1)

NG, u)(1) = O, v)(Dlls - < Cf(;

‘We can note that

p—1 P
7 u— v =n"(u-v) +v(n—u)erp_l_i,ui, and ! —*! = (u—v)Zup_ivi.
i=0 i=0

This provides, thanks to the Sobolev embedding,

1D, u)(1) = P, VYD)l

IA

22CPCsT (lnolls + lluolls)” ( sup  ([fr7 = pll () + llu — VIIs(t))]
te[-T,T]

2°CPCCo ( sup ([fn7 = pll () + llu - VIIs(t))] :

te|-T,T]

For Cy < 1/(2°CPCy), the map @ is a contraction on Br. Finally, according to the fixed point
theorem, there exists a unique solution (7, ) of ®(1,u)(r) = (n,u)(f) in Br.

It remains to prove the continuity with the initial datum. Let (1,u) and (u,v) be solutions
of the initial value problem with initial datum (79, u0) and (ug, vo) respectively, such that
[Inolls + lluolls < M and ||uolls + |[volls < M. The Duhamel’s formula (2.1) gives for ¢ € [0,T],
with T = Co/MP, with Cy <« 1,

I, w)(@) = VIOl < Clllmo — polls + lluo — volls)

+Cf O Pu—pv)
0

1-bo2
1
C(HUO_ll0||s+||u0_v0||s)+z sup [lnp—pulls(®) + sup |lu—vlls@)|,
1€[0,T] t€[0,T]

. _a;‘laz (up+1 _ Vp+1)

+

N

()dr

N

IA

thus

sup (|l = plls +llu = vlls) < 2C(lIno = polls +lluo = volls)-
te[0,T]

3 Carleman estimates

The aim of this section is to find a Carleman estimates for the Boussinesq system. First we
recall the Treves’inequality [13].
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Theorem 3.1.
Let P = P(0y,0;) be a differential operator of order m with constant coefficients. Then for
all @ = (a1,a2) €N?,6 > 0,7 > 0,® € C7(R?) and W(x,1) = (x—6)* + 61,

22|a|T|a|62az
Sro f \PO(D)OPe*™ dxdt < C(m, ) f |P(D)DP ™ dxd.
a! R2 R2
with

sup ( r-(:a') iflal <m

n
|a/|:Zaj, al=ay!...ay! and C(m,@) = { |r1qi<m
Jj=1 0 if la| >m

This inequality is used to prove Carleman estimates of the Boussinesq system.

Theorem 3.2.
We define
L= at_claxxt+026xxx+fl,](xat)ax aaxxx"’fl,Z(xat)ax
o Caxxx+f2,l(x’ I)ax 0t — 303t + C40xxx +f2,2(xe t)ax ’

where c1,c2,c3,c4 are constant in R, f; ; € L°°(R2),l <i,j<2. Letd>0and Bs :={(x,1) €
R?;x? +1* < 6). Then, there exists C > 0 such that for all ® = (®1, D) € Cy'(Bs) X Cg (By),
W(x,1) = (x—06)2+ 6%t and T > 0 with

2 2 2 2
||f1,1||oo<1 ||f2,2||oo<l ||f2,1||oo<l ||f1,2||ooS

1
17262 T 4 37282 T 4T 22 T4 ettt T4

we have

| (1P + |y P)e* Vdxdt + 1267 | (1014 + Do P)e* Vdxdt < C f |LO*e* Y dxdr.

Bs Bs Bs
3.D

Proof. We define the differential operator

p.= ( 01— C10xx + €20 xx a0 xxx )

’ Caxxx 6, - C3axxt + C4axxx '

The Fourier transform gives for (£1,£,,7) € R3

- . T+c1§27—cz§3 —a§3

PE7) = l( —c&3 T+ 3827 — 483
Lemma 3.3.
For all ® = (®1,0,) € CY(Bs) XCY (Bs), W(x,1) = (x—06)> +6°1* and T > 0, we have

(3 +c?) f @ 76> dxdt + (367 + ?) f @, [*e* ¥ dxdt
Bs Bs

+7(G+a?) | 10 dxdt+ A (367 +a?) | | PV dxdt < |PD*e*™ dxdt.

Bs Bs Bs
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Proof. With the same notations of Treves’inequality, we have for @ = (3,0)

(f L2 ol ( r+a )
LT = ibey, P Dy = ~i6e2®1,C(3,(3,0) = su - 1.
663 ? 2 |r+a|23 @

Applying the preceding corollary with P | and @ gives

26 3
f |- i6c,®; *e>™ Y dxdr < f |P11 @y 2e* dxdt,

what implies

3 f |0 [*e*™Y dxdt < f P11 @1 *e* Y dxdt.
2 R2

In the same way, we obtain for @ = (1,1)

P11 (fT)

lo| —
6526 - 2C é‘: P q)l 261®1,X’C(39(1a1))_2a

and the Treves’inequality provides

24 T2 52

f 12¢1 @ ([*e* Y dxdr < 2 f |P1 1@ [*e® Y dxd,
R3 R3

thus
%] f @1 ,[%e* ™ dxdt < f |P11®1*e*  dxdt.
R2

On the other hand, we have for @ = (3,0), respectively @ = (2,0),

", T _

8§3 —ibc P'“| = —i6c®1,C(3,(3,0) =1
——lal
P b
MT(ST) = —ibc f,Plzall | =6c®;,,C(3,(2,0) = 1.

The Treves’inequality given by the preceding corollary with P, ; and a gives

IA

22 f |Dy P> dxdt
RZ

72 f |© e Y dxdt

f |Py @y *e*™ dxdt
R2

f |Py 1@y 2e* dxdr.
RZ

IA

We obtain similar inequalities for P> and P, in the same way.

Lemma 3.4.
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We have
2
i@y Pe* Fdxdt < ”{‘JH (
B 7262
2 2
|fo2(x, DDy [Pe* Y dxdr < ”2f2,2||oo (
Bs 27262
2 2
o1 (x, @y (P> Vdxdr < ||fzz,12|| (
B c’t
2 £ 5112
|f12(x, )@ [Pe* Y dxdr < I f;,22|| (
Bs aT

Proof. We have thanks to the above lemma

lfi.1(6 DD e Y dxdr <

f | L2257 dxdr +

f | L2, D e* Y dxdr +

|L£1.1®1 P> ¥ dxdr + f fi1.1(x, D1 o e* ™ dxdt

Bs
Bs
Bs

|£12®e* Y dxdr +
Bs

2 2 20
||f1,1||oof |D; ,|[“e“ " dxdt

B()' B()'
2
< 11,1115 f P11 @) 2> dxdt
¢ 21252
2||f1||2 2 20y
< o f (1£11@1 P +1 1 (x, )@y ) dxdt.
c T=0
In the same manner, it gets
oG D@ P dxdt < NIfall | 101 Pe* ™ dxdr
Bs Bs
2
2,1
< ||f2, |loof |P2,1(D1|2627ldedt
cT Bs
2/l 21112
< = f (1L21 @1 +1 o1 (2. )®y 1) e ¥ dlxalr.
cT Bs
We obtain similar inequalities for fj ; and f>> in the same way. O

To conclude, it is enough to choose 7 > 0 large enough with

2 2
2/l fialls <1 2|l 22115 <

17282 T 27 37282

Corollary 3.5.

2
Let T>0. If ® € (C'(-T.TL: H3R))), @

the inequality (3.1) remains true.

1
<5

2 2
202alls 1 2lA 2l Sl.
a*t? 2

22 T2

€ (C'(I-T. T} HA(R)))” and supp® < By x By,

Proof. The proof is done by regularization.

|f2.2(x, DDy [*e*  dxdt

2.1 (x, YD [*e* Y dxdt

If1.2(x, )@ [*e* Y dxdt .

|
|
|
|
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4 Unique continuation property

The unique continuation property is now proven. The proof is similar to the scalar case of
the paper of Davila and Menzala [7]. Therefore we only write sketch of the proof for easy
to read.

Lemma 4.1.
Let s >5,T >0, f; ;€ LXRX[-T,T]),1 <i,j<2, and c1,c2,c3,c4 be real constants. Let

we (Cl([—T, T];HS(R)))2 be the solution of Lw = 0. Assume that w = 0 when x < Zina
neighborhood of (0,0). Then there exists a neighborhood of (0,0) in which w = 0.

Remark 4.2. If (n,u) € (Cl([—T, T];HS(R)))2 is solution of L(n,u) = 0, since

(l_cla)zc)nt = _(auxxx+02nxxx+f1,lnx+fl,2ux)
(1 - 036)%)’/% = _<C7]xxx + Callyxx + f2,177x + f2,2”x)a

then (1;,u,) € (C([-T, T1:H (R)? with r=sif(a=c=cy=c4=0), r=5s-3ifb=d=0
and r = s — 1 if not. Therefore the Carleman estimate (3.1) holds if s >2, s >5 and s > 3
respectively.

Proof. Let 0 <6 < 1, choose y € Cj'(Bs) X Cy'(Bs) such that y = 1 in O; a neighborhood
of (0,0) and define @ := yw. It follows that ® € C([-T,T]; H*(R)) X C([-T,T]; H*(R)) and
supp @ C Bs X Bs. We deduce thanks to the preceding corollary, for 7 > 0 large enough,

| (01 + 122> Vdxdt + 7267 | (1O + Do P)e* Vdxdr < C f |LD*e* Y dxdt.

B(s B(S Bb'
4.1)
The right hand side integral holds on Bs\Oj, since L& =0 in O;.
For (x,1) # 0 in supp @, we have

P(x,0) = (x—6)*+6* <6 and ¥(0,0) = 6°.

Then for (x,7) € supp LO C Bs X Bs, there exists 0 < € < 6% such that ¥(x,7) < 6% —&. On
the other hand, we can choose O, a neighborhood of (0,0) with W(x,7) > 6% —&.in O,. The
inequality (4.1) is then written for all 7> 0

CT3eX @9 [ @2 + |0, Pdxdt < 2709 f | LOPdxdt.
02 B(S\Ol
Tending 7 to infinity implies ® vanishes in O,. However w = ® in O, CO; and w =0 in

02. O

Corollary 4.3.
Lets>5,T >0,A,B,C e L°(RX[-T,T)), and cy,c3,c3,c4 be real constants. Let w = (n,u) €

(Cl([—T, T];HS(R)))2 be the solution of

0;— b0y +A(X,1)0x a0 yxx + 0y + B(x,1)0, ~0
COrrr+0, 8, —dd oy +Cx, 00, "~
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We consider the curve x = u(t),u(0) = O,u a continuously differential function in a neigh-
borhood of (0,0). Assume that w = 0 when x < u(t) in a neighborhood of (0,0). Then there
exists a neighborhood of (0,0) in which w = 0.

Proof. We consider the Holmgren’s transformation (x,7) — (X, T) with

X x—[J(l)+l‘2
T =t

This change of variables provides W = W(X, T) satisfying W = 0 when X < T? in a neigh-
borhood of (0,0) and LW = 0 with

L= Or + (= (T) +2T)0x — boxxr — b(—u'(T) + 2T )dxxx + Adx
) Caxxx + ax

a8XXX + 5X + BaX

aT + (—/J/(T) + 2T)6X - d&XXT - d(—/,l’(T) + ZT)GXXX + Cax )
O

Theorem 4.4.

Let s>5and T >0and (n,u) e C([-T,T]; H*(R))XC([-T,T]; H*(R)) solution of the Boussi-
nesq system. If (n,u) =0 in an open subset Q C R x [T, T1)?, then (n,u) =0 in the hori-
zontal component of Q.

Proof. The proof follows [11, 9] or [7] applying the preceding corollary with A = p*~'u, B=
n° and C = . Since s > 1/2, the functions A, B, C belong to L™ (R X [-T,T]) thanks to the
Sobolev embedding. O

Remark 4.5. These results can be generalized to higher dimensionnal Boussinesq systems:

0
0,

n:+V.U+V.(f°u) + aAV.U — bAn,

1
U, +Vn+—V|UF* + cAVy - dAU,
p+1

where 1 = n(xy, ..., xs, 1), U = (U1,...,Up)(x1,....,xn,1). We obtain the following Carleman
estimates.

Theorem 4.6.
We define
L= c’), - ClAat +coAV. +f1,1(x, l‘)V. aAV. +f1,2(x, Z‘)V.
T cAV+f2,1(x, Hv 8,—C3A8,+C4AV. +f2,2(x, HV. ’

where cy,c3,c3,c4 are constant in R, f;; € L¥R™N),1<i,j<?2 Let §>0 and Bs :=
{(x,1) € RZ;Z:’:I xl.2 +12 < 8%). Then, there exists C > 0 such that for all ® = (®y,...,P,41) €

(CoB)"™ W) = X, (xi— 672+ %2 and T > O with
o (Bs , P, ) = X7, (xi—0)°/n+06°t" and T > 0 wit

I1fiill%
2

T

<lfor1<i,j<2,
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we have
n+1 n+1
3 f Zmpd2 2™ dxdt + 72 f Z|V.c1>,»|2 Vaxdt<C | | LOPeX Y dxdr.
Bs (i=1 Bs \(i=1 Bs
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