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Abstract

In this paper we generalize the concept of f -divergence to a convex function defined
on a convex cone in a linear space. Some fundamental results are established. Appli-
cations for some well known divergence measures are provided as well.
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1 Introduction

Given a convex function f : [0,∞)→ R, the f−divergence functional

I f (p,q) =
n∑

i=1

qi f
(

pi

qi

)
, (1.1)

was introduced by Csiszár [3]-[4] as a generalized measure of information, a “distance
function” on the set of probability distribution Pn. The restriction here to discrete distribu-
tions is only for convenience, similar results hold for general distributions. As in Csiszár
[3]-[4] , we interpret undefined expressions by

f (0) = lim
t→0+

f (t) , 0 f
(

0
0

)
= 0,

0 f
(

a
0

)
= lim
ε→0+
ε f

(
a
ε

)
= a lim

t→∞

f (t)
t , a > 0.

The following results were essentially given by Csiszár and Körner [5].
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Proposition 1.1. (Joint Convexity) If f : [0,∞)→R is convex, then I f (p,q) is jointly convex
in p and q.

Proposition 1.2. (Jensen’s inequality) Let f : [0,∞)→ R be convex. Then for any p,q ∈
[0,∞)n with Pn :=

n∑
i=1

pi > 0, Qn :=
n∑

i=1
qi > 0,

I f (p,q) ≥ Qn f
(

Pn

Qn

)
. (1.2)

If f is strictly convex, equality holds in (1.2) iff

p1

q1
=

p2

q2
= ... =

pn

qn
.

It is natural to consider the following corollary.

Corollary 1.3. (Nonnegativity) Let f : [0,∞)→ R be convex and normalised, i.e.,

f (1) = 0. (1.3)

Then for any p,q ∈ [0,∞)n with Pn = Qn,

I f (p,q) ≥ 0. (1.4)

If f is strictly convex, equality holds in (1.4) iff

pi = qi for all i ∈ {1, ...,n} .

In particular, if p,q are probability vectors, then Corollary 1.3 shows that, for strictly
convex and normalized f : [0,∞)→ R that

I f (p,q) ≥ 0 and I f (p,q) = 0 iff p = q. (1.5)

We now give some examples of divergence measures in Information Theory which are
particular cases of f−divergences.

Kullback-Leibler distance ([14]). The Kullback-Leibler distance D (·, ·) is defined by

D (p,q) :=
n∑

i=1

pi log
(

pi

qi

)
.

If we choose f (t) = t ln t, t > 0, then obviously

I f (p,q) = D (p,q) .

Variational distance (l1−distance). The variational distance V (·, ·) is defined by

V (p,q) :=
n∑

i=1

|pi−qi| .
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If we choose f (t) = |t−1|, t ∈ [0,∞), then we have

I f (p,q) = V (p,q) .

Hellinger discrimination ([1]). The Hellinger discrimination is defined by
√

2h2 (·, ·),
where h2 (·, ·) is given by

h2 (p,q) :=
1
2

n∑
i=1

(√
pi−
√

qi
)2
.

It is obvious that if f (t) = 1
2

(√
t−1

)2
, then

I f (p,q) = h2 (p,q) .

Triangular discrimination ([18]). We define triangular discrimination between p and
q by

∆ (p,q) =
n∑

i=1

|pi−qi|
2

pi+qi
.

It is obvious that if f (t) = (t−1)2

t+1 , t ∈ (0,∞), then

I f (p,q) = ∆ (p,q) .

Note that
√
∆ (p,q) is known in the literature as the Le Cam distance.

χ2−distance. We define the χ2−distance (chi-square distance) by

Dχ2 (p,q) :=
n∑

i=1

(pi−qi)2

qi
.

It is clear that if f (t) = (t−1)2, t ∈ [0,∞), then

I f (p,q) = Dχ2 (p,q) .

Rényi’s divergences ([17]). For α ∈ R\{0,1} , consider

ρα (p,q) :=
n∑

i=1

pαi q1−α
i .

It is obvious that if f (t) = tα (t ∈ (0,∞)) , then

I f (p,q) = ρα (p,q) .

Rényi’s divergences Rα (p,q) := 1
α(α−1) ln

[
ρα (p,q)

]
have been introduced for all real orders

α , 0, α , 1 (and continuously extended for α = 0 and α = 1) in [15], where the reader
may find many inequalities valid for these divergences, without, as well as with, some
restrictions for p and q.

For other examples of divergence measures, see the paper [12] and the books [15] and
[19], where further references are given.

For a recent extension of f -divergence functional to operator convex functions on Hilbert
spaces see [16].

In this paper we generalize the concept of f -divergence to a convex function defined on
a convex cone in a linear space. Some fundamental results are established.
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2 The f -Divergence of an n-tuple of Vectors

Firstly, we recall that the subset K in a linear space X is a cone if the following two condi-
tions are satisfied:

(i) for any x,y ∈ K we have x+ y ∈ K;
(ii) for any x ∈ K and any α ≥ 0 we have αx ∈ K.
For a given n-tuple of vectors z= (z1, ...,zn) ∈Kn and a probability distribution q = (q1, ...,qn) ∈

Pn with all values nonzero, we can define, for the convex function f : K→ R, the following
f -divergence of z with the distribution q (see [8]):

I f (z,q) :=
n∑

i=1

qi f
(

zi

qi

)
. (2.1)

It is obvious that if X = R, K = [0,∞) and x = p ∈Pn then we obtain the usual concept of
the f -divergence associated with a function f : [0,∞)→ R.

The above concept can be extended for a nonnegative n-tuple q = (q1, ...,qn) . However,
due to the applications in Probability and Statistics we restrict ourself to the case when
q = (q1, ...,qn) is a probability distribution.

The following result concerning the mutual convexity of the f -divergence holds.

Theorem 2.1. Let f : K→ R be a convex function on the cone K. Then the function I f (·, ·)
is convex on the convex set Kn×Pn.

Proof. Let z = (z1, ...,zn) ,v = (v1, ...,vn) ∈ Kn, p = (p1, ..., pn) ,q = (q1, ...,qn) ∈ Pn two prob-
ability distributions with all values nonzero and α,β ≥ 0 with α+β = 1. Then

I f
[
α (v,p)+β (z,q)

]
(2.2)

= I f (αv+βz,αp+βq)

=

n∑
i=1

(αpi+βqi) f
(
αvi+βzi

αpi+βqi

)

=

n∑
i=1

(αpi+βqi) f
[(
αpi

αpi+βqi

)
·

vi

pi
+

(
βqi

αpi+βqi

)
·

zi

qi

]
.

Due to the convexity of f , we have

f
[(
αpi

αpi+βqi

)
·

vi

pi
+

(
βqi

αpi+βqi

)
·

zi

qi

]
(2.3)

≤
αpi

αpi+βqi
· f

(
vi

pi

)
+

βqi

αpi+βqi
· f

(
zi

qi

)
for each i ∈ {1, ...,n} .

Now, on multiplying (2.3) with αpi+βqi > 0, summing over i from 1 to n and utilizing
(2.2) we get that

I f
[
α (v,p)+β (z,q)

]
≤ αI f (v,p)+βI f (z,q)

proving the desired result. �
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Now, for a given n-tuple of vectors x = (x1, ..., xn) ∈ Kn, a probability distribution q ∈ Pn

with all values nonzero and for any nonempty subset J of {1, ...,n} we have

qJ :=
(
QJ , Q̄J

)
∈ P2

where QJ :=
∑

j∈J q j, Q̄J := 1−QJ and

xJ :=
(
XJ , X̄J

)
∈ K2

where, as above,
XJ :=

∑
i∈J

xi, and X̄J := XJ̄ .

It is obvious that

I f (xJ ,qJ) = QJ f
(

XJ

QJ

)
+ Q̄J f

(
X̄J

Q̄J

)
.

The following inequality for the f -divergence of an n-tuple of vectors in a linear space
holds [8]:

Theorem 2.2. Let f : K → R be a convex function on the cone K. Then for any n-tuple of
vectors x = (x1, ..., xn) ∈ Kn, a probability distribution q ∈ Pn with all values nonzero and
for any nonempty subset J of {1, ...,n}

I f (x,q) ≥ max
∅,J⊂{1,...,n}

I f (xJ ,qJ) ≥ I f (xJ ,qJ) (2.4)

≥ min
∅,J⊂{1,...,n}

I f (xJ ,qJ) ≥ f (Xn)

where Xn :=
∑n

i=1 xi.

We observe that, for a given n-tuple of vectors x= (x1, ..., xn) ∈ Kn, a sufficient condition
for the positivity of I f (x,q) for any probability distribution q ∈ Pn with all values nonzero
is that f (Xn) ≥ 0. In the scalar case and if x = p ∈Pn, then a sufficient condition for the
positivity of the f -divergence I f (p,q) is that f (1) ≥ 0.

The case of functions of a real variable that is of interest for applications is incorporated
in [8]:

Corollary 2.3. Let f : [0,∞)→ R be a normalized convex function. Then for any p,q ∈ Pn

I f (p,q) ≥ max
∅,J⊂{1,...,n}

[
QJ f

(
PJ

QJ

)
+ (1−QJ) f

(
1−PJ

1−QJ

)]
(≥ 0) . (2.5)

Remark 2.4. For various applications of the inequality (2.5) to particular divergence mea-
sures of interest in applications, see [8]. In order to give an example, we point out the
following result

J (p,q) ≥ ln

 max
∅,J⊂{1,...,n}


[
(1−PJ) QJ

(1−QJ) PJ

](QJ−PJ)

 (2.6)

≥ max
∅,J⊂{1,...,n}

[
(QJ −PJ)2

PJ +QJ −2PJQJ

]
≥ 0,
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where the Jeffreys divergence is defined as

J (p,q) :=
n∑

j=1

q j ·

(
p j

q j
−1

)
ln

(
p j

q j

)
=

n∑
j=1

(
p j−q j

)
ln

(
p j

q j

)
, (2.7)

which is an f -divergence for f (t) = (t−1) ln t, t > 0.

3 Some Upper and Lower Bounds

Let K be a convex subset of the real linear space X and let f : K→ R be a convex mapping.
Here we consider the following well-known form of Jensen’s discrete inequality:

f

 1
PI

∑
i∈I

pixi

 ≤ 1
PI

∑
i∈I

pi f (xi) ,

where I denotes a finite subset of the set N of natural numbers, xi ∈ K, pi ≥ 0 for i ∈ I and
PI :=

∑
i∈I pi > 0.

Let us fix I ∈ P f (N) (the class of finite parts of N) and xi ∈ K (i ∈ I) . Now consider the
functional J : S + (I)→ R given by

JI (p) :=
∑
i∈I

pi f (xi)−PI f

 1
PI

∑
i∈I

pixi

 ≥ 0

where S + (I) :=
{
p = (pi)i∈I

∣∣∣ pi ≥ 0, i ∈ I and PI > 0
}

and f is convex on K.
We observe that S + (I) is a cone and the functional JI is nonnegative, superadditive [10]

and positive homogeneous on S + (I) .
We have the following inequalities that are of interest in their turn as well (see [9]):

Lemma 3.1. If p,q ∈ S + (I) and M ≥ m ≥ 0 such that Mp ≥ q ≥ mp, i.e., Mpi ≥ qi ≥ mpi

for each i ∈ I, then:

M

∑
i∈I

pi f (xi)−PI f

 1
PI

∑
i∈I

pixi

 (3.1)

≥
∑
i∈I

qi f (xi)−QI f

 1
QI

∑
i∈I

qixi


≥ m

∑
i∈I

pi f (xi)−PI f

 1
PI

∑
i∈I

pixi

 (≥ 0)

and  1
PI

∑
i∈I

pi f (xi)− f

 1
PI

∑
i∈I

pixi

MPI

(3.2)

≥

 1
QI

∑
i∈I

qi f (xi)− f

 1
QI

∑
i∈I

qixi

QI

≥

 1
PI

∑
i∈I

pi f (xi)− f

 1
PI

∑
i∈I

pixi

mPI

,
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respectively.

We may state the following result:

Theorem 3.2. Let f : K → R be a convex function on the cone K. Consider an n-tuple of
vectors z = (z1, ...,zn) ∈ Kn and two probability distribution p,q ∈ Pn with all values nonzero
and satisfying the condition

Rpi ≥ qi ≥ rpi for each i ∈ {1, ...,n} , (3.3)

where R ≥ 1 ≥ r > 0.
If we define the vector

y =
(

p1

q1
z1, ...,

pn

qn
zn

)
∈ Kn,

then
R
[
I f (y,p)− f (Yn)

]
≥ I f (z,q)− f (Zn) ≥ r

[
I f (y,p)− f (Yn)

]
(≥ 0) (3.4)

and [
I f (y,p)− f (Yn)

]R
≥ I f (z,q)− f (Zn) ≥

[
I f (y,p)− f (Yn)

]r
(≥ 0) (3.5)

respectively, where Zn :=
∑n

i=1 zi and Yn :=
∑n

i=1 yi =
∑n

i=1
pi
qi
· zi ∈ K.

The proof follows from Lemma 3.1 applied for M = R,m = r and xi =
zi
qi

where i ∈
{1, ...,n} .

Corollary 3.3. Let f : [0,∞)→ R be a normalized convex function. For two probability
distributions p,q ∈ Pn with all values nonzero assume that there exists the constants R ≥ 1 ≥
r > 0 satisfying the condition (3.3).

If s = (s1, ..., sn) ∈ Pn is such that the vector

y =
(

p1

q1
s1, ...,

pn

qn
sn

)
∈ Rn
+ (3.6)

is a probability distribution, then we have the inequalities

RI f (y,p) ≥ I f (s,q) ≥ rI f (y,p) (3.7)

and the inequalities [
I f (y,p)

]R
≥ I f (z,q) ≥

[
I f (y,p)

]r
. (3.8)

Remark 3.4. It is natural to ask if we can find probability distributions p,q,s ∈ Pn such that
y defined by (3.6) is a probability distribution as well.

Let consider the simplest example, namely for n = 2. In this case for, say p = (0.1,0.9),
q = (0.2,0.8) and s = (s1, s2) ∈ P2 we have y =

(
1
2 s1,

9
8 s2

)
which should satisfy the condition

that 1
2 s1 +

9
8 s2 = 1 for some s1, s2 ∈ [0,1] with s1 + s2 = 1. We observe that this system of

equations has the unique solution s1 =
1
5 and s2 =

4
5 , showing that (s1, s2) ∈ P2.
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4 Other Bounds in Terms of Gâteau Derivatives

Assume that f : X→R is a convex function on the real linear space X. Since for any vectors
x,y ∈ X the function gx,y : R→ R, gx,y (t) := f (x+ ty) is convex it follows that the following
limits exist

∇+(−) f (x) (y) := lim
t→0+(−)

f (x+ ty)− f (x)
t

(4.1)

and they are called the right(left) Gâteaux derivatives of the function f in the point x over
the direction y.

It is obvious that for any t > 0 > s we have

f (x+ ty)− f (x)
t

≥ ∇+ f (x) (y) (4.2)

= inf
t>0

[
f (x+ ty)− f (x)

t

]
≥ sup

s<0

[
f (x+ sy)− f (x)

s

]
= ∇− f (x) (y)

≥
f (x+ sy)− f (x)

s

for any x,y ∈ X and, in particular,

∇− f (u) (u− v) ≥ f (u)− f (v) ≥ ∇+ f (v) (u− v) (4.3)

for any u,v ∈ X. We call this the gradient inequality for the convex function f . It will be
used frequently in the sequel in order to obtain various results related to Jensen’s inequality.

The following properties are also of importance:

∇+ f (x) (−y) = −∇− f (x) (y) , (4.4)

and
∇+(−) f (x) (αy) = α∇+(−) f (x) (y) (4.5)

for any x,y ∈ X and α ≥ 0.
The right Gâteaux derivative is subadditive while the left one is superadditive, i.e.,

∇+ f (x) (y+ z) ≤ ∇+ f (x) (y)+∇+ f (x) (z) (4.6)

and
∇− f (x) (y+ z) ≥ ∇− f (x) (y)+∇− f (x) (z) (4.7)

for any x,y,z ∈ X .
Some natural examples can be provided by the use of normed spaces.
Assume that (X,‖·‖) is a real normed linear space. The function f : X→R, f (x) := 1

2 ‖x‖
2

is a convex function which generates the superior and the inferior semi-inner products

〈y, x〉s(i) := lim
t→0+(−)

‖x+ ty‖2−‖x‖2

t
.
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For a comprehensive study of the properties of these mappings in the Geometry of Banach
Spaces see the monograph [7].

For the convex function fp : X→ R, fp (x) := ‖x‖p with p > 1, we have

∇+(−) fp (x) (y) =


p‖x‖p−2 〈y, x〉s(i) if x , 0

0 if x = 0

for any y ∈ X.
If p = 1, then we have

∇+(−) f1 (x) (y) =


‖x‖−1 〈y, x〉s(i) if x , 0

+ (−)‖y‖ if x = 0

for any y ∈ X.
This class of functions can be used to illustrate the inequalities obtained in the general

case of convex functions defined on an entire linear space.
The following result holds:

Lemma 4.1. Let f : X → R be a convex function. Then for any x,y ∈ X and t ∈ [0,1] we
have

t (1− t)
[
∇− f (y) (y− x)−∇+ f (x) (y− x)

]
(4.8)

≥ t f (x)+ (1− t) f (y)− f (tx+ (1− t)y)

≥ t (1− t)
[
∇+ f (tx+ (1− t)y) (y− x)−∇− f (tx+ (1− t)y) (y− x)

]
≥ 0.

Proof. Utilising the gradient inequality (4.3) we have

f (tx+ (1− t)y)− f (x) ≥ (1− t)∇+ f (x) (y− x) (4.9)

and
f (tx+ (1− t)y)− f (y) ≥ −t∇− f (y) (y− x) . (4.10)

If we multiply (4.9) with t and (4.10) with 1− t and add the resultant inequalities we obtain

f (tx+ (1− t)y)− t f (x)− (1− t) f (y)

≥ (1− t) t∇+ f (x) (y− x)− t (1− t)∇− f (y) (y− x)

which is clearly equivalent with the first part of (4.8).
By the gradient inequality we also have

(1− t)∇− f (tx+ (1− t)y) (y− x) ≥ f (tx+ (1− t)y)− f (x)

and
−t∇+ f (tx+ (1− t)y) (y− x) ≥ f (tx+ (1− t)y)− f (y)

which by the same procedure as above yields the second part of (4.8). �
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Theorem 4.2. Let f : K → R be a convex function on the cone K. If z = (z1, ...,zn) , v =
(v1, ...,vn) ∈ Kn, p = (p1, ..., pn) , q = (q1, ...,qn) ∈ Pn are two probability distributions with all
values nonzero and α,β ≥ 0 with α+β = 1, then

αβ

n∑
i=1

piqi

αpi+βqi

[
∇− f

(
zi

qi

)(
zi

qi
−

vi

pi

)
−∇+ f

(
vi

pi

)(
zi

qi
−

vi

pi

)]
(4.11)

≥ αI f (v,p)+βI f (z,q)− I f
[
α (v,p)+β (z,q)

]
≥ αβ

n∑
i=1

piqi

αpi+βqi

×

[
∇+ f

(
αvi+βzi

αpi+βqi

)(
zi

qi
−

vi

pi

)
−∇− f

(
αvi+βzi

αpi+βqi

)(
zi

qi
−

vi

pi

)]
≥ 0.

Proof. If we write the inequality (4.8) for

x =
vi

pi
,y =

zi

qi
and t =

αpi

αpi+βqi

then we get

αβpiqi

(αpi+βqi)2

[
∇− f

(
zi

qi

)(
zi

qi
−

vi

pi

)
−∇+ f

(
vi

pi

)(
zi

qi
−

vi

pi

)]
(4.12)

≥
αpi

αpi+βqi
f
(

vi

pi

)
+

βqi

αpi+βqi
f
(

zi

qi

)
− f

(
αvi+βzi

αpi+βqi

)
≥
αβpiqi

(αpi+βqi)2

×

[
∇+ f

(
αvi+βzi

αpi+βqi

)(
zi

qi
−

vi

pi

)
−∇− f

(
αvi+βzi

αpi+βqi

)(
zi

qi
−

vi

pi

)]
≥ 0,

for each i ∈ {1, ...,n} .
Now, if we multiply (4.12) by αpi + βqi > 0 and sum over i from 1 to n we derive the

desired result (4.11). �

It is natural now to consider the corresponding result for convex functions of a real
variable.

Corollary 4.3. Let f : [0,∞)→ R be a normalized convex function. If z = (z1, ...,zn) , v =
(v1, ...,vn), p = (p1, ..., pn) , q = (q1, ...,qn) ∈ Pn are probability distributions with all values
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nonzero and α,β ≥ 0 with α+β = 1, then

αβ

n∑
i=1

det
[

zi vi

qi pi

]
αpi+βqi

[
f ′−

(
zi

qi

)
− f ′+

(
vi

pi

)]
(4.13)

≥ αI f (v,p)+βI f (z,q)− I f
[
α (v,p)+β (z,q)

]
≥ αβ

n∑
i=1

det
[

zi vi

qi pi

]
αpi+βqi

[
f ′+

(
αvi+βzi

αpi+βqi

)
− f ′−

(
αvi+βzi

αpi+βqi

)]
≥ 0.

Remark 4.4. It is obvious that for differentiable convex functions on (0,∞) the lower bound
vanishes and the inequality (4.13) becomes:

0 ≤ αI f (v,p)+βI f (z,q)− I f
[
α (v,p)+β (z,q)

]
(4.14)

≤ αβ

n∑
i=1

det
[

zi vi

qi pi

]
αpi+βqi

[
f ′

(
zi

qi

)
− f ′

(
vi

pi

)]
that can be used for particular divergence measures.

Indeed, if we consider the normalised convex function f (t) = (t−1)2, t ∈ [0,∞), then

I f (p,q) = Dχ2 (p,q)

where, as in the introduction, the χ2−distance (chi-square distance) is defined by

Dχ2 (p,q) :=
n∑

i=1

(pi−qi)2

qi
.

It is clear that the inequality (4.14) becomes then

0 ≤ αDχ2 (v,p)+βDχ2 (z,q)−Dχ2
[
α (v,p)+β (z,q)

]
(4.15)

≤ 2αβ
n∑

i=1

det2
[

zi vi

qi pi

]
piqi (αpi+βqi)

.

The Kullback-Leibler distance D (·, ·) is defined by

D (p,q) :=
n∑

i=1

pi log
(

pi

qi

)
.

If we choose f (t) = t ln t, t > 0, then obviously

I f (p,q) = D (p,q)
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and the inequality (4.14) becomes then

0 ≤ αD (v,p)+βD (z,q)−D
[
α (v,p)+β (z,q)

]
(4.16)

≤ αβ ln


n∏

i=1

(zi pi

qivi

) pizi−qivi
αpi+βqi


 .

Similar results could be obtained for other particular instances of divergence measures,
however the details are omitted.

In what follows we provide some lower and upper bounds for the nonnegative difference
I f (x,q)− I f (xJ ,qJ) where J is a nonempty subset of {1, ...,n} and

I f (xJ ,qJ) = QJ f
(

XJ

QJ

)
+ Q̄J f

(
X̄J

Q̄J

)
.

For a nonempty subset K of {1, ...,n} we also use the notation

I f ,K (x,q) :=
∑
i∈K

qi f
(

xi

qi

)
.

Theorem 4.5. Let f : K → R be a convex function on the cone K. Then for any n-tuple of
vectors x = (x1, ..., xn) ∈ Kn, a probability distribution q ∈ Pn with all values nonzero and
for any nonempty subset J of {1, ...,n}

I
∇− f (·)

(
·−

XJ
QJ

)
,J

(x,q)+ I
∇− f (·)

(
·−

X̄J
Q̄J

)
,J̄

(x,q) (4.17)

≥ I f (x,q)− I f (xJ ,qJ)

≥ I
∇+ f

(
XJ
QJ

)(
·−

XJ
QJ

)
,J

(x,q)+ I
∇+ f

(
X̄J
Q̄J

)(
·−

X̄J
Q̄J

)
,J̄

(x,q) ≥ 0.

Proof. Utilising the gradient inequality we have, for a given nonempty set J of {1, ...,n}
with J , {1, ...,n} , that

∇− f
(

xi

qi

)(
xi

qi
−

XJ

QJ

)
≥ f

(
xi

qi

)
− f

(
XJ

QJ

)
(4.18)

≥ ∇+ f
(

XJ

QJ

)(
xi

qi
−

XJ

QJ

)
for any i ∈ J. If we multiply (4.18) with qi ≥ 0 and sum over i ∈ J, we get

I
∇− f (·)

(
·−

XJ
QJ

)
,J

(x,q) ≥ I f ,J (x,q)−QJ f
(

XJ

QJ

)
(4.19)

≥ I
∇+ f

(
XJ
QJ

)(
·−

XJ
QJ

)
,J

(x,q) ≥ 0.

From the gradient inequality we also have

∇− f
(

x j

q j

)(
x j

q j
−

X̄J

Q̄J

)
≥ f

(
x j

q j

)
− f

(
X̄J

Q̄J

)
(4.20)

≥ ∇+ f
(

X̄J

Q̄J

)(
x j

q j
−

X̄J

Q̄J

)
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for any j ∈ J̄. If we multiply (4.18) with q j ≥ 0 and sum over j ∈ J̄, we get

I
∇− f (·)

(
·−

X̄J
Q̄J

)
,J̄

(x,q) ≥ I f ,J̄ (x,q)− Q̄J f
(

X̄J

Q̄J

)
(4.21)

≥ I
∇+ f

(
X̄J
Q̄J

)(
·−

X̄J
Q̄J

)
,J̄

(x,q) ≥ 0.

Now, if we sum the inequalities (4.19) with (4.21) and take into account that

I f ,J (x,q)+ I f ,J̄ (x,q) = I f (x,q)

and

QJ f
(

XJ

QJ

)
+ Q̄J f

(
X̄J

Q̄J

)
= I f (xJ ,qJ)

then we get the desired result (4.17). �

The case of functions of a real variable that is of interest for applications is incorporated
in :

Corollary 4.6. Let f : [0,∞)→ R be a normalized convex function. Then for any p,q ∈ Pn

and ∅ , J ⊂ {1, ...,n}

I
f ′−(·)

(
·−

PJ
QJ

)
,J

(p,q)+ I
f ′−(·)

(
·−

1−PJ
1−QJ

)
,J̄

(p,q) (4.22)

≥ I f (p,q)−QJ f
(

PJ

QJ

)
− (1−QJ) f

(
1−PJ

1−QJ

)
≥ I

f ′+
(

XJ
QJ

)(
·−

PJ
QJ

)
,J

(p,q)+ I
f ′+

(
1−PJ
1−QJ

)(
·−

1−PJ
1−QJ

)
,J̄

(p,q) ≥ 0.

Remark 4.7. If one chooses different convex functions generating particular divergence
measures such as the Kullback-Leibler, Jeffreys or Hellinger divergences, that one can ob-
tain some particular results of interest. However the details are not presented here.
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