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Abstract
In this paper, the authors study the oscillatory and asymptotic properties of solutions
of nonlinear fourth order neutral dynamic equations of the form

(r(t)(y(t)+ p(t)y(α(t)))∆
2
)∆

2
+q(t)G(y(β(t)))−h(t)H(y(γ(t))) = 0 (H)

and

(r(t)(y(t)+ p(t)y(α(t)))∆
2
)∆

2
+q(t)G(y(β(t)))−h(t)H(y(γ(t))) = f (t), (NH)

where T is a time scale with supT = ∞, t ∈ [t0,∞)T, and t0 > 0. They assume that∫ ∞
t0
σ(t)
r(t) ∆t <∞ and obtain results for various ranges of values of p(t). Examples illus-

trating the results are included.
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1 Introduction

The study of dynamic equations on time scales goes back to seminal work of Stefan Hilger
[8] and has received a lot of attention in recent years. Time scales were created to unify
the study of continuous and discrete differential and difference equations. Many results
concerning differential equations carry over quite easily to corresponding results for differ-
ence equations, while other results seem to be completely different from their continuous
counterparts. The study of dynamic equations on time scales reveals such discrepancies,
and allows us to avoid proving results twice, once for differential equations and once again
for difference equations. The general idea is to prove a result for a dynamic equation where
the domain of the unknown function is a time scale T, which is a non-empty closed sub-
set of the real numbers R. In this way the results in this paper not only apply to the set
of real numbers or set of integers, but also to more general time scales such as T = hN,
T = qN0 = {t : t = qk, k ∈ N0} with q > 1, T = N2

0 = {t
2 : t ∈ N0}, T = {

√
n : n ∈ N0} e.t.c,. For

basic notations on time scale calculus, we refer the reader to the monographs [1, 2] and the
references cited therein.

In [12], the authors studied the oscillatory and asymptotic behavior of solutions of the
fourth order nonlinear neutral dynamic equations

(r(t)(y(t)+ p(t)y(α(t)))∆
2
)∆

2
+q(t)G(y(β(t))) = 0 (1.1)

and

(r(t)(y(t)+ p(t)y(α(t)))∆
2
)∆

2
+q(t)G(y(β(t))) = f (t) (1.2)

for various ranges of p(t) under the assumptions that q(t) > 0 and
∫ ∞

t0
t

r(t)∆t <∞. From their
work it is apparent that it would be possible to obtain analogous results for the oscillation
and asymptotic behavior of solutions of (1.1) and (1.2) in case q(t) < 0. It remains an
open problem as to what happens if q(t) is allowed to change signs. However, if q(t) =
q+(t)−q−(t), where q+(t) =max{0,q(t)} and q−(t) =max{0,−q(t)}, then equations (1.1) and
(1.2) take the forms

(r(t)(y(t)+ p(t)y(α(t)))∆
2
)∆

2
+q+(t)G(y(β(t)))−q−(t)G(y(γ(t))) = 0 (1.3)

and

(r(t)(y(t)+ p(t)y(α(t)))∆
2
)∆

2
+q+(t)G(y(β(t)))−q−(t)G(y(γ(t))) = f (t), (1.4)

respectively, which we see are in the form of (H) and (NH).
Our goal here is to study the oscillatory and asymptotic properties of solutions of the

nonlinear fourth order neutral dynamic equations

(r(t)(y(t)+ p(t)y(α(t)))∆
2
)∆

2
+q(t)G(y(β(t)))−h(t)H(y(γ(t))) = 0 (H)

and
(r(t)(y(t)+ p(t)y(α(t)))∆

2
)∆

2
+q(t)G(y(β(t)))−h(t)H(y(γ(t))) = f (t), (NH)
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on a time scale T such that supT = ∞ and t0 ∈ T. We consider these equations under the
assumption that ∫ ∞

t0

σ(t)
r(t)
∆t <∞ (H1)

and for various ranges of values of p(t). Here we extend the results of [12] to fourth order
dynamic equations with positive and negative coefficients and generalize earlier work in
[12]. Oscillation results for equations (H) and (NH) under the assumption that

∫ ∞
t0
σ(t)
r(t) ∆t =

∞ can be found in [7].
For equations (H) and (NH) we will use the notation that [t0,∞)T = [t0,∞)∩ T and

assume that r ∈ Crd([t0,∞)T, (0,∞)), p, f ∈ Crd([t0,∞)T,R), q, h ∈ Crd([t0,∞)T, (0,∞)), G,
H ∈ C(R,R) satisfy uG(u) > 0 and uH(u) > 0 for u , 0, G is nondecreasing, H is bounded,
and α, β, γ ∈Crd(T,T) are strictly increasing functions such that

lim
t→∞
α(t) = lim

t→∞
β(t) = lim

t→∞
γ(t) =∞, α(t), β(t), γ(t) 6 t,

and

(α◦β)(t) = (β◦α)(t) for all t ∈ [t0,∞)T.

The inverse of α(t) will be denoted by α−1(t) ∈ Crd(T,T). Whenever we write t ≥ t1, we
mean t ∈ [t1,∞)∩T.

Let t−1 = inft∈[t0,∞)T{α(t),β(t),γ(t)}. By a solution of (H) (or (NH)) we mean a function
y ∈Crd([t−1,∞)T,R) such that y(t)+ p(t)y(α(t)) ∈C2

rd([t0,∞)T,R), r(t)(y(t)+ p(t)y(α(t)) )∆
2
∈

C2
rd([t0,∞)T,R), and such that (H) ((NH)) is satisfied on [t0,∞)T. A solution of (H) or (NH)

is called oscillatory if it is neither eventually positive nor eventually negative, and it is
nonoscillatory otherwise. In this paper we do not consider solutions that eventually vanish
identically. An equation will be called oscillatory if all its solutions are oscillatory. We will
need the following lemmas in the sequel.

Lemma 1.1. ([12, Lemma 3.1]) Let (H1) hold and u(t) be a real-valued twice rd-continuous-
ly differentiable function on [t0,∞]T such that r(t)u∆

2
(t) ∈C2

rd([t0,∞)T,R) and (r(t)u∆
2
(t))∆

2

≤ 0 for large t ∈ [t0,∞)T. If u(t) > 0 eventually, then one of the following cases (a), (b), (c),
or (d) holds for large t, and if u(t) < 0 eventually, then one of the cases (b), (c), (d), (e), or
(f) holds for large t, where

(a) u∆(t) > 0, u∆
2
(t) > 0 and (r(t)u∆

2
(t))∆ > 0,

(b) u∆(t) > 0, u∆
2
(t) < 0 and (r(t)u∆

2
(t))∆ > 0,

(c) u∆(t) > 0, u∆
2
(t) < 0 and (r(t)u∆

2
(t))∆ < 0,

(d) u∆(t) < 0, u∆
2
(t) > 0 and (r(t)u∆

2
(t))∆ > 0,

(e) u∆(t) < 0, u∆
2
(t) < 0 and (r(t)u∆

2
(t))∆ > 0,

( f ) u∆(t) < 0, u∆
2
(t) < 0 and (r(t)u∆

2
(t))∆ < 0.

Lemma 1.2. ([12, Lemma 3.2]) Let (H1) hold. Assume that u(t) is a positive real val-
ued rd-continuously ∆-differentiable function such that r(t)u∆

2
(t) is twice continuously ∆-

differentiable and (r(t)u∆
2
(t))∆

2
6 0 for large t. Then:
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(i) If case (c) of Lemma 1.1 holds, then there exists a constant k ∈ (0,1) such that the
following inequalities hold for large t:

(I1) u∆(t) > −(r(t)u∆
2
(t))∆R1(t);

(I2) u∆(t) > −r(t)u∆
2
(t)

∫ ∞
t

1
r(s)∆s;

(I3) u(t) > ktu∆(t);

(I4) u(t) > −k(r(t)u∆
2
(t))∆tR1(t);

where R1(t) =
∫ ∞

t
s−t
r(s)∆s.

(ii) If case (d) of Lemma 1.1 holds, then for large t,

(I5) u(t) > r(t)u∆
2
(t)R2(t),

where R2(t) =
∫ ∞

t
σ(s)−t

r(s) ∆s.

Remark 1.3. Since R1(t) <
∫ ∞

t
s

r(s)∆s and R2(t) <
∫ ∞

t
σ(s)
r(s) ∆s, then, in view of (H1), R1(t),

R2(t)→ 0 as t→∞ and
∫ ∞

t0
1

r(t)∆t <∞. Clearly, R1(t) 6 R2(t), and R1(t), R2(t) are monotone
decreasing.

Lemma 1.4. ([12, Lemma 3.4]) Let (H1) and the hypotheses of Lemma 1.1 hold. If u(t) > 0
for large t, then there exists constants k1 > 0 and k2 > 0 such that k1R2(t) 6 u(t) 6 k2t for
large t.

Lemma 1.5. ([12, Lemma 3.5]) Let F, H, P : [t0,∞)T→ R satisfy

F(t) = H(t)+P(t)H(α(t)) for t ∈ [t̂,∞)T,

where t̂ ∈ [t0,∞)T is such that α(t) > t0 for all t ∈ [t̂,∞)T. Assume that there exist constants
P1, P2 ∈ R such that P(t) is in one of the following ranges:

(1) −∞ < P(t) 6 0, (2) 0 6 P(t) 6 P1 < 1, (3) 1 < P2 6 P(t) <∞.

If H(t) > 0 for large t ∈ [t0,∞)T, liminft→∞H(t) = 0, and limt→∞F(t) = L ∈ R exists, then
L = 0.

Discussions of the oscillatory behavior of solutions of differential equations and differ-
ence equations for various ranges of values of p(t) can be found in [6] and [13], respectively.
Our final lemma is a very useful form of a chain rule for functions on time scales.

Lemma 1.6. ([1, Theorem 1.87]) Assume g :R→R is continuous, g : T→R is ∆-differenti-
able on Tk, and f : R→ R is continuously differentiable. Then there exists c in the interval
[t,σ(t)] such that

( f ◦g)∆(t) = f ′(g(c))g∆(t).
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2 Oscillation results for (H)

In this section, we study the asymptotic behavior of solutions of equation (H) under the
assumption (H1). We will make use of following conditions on the functions in equations
(H) and (NH):

(H2)
∫ ∞

t0
σ(s)
r(s)

∫ ∞
s σ(t)h(t)∆t∆s <∞;

(H3) there exists λ > 0 such that G(u)+G(v) > λG(u+ v) for u, v ∈ R with u, v > 0;

(H4) G(u)G(v) =G(uv) for u, v ∈ R;

(H5)
∫ ∞

Q(t)∆t =∞ where Q(t) =min{q(t),q(α(t))};

(H6) for some l> 1,
∫ ∞

d(t)Q(t)G(R2(β(t)))∆t=∞where d(t)=min{Rl
1(σ(t)), Rl

1(σ(α(t)))};

(H7) G(−u) = −G(u) for u ∈ R;

(H8) for some l > 1,
∫ ∞

Rl
1(σ(t))q(t)G(R2(β(t)))∆t =∞.

Remark 2.1. Notice that (H4) implies (H7), (H6) implies

(H′6)
∫ ∞

Q(t)G(R2(β(t)))∆t =∞,

and (H8) implies

(H′8)
∫ ∞

q(t)G(R2(β(t)))∆t =∞,

which in turn implies ∫ ∞

t0
q(t)∆t =∞.

Theorem 2.2. Assume that conditions (H1)–(H6) hold, and p1, p2, and p3 are positive real
numbers. If (i) 0 6 p(t) 6 p1 < 1 or (ii) 1 < p2 6 p(t) 6 p3 <∞ holds, then any solution of
(H) is either oscillatory or converges to zero as t→∞.

Proof. Let y be a nonoscillatory solution of (H) on [t0,∞)T, say y is an eventually positive
solution. (The proof in case y is eventually negative is similar and will be omitted.) Then,
there exists t1 ∈ [t0,∞)T such that y(t), y(α(t)), y(β(t)), y(γ(t)) and y(α(β(t))) are all positive
for t > t1. Set

z(t) = y(t)+ p(t)y(α(t)), (2.1)

and

k(t) =
∫ ∞

t

σ(s)− t
r(s)

∫ ∞

s
(σ(θ)− s)h(θ)H(y(γ(θ)))∆θ∆s. (2.2)

Notice that condition (H2) and the fact that H is a bounded function imply that k(t) exists
for all t. Now if we let

w(t) = z(t)− k(t) = y(t)+ p(t)y(α(t))− k(t), (2.3)
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then

(r(t)w∆
2
(t))∆

2
= −q(t)G(y(β(t))) 6 0, (2.4)

for all t ∈ [t1,∞)T. Clearly, w(t), w∆(t), (r(t)w∆
2
(t)), and (r(t)w∆

2
(t))∆ are monotonic on

[t1,∞)T. In view of Lemma 1.1, we have to consider the two cases w(t) > 0 or w(t) < 0.
Suppose that w(t) > 0 for t ≥ t2 for some t2 > t1; then there exists t3 ∈ [t2,∞)T such that

w(α(t)), w(β(t))> 0 for t ∈ [t3,∞)T. By Lemma 1.1, one of the cases (a), (b), (c) or (d) holds.
If (a), (b) or (d) holds, then applying (H3), (H4), and (H5) to equation (H) gives

0 = (r(t)w∆
2
(t))∆

2
+q(t)G(y(β(t)))+G(p)(r(α(t))w∆

2
(α(t)))∆

2
+G(p)q(α(t))G(y(β(α(t))))

> (r(t)w∆
2
(t))∆

2
+G(p)(r(α(t))w∆

2
(α(t)))∆

2
+λQ(t)G(y(β(t))+ py(α(β(t))))

> (r(t)w∆
2
(t))∆

2
+G(p)(r(α(t))w∆

2
(α(t)))∆

2
+λQ(t)G(z(β(t))) (2.5)

for t > t2 > t1, where we have used the fact that z(t) 6 y(t)+ py(α(t)). From (2.2), it follows
that k(t) > 0 and k∆(t) < 0. Hence, w(β(t)) > 0 for t ≥ t3 implies that w(β(t)) < z(β(t)) for
t ≥ t3. From (2.5), we have

(r(t)w∆
2
(t))∆

2
+G(p)(r(α(t))w∆

2
(α(t)))∆

2
+λQ(t)G(w(β(t))) 6 0, (2.6)

for t > t3 > t2. Applying Lemma 1.4 and (H4) to (2.6) gives

(r(t)w∆
2
(t))∆

2
+G(p)(r(α(t))w∆

2
(α(t)))∆

2
+λG(k1)Q(t)G(R2(β(t))) 6 0,

for t > t4 > t3. Now limt→∞(r(t)w∆
2
(t))∆ exists, so integrating the above inequality implies

λG(k1)
∫ ∞

t4
Q(t)G(R2(β(t)))∆t <∞,

which contradicts (H′6).
Next, suppose case (c) holds. By (I4) and Lemma 1.4, we have

k(−r(t)w∆
2
(t))∆tR1(t) 6 w(t) 6 k2t. (2.7)

for t > t3 > t2. Choose f (x) = x1−l with l > 1, which is continuous on (0,∞), and take
g(t) = (−r(t)w∆

2
(t))∆. Applying the chain rule (Lemma 1.6), using (2.4) and the fact that g

is increasing, means there is a c in the real interval [t,σ(t)] with g(c) = L, such that

−[((−r(t)w∆
2
(t))∆)1−l]∆ = (l−1)L−l(−r(t)w∆

2
(t))∆

2

= (l−1)L−lq(t)G(y(β(t)))

> (l−1)g−l(σ(t))q(t)G(y(β(t))). (2.8)

From (2.7), kg(t)R1(t)6 k2 for t > t3, so kg(σ(t))R1(σ(t))6 k2 for t > t3. Thus, (2.8) becomes

−[((−r(t)w∆
2
(t))∆)1−l]∆ > (l−1)Ll

1Rl
1(σ(t))q(t)G(y(β(t))), (2.9)
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where L1 = k/k2. Choose t4 ∈ [t3,∞)T such that α(t) ≥ t3 for all t ∈ [t4,∞)T. Using (H3),
(H4), and Lemma 1.4, we have

− [((−r(t)w∆
2
(t))∆)1−l]∆−G(p)[((−r(α(t))w∆

2
(α(t)))∆)1−l]∆

≥ (l−1)Ll
1Rl

1(σ(t))q(t)G(y(β(t)))+G(p)(l−1)Ll
1Rl

1(σ(α(t)))q(α(t))G(y(β(α(t))))

≥ λ(l−1)Ll
1d(t)Q(t)G(z(β(t)))

≥ λ(l−1)Ll
1d(t)Q(t)G(w(β(t)))

≥ λ(l−1)Ll
1G(k1)d(t)Q(t)G(R2(β(t)))

for t > t4. Therefore, ∫ ∞

t4
d(t)Q(t)G(R2(β(t)))∆t <∞,

which contradicts (H6).
Now we suppose that w(t) < 0 for t ≥ t2. Then z(t)− k(t) < 0 implies y(t) ≤ z(t) = y(t)+

p(t)y(α(t)) < k(t). Thus, y is bounded. By Lemma 1.1, it follows that one of the cases (b),
(c), (d), (e), or (f) holds for t ≥ t2. In cases (e) and (f), limt→∞w(t) = −∞ which contradicts
the boundedness of y.

In cases (b) and (c), w(t) is increasing and w(t)< 0, so limt→∞w(t) exists. Consequently,

0 > lim
t→∞

w(t) = limsup
t→∞

[z(t)− k(t)]

≥ limsup
t→∞

[y(t)− k(t)]

≥ limsup
t→∞

y(t)− lim
t→∞

k(t)

implying that limt→∞ y(t) = 0 since limt→∞ k(t) = 0.
Finally, let case (d) of Lemma 1.1 hold. Then w(t) < 0 is decreasing so limt→∞w(t) = L

with −∞ 6 L < 0. Since k(t)→ 0, this implies z(t) eventually becomes negative, which is a
contradiction. This completes the proof of the theorem. �

The following corollary is immediate.

Corollary 2.3. Under the conditions of Theorem 2.2, every unbounded solution of (H)
oscillates.

Our next theorem gives sufficient conditions for all unbounded solutions to oscillate.

Theorem 2.4. Let 06 p(t)6 p< 1. If (H1), (H2), (H4) and (H8) hold, then every unbounded
solution of (H) oscillates.

Proof. Let y be an unbounded nonoscillatory solution of (H), say y(t), y(α(t)), y(β(t)),
y(γ(t)) and y(α(α(t))) are all positive for t ∈ [t1,∞)T for some t1 > t0. We set z(t), k(t)
and w(t) as in (2.1)–(2.3) to obtain (2.4) for t ≥ t1. Consequently, w(t), w∆(t), (r(t)w∆

2
(t)),

and (r(t)w∆
2
(t))∆ are of constant signs on [t2,∞)T, t2 > t1.

Assume that w(t) > 0 for t ≥ t2. By Lemma 1.1, one of the cases (a), (b), (c), or (d)
holds. First suppose (a) or (b) holds. Then 0 < w∆(t) = z∆(t)− k∆(t). If z(t) oscillates, then
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z∆(t) ≤ 0 at some arbitrarily large values of t which is a contradiction since k∆(t) < 0 for all
t. Thus, z is monotonic, and for the same reason we can not have z∆(t) ≤ 0, so z∆(t) ≥ 0 for
all large t, say t ≥ t3 > t2. Hence, in these two cases,

(1− p)z(t) ≤ (1− p(t))z(t) < z(t)− p(t)z(α(t))

= y(t)− p(t)p(α(t))y(α(α(t))) < y(t),

that is,

y(t) > (1− p)z(t) > (1− p)w(t) (2.10)

for t > t2 > t1. Thus, (2.4) implies

G((1− p)w(β(t)))q(t) 6 −(r(t)w∆
2
(t))∆

2
,

and applying Lemma 1.4 and (H4) gives

G(k1(1− p))G(R2(β(t)))q(t) 6 −(r(t)w∆
2
(t))∆

2
. (2.11)

Integrating (2.11) from t3 to∞, we have∫ ∞

t2
q(t)G(R2(β(t)))∆t <∞,

which contradicts (H′8).
If case (d) holds, then w∆(t) < 0 and w and z are bounded which can not happen if y is

unbounded. If case (c) of Lemma 1.1 holds, we proceed as in the proof of Theorem 2.2 to
obtain (2.9). From (2.9), (2.10) and Lemma 1.4, we have

−[((−r(t)w∆
2
(t))∆)1−l]∆ > (l−1)Ll

1G((1− p)k1)q(t)Rl
1(σ(t))G(R2(β(t)))

for t > t3. Integrating the last inequality from t3 to∞, we obtain∫ ∞

t3
q(t)Rl

1(σ(t))G(R2(β(t)))∆t <∞,

contradicting (H8).
Finally, we see that since y is unbounded, the case w(t) < 0 does not arise because

w(t) = z(t)− k(t) < 0 implies 0 < z(t) < k(t) so again z(t) is bounded. This completes the
proof of the theorem. �

Our next two results are for the case where p(t) is negative.

Theorem 2.5. Let −1 < p4 6 p(t) 6 0 and conditions (H1), (H2), (H4), and (H8) hold. Then
any solution of (H) is either oscillatory or converges to zero as t→∞.

Proof. Let y be a nonoscillatory solution of (H), say y(t), y(α(t)), y(β(t)), y(γ(t)) are positive
for all t ∈ [t1,∞)T, t1 > t0. Setting z(t), k(t), and w(t) as in (2.1), (2.2), and (2.3), we obtain
(2.4) for t > t1. Hence, w(t) is monotonic for large t ∈ [t1,∞)T. Let w(t) > 0 for t > t2, for
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some t2 > t1 and assume that one of the cases (a), (b), or (d) of Lemma 1.1 holds for t > t2.
By Lemma 1.4, we have y(β(t)) >w(β(t)) > k1R2(β(t)) for t > t3 > t2, with which (2.4) yields∫ ∞

t3
q(t)G(R2(β(t)))∆t <∞,

contradicting (H′8).
Next, we consider case (c). Proceeding as in the proof of Theorem 2.2, we obtain (2.9).

Furthermore, y(t) > w(t) > k1R2(t) for t > t3 by Lemma 1.4. Consequently, for t > t4 > t3,

−[((−r(t)w∆
2
(t))∆)1−l]∆ > (l−1)L1G(k1)q(t)Rl

1(σ(t))G(R2(β(t))). (2.12)

An integration of (2.12) gives∫ ∞

t4
q(t)Rl

1(σ(t))G(R2(β(t)))∆t <∞,

contradicting (H8).
Now suppose w(t) < 0 for t > t2. We claim that y is bounded. If not, then there is

an increasing sequence {τn}∞n=1 ⊂ [t2,∞)T such that τn → ∞, y(τn) → ∞ as n → ∞, and
y(τn) =max{y(t) : t2 6 t 6 τn}. We choose τ1 large enough so that α(τ1) > t2. Hence,

0 > w(τn) > y(τn)+ p(τn)y(α(τn))− k(τn) > (1+ p4)y(τn)− k(τn).

Since k(τn) is bounded and 1+ p4 > 0, we have w(τn) > 0 for large n, which is a contradic-
tion, so our claim is true. Hence, z(t) is bounded as is w(t). Clearly, cases (e) and (f) of
Lemma 1.1 cannot arise.

In cases (b) and (c), −∞ < limt→∞w(t) 6 0. Using the fact that limt→∞ k(t) = 0, we have
limt→∞w(t) = limt→∞ z(t). Hence,

0 ≥ lim
t→∞

w(t) = lim
t→∞

z(t)

= limsup
t→∞

[y(t)+ p(t)y(α(t))]

≥ limsup
t→∞

y(t)+ liminf
t→∞

(p4y(α(t))

= limsup
t→∞

y(t)+ p4 limsup
t→∞

y(α(t))

= (1+ p4) limsup
t→∞

y(t),

which implies that limsupt→∞ y(t) = 0, that is, limt→∞ y(t) = 0.
If case (d) holds, then limt→∞(r(t)w∆

2
(t))∆ exists and so (2.4) gives∫ ∞

t2
q(t)G(y(β(t)))∆t <∞. (2.13)

If liminft→∞ y(t) > 0, then it follows from (2.13) that∫ ∞

t2
q(t)∆t <∞,

which contradicts Remark 2.1. Hence, liminft→∞ y(t) = 0. Using Lemma 1.5, we conclude
that limt→∞w(t)= 0= limt→∞ z(t). Proceeding as above, we may show that limsupt→∞ y(t)=
0 and hence limt→∞ y(t) = 0. This completes the proof of the theorem. �
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Theorem 2.6. Assume there are constants p5 and p6 such that −∞ < p5 6 p(t) 6 p6 <

−1 and conditions (H1), (H2), (H4), and (H8) hold. Then any solution y of (H) is either
oscillatory, or satisfies liminft→∞ | y(t) | = 0, or satisfies | y(t) | → ∞ as t→∞.

Proof. Proceeding as in the proof of Theorem 2.5 in cases (a), (b), (c), or (d) for w(t) > 0,
we again obtain contradictions to (H8). Next we consider case w(t) < 0 for t > t2. Suppose
case (b) or (d) holds. Since limt→∞(r(t)w∆

2
(t))∆ exists, (2.4) gives∫ ∞

t2
q(t)G(y(β(t)))∆t <∞. (2.14)

If liminft→∞ y(t) > 0, then it follows that∫ ∞

t2
q(t)∆t <∞,

contradicting Remark 2.1. Hence, liminft→∞ y(t) = 0. If case (c) holds, then as in the proof
of case (c) of Theorem 2.2, choose f (x) = x1−l and g(t) = (−r(t)w∆

2
(t))∆. By Lemma 1.6,

there exists c in the real interval [t,σ(t)] with g(c) = L such that

−[((−r(t)w∆
2
(t))∆)1−l]∆ = (l−1)L−l(−r(t)w∆

2
(t))∆

2

= (l−1)L−lq(t)G(y(β(t))).

Integrating, we obtain ∫ ∞

t2
q(t)G(y(β(t)))∆t <∞. (2.15)

Hence, liminft→∞ y(t) = 0.
Finally, in cases (e) and (f), we have w∆

2
(t) < 0 for t > t2, and integrating twice from t3

to t, we obtain w(t)→−∞ as t→∞. From (2.3), z(t)→−∞ as t→∞, so limt→∞ y(α(t)) =
limt→∞ y(t) =∞. This completes the proof of the theorem. �

3 Oscillatory results for (NH)

This section is concerned with the oscillatory and asymptotic behavior of solutions of equa-
tion (NH) for suitable forcing functions f (t). We restrict our forcing functions to those that
change signs. We will use the following conditions:

(H9) There exists F ∈C2
rd([t0,∞)T,R) such that rF∆

2
∈C2

rd([t0,∞)T,R), (rF∆
2
)∆

2
= f , and

−∞ < liminf
t→∞

F(t) < 0 < limsup
t→∞

F(t) <∞;

(H10) There exists F ∈C2
rd([t0,∞)T,R) such that rF∆

2
∈C2

rd([t0,∞)T,R), (rF∆
2
)∆

2
= f ,

liminf
t→∞

F(t) = −∞, and limsup
t→∞

F(t) = +∞.
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Theorem 3.1. Let either (i) 0 6 p(t) 6 p1 < 1 or (ii) 1 < p2 6 p(t) 6 p3 <∞, and assume
that conditions (H1)–(H4) and (H10) hold. If

(H11) limsup
t→∞

∫ t

t0
d(s)Q(s)G(F(β(s)))∆s = +∞

and liminf
t→∞

∫ t

t0
d(s)Q(s)G(F(β(s)))∆s = −∞,

then every solution of (NH) oscillates.

Remark 3.2. Notice that condition (H11) implies

(H′11) limsup
t→∞

∫ t

t0
Q(s)G(F(β(s)))∆s = +∞ and liminf

t→∞

∫ t

t0
Q(s)G(F(β(s)))∆s = −∞.

Proof of Theorem 3.1. Suppose that y is a nonoscillatory solution of (NH) on [t0,∞)T so
that y(t), y(α(t)), y(β(t)), y(γ(t)), and y(α(β(t))) are all positive on [t1,∞)T for some t1 > t0.
With z, k, and w as in (2.1)–(2.3), let

v(t) = w(t)−F(t) = z(t)− k(t)−F(t) (3.1)

for t > t1. Then (NH) becomes

(r(t)v∆
2
(t))∆

2
= −q(t)G(y(β(t))) 6 0. (3.2)

Thus, v(t) is monotonic on [t2,∞)T, for some t2 > t1. If v(t) > 0 for t > t2, then z(t) >
k(t)+F(t) > F(t). In view of (NH), (H3), and (H4), it is easy to see that

0 = (r(t)v∆
2
(t))∆

2
+q(t)G(y(β(t)))+G(p)(r(α(t))v∆

2
(α(t)))∆

2
+G(p)q(α(t))G(y(β(α(t))))

≥ (r(t)v∆
2
(t))∆

2
+G(p)(r(α(t))v∆

2
(α(t)))∆

2
+λQ(t)G(z(β(t)))

≥ (r(t)v∆
2
(t))∆

2
+G(p)(r(α(t))v∆

2
(α(t)))∆

2
+λQ(t)G(F(β(t))), (3.3)

for t > t3 > t2. Let (a), (b) or (d) of Lemma 1.1 hold. Integrating (3.3), we obtain

limsup
t→∞

∫ t

t3
Q(t)G(F(β(t)))∆t <∞

contradicting (H′11).
Let case (c) of Lemma 1.1 hold. Then proceeding as in the proof of case (c) in Theorem

2.2, we obtain an inequality similar to (2.9) from which it follows that

−[((−r(t)v∆
2
(t))∆)1−l]∆ − G(p)[((−r(α(t))v∆

2
(α(t)))∆)1−l]∆

> λ(l−1)Ll
1d(t)Q(t)G(z(β(t)))

> λ(l−1)Ll
1d(t)Q(t)G(F(β(t)))

for t > t3. An integration shows

limsup
t→∞

∫ t

t0
d(s)Q(s)G(F(β(s)))∆s < +∞
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contradicting (H11).
Therefore, v(t) < 0 for t > t2 and one of the cases (b)–(f) of Lemma 1.1 holds. In each of

these cases z(t) ≤ k(t)+F(t) which implies liminft→∞ z(t) < 0. This contradiction completes
the proof of the theorem. �

Remark 3.3. We can drop condition (H11) from the hypotheses of Theorem 3.1 and obtain
that bounded solutions oscillate. In case v(t) < 0, the proof is the same. If v(t) > 0, then
z(t) > k(t)+F(t) > F(t) and condition (H10) contradicts the boundedness of y.

Our next two results are for the case where p(t) 6 0.

Theorem 3.4. Let −1 < p(t) 6 0 and conditions (H1), (H2), (H7), and (H10) hold. If

(H12) limsup
t→∞

∫ t

t0
Rl

1(σ(s))q(s)G(F(β(s)))∆s = +∞

and liminf
t→∞

∫ t

t0
Rl

1(σ(s))q(s)G(F(β(s)))∆s = −∞,

then any solution y of equation (NH) is either oscillatory or satisfies limsupt→∞ |y(t)| =∞.

Proof. Let y be a nonoscillatory solution of (NH), say y(t), y(α(t)), y(β(t)), and y(γ(t)) are
all positive on [t1,∞)T, t1 > t0. Define v(t) as in (3.1) so that we obtain (3.2). Consequently,
v(t) is monotonic on [t2,∞)T. Let v(t) > 0 for t > t2. Then one of the cases (a)–(d) of Lemma
1.1 holds. Now, v(t) > 0 implies

y(t) > z(t) > k(t)+F(t) > F(t) (3.4)

for t > t2 > t1. If any one of the cases (a), (b), or (d) holds, then using (3.4) in (3.2), we
obtain

limsup
t→∞

∫ t

t3
q(s)G(F(β(s)))∆s <∞

contradicting (H12).
Assume that case (c) holds. Proceeding as in the proof of Theorem 2.2, we obtain

−[((−r(t)v∆
2
(t))∆)1−l]∆ > (l−1)Ll

1Rl
1(σ(t))q(t)G(y(β(t))), (3.5)

and using (3.4) and (3.5), this becomes

−[((−r(t)v∆
2
(t))∆)1−l]∆ > (l−1)Ll

1Rl
1(σ(t))q(t)G(F(β(t))), (3.6)

for t > t3 > t2. An integration yields a contradiction to (H12).
We must have v(t)< 0 for t > t2. Now, z(t)−k(t)< F(t) which implies that liminft→∞ z(t)

= −∞ so limsupt→∞ y(t) = +∞, which completes the proof of the theorem. �

Theorem 3.5. Let −1 < p4 6 p(t) 6 0 and conditions (H1), (H2), (H7), (H9), and (H12) hold.
Then every unbounded solution of (NH) oscillates.
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Proof. Let y be a positive unbounded nonoscillatory solution of (NH) on [t0,∞)T. Pro-
ceeding as in the proof of Theorem 3.4, we have the required contradiction if v(t) > 0 for
t > t2.

Next, we suppose that v(t) < 0 for t > t2. Since y is unbounded, there exists {τn}∞n=1 ⊂

[t2,∞)T such that τn→∞, y(τn)→∞ as n→∞, and

y(τn) =max{y(t) : t2 6 t 6 τn}.

We may choose n large enough so that α(τn) > t2. Hence,

z(τn) > (1+ p4)y(τn).

By Lemma 1.1, one of the cases (b)–(f) holds. Now z(t) = v(t)+ k(t)+ F(t) implies that
z(t) < k(t)+F(t), and so

∞ = (1+ p) limsup
n→∞

y(τn) 6 limsup
n→∞

[k(τn)+F(τn)]

≤ lim
t→∞

k(τn)+ limsup
n→∞

F(τn)

< ∞.

This contradiction completes the proof of the theorem. �

The final theorem in this paper gives sufficient conditions for the equation (NH) to have
a bounded positive solution.

Theorem 3.6. Assume that 1 < p1 ≤ p(t) ≤ p2 <
1
2 p2

1 <∞ and (H2) hold. Suppose that (H9)
holds with −(p1−1)

16p2
≤ F(t) ≤ p1−1

8p2
. In addition, assume that G and H are Lipschitz on R with

Lipschitz constants G1 and H1 respectively. If

∫ ∞

t0

σ(t)
r(t)

∫ ∞

t
σ(s)q(s)∆s∆t <∞,

then (NH) admits a positive bounded solution.

Proof. By (H2), we can choose t1 > t0 large enough so that∫ ∞

t1

σ(t)
r(t)

∫ ∞

t
σ(s)h(s)∆s∆t <min

{
p1−1

4p1H(1)
,

p1−1
16p2G(1)

}
.

Let X = BCrd([t1,∞)T,R) be the Banach space of all bounded rd-continuous functions on
[t1,∞)T with the supremum norm

‖x‖ = sup{| x(t) |: t ∈ [t1,∞)T},

and let

S = {x ∈ X :
p1−1
8p1 p2

6 x(t) 6 1, t ∈ [t1,∞)T}.
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Then, S is a closed, bounded, and convex subset of X. Take t2 ∈ [t1,∞)T so that α(t), β(t),
γ(t) > t1 for all t ∈ [t2,∞)T. Define the mappings A, B : S → S by

Ax(t) =

Ax(t2), for t ∈ [t1, t2)T,

−
x(α−1(t))
p(α−1(t)) +

2p2
1+p1−1

4p1 p(α−1(t)) , for t ∈ [t2,∞)T.

and

Bx(t) =


Bx(t2), for t ∈ [t1, t2)T,
F(α−1(t))
p(α−1(t)) +

k(α−1(t))
p(α−1(t))

− 1
p(α−1(t))

∫ ∞
α−1(t)

σ(s)−α−1(t)
r(s)

∫ ∞
s (σ(u)− s)q(u)G(x(β(u)))∆u)∆s, for t ∈ [t2,∞)T.

For x ∈ S , we have

k(t) =
∫ ∞

t

σ(s)− t
r(s)

∫ ∞

s
(σ(u)− s)h(u)H(x(γ(u)))∆u∆s

6 H(1)
∫ ∞

t

σ(s)
r(s)

∫ ∞

s
σ(u)h(u)∆u∆s

<
1

4p1
(p1−1).

For all x, y ∈ S and all t ∈ [t2,∞)T, we have

Ax(t)+By(t) 6
1

4p2
1

(2p2
1+ p1−1)+

1
8p1 p2

(p1−1)+
1

4p2
1

(p1−1) < 1

and

Ax(t)+By(t) > −
1
p1
+

1
4p1 p2

(2p2
1+ p1−1)−

1
16p1 p2

(p1−1)−
1

16p1 p2
(p1−1)

≥
p1−1
8p1 p2

.

Thus, Ax+By ∈ S .
To show that A is a contraction mapping on S , first notice that

‖Ax−Ay‖ =

∥∥∥∥∥∥∥− x(α−1(t))
p(α−1(t))

+
2p2

1+ p1−1

4p1 p(α−1(t))
+

y(α−1(t))
p(α−1(t))

−
2p2

1+ p1−1

4p1 p(α−1(t))

∥∥∥∥∥∥∥ .
=

∥∥∥∥∥∥− x(α−1(t))
p(α−1(t))

+
y(α−1(t))
p(α−1(t))

∥∥∥∥∥∥ .
6

1
p1

∥∥∥∥∥ x(t)− y(t)
∥∥∥∥∥ .

Since p1 > 1, A is a contraction mapping.
To show that B is completely continuous on S , we need to show that B is continuous

and maps bounded sets into relatively compact sets. In order to show that B is continuous,
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let x, xk = xk(t) ∈ S be such that ‖xk − x‖ = supt>t1{|xk(t)− x(t)|} → 0. Since S is closed,
x(t) ∈ S . For t > t1, we have

|(Bxk)− (Bx)| =

∣∣∣∣∣∣ 1
p(α−1(t))

∫ ∞

α−1(t)

σ(s)−α−1(t)
r(s)

∫ ∞

s
(σ(u)− s)h(u)H(xk(γ(u)))∆u∆s

−
1

p(α−1(t))

∫ ∞

α−1(t)

σ(s)−α−1(t)
r(s)

∫ ∞

s
(σ(u)− s)q(u)G(xk(β(u)))∆u∆s

−
1

p(α−1(t))

∫ ∞

α−1(t)

σ(s)−α−1(t)
r(s)

∫ ∞

s
(σ(u)− s)h(u)H(x(γ(u)))∆u∆s

+
1

p(α−1(t))

∫ ∞

α−1(t)

σ(s)−α−1(t)
r(s)

∫ ∞

s
(σ(u)− s)q(u)G(x(β(u)))∆u∆s

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
p(α−1(t))

∫ ∞

α−1(t)

σ(s)−α−1(t)
r(s)

∫ ∞

s
(σ(u)− s)h(u)(H(xk(γ(u)))

−H(x(γ(u))))∆u∆s

+
1

p(α−1(t))

∫ ∞

α−1(t)

σ(s)−α−1(t)
r(s)

∫ ∞

s
(σ(u)− s)q(u)(G(x(β(u)))

−G(xk(β(u))))∆u∆s

∣∣∣∣∣∣
6

1
p1

H1‖xk − x‖
∫ ∞

α−1(t)

σ(s)− t
r(s)

∫ ∞

s
(σ(u)− s)h(u)∆u∆s

+
1
p1

G1‖xk − x‖
∫ ∞

α−1(t)

σ(s)− t
r(s)

∫ ∞

s
σ(u)q(u)∆u∆s

6
1

4p2
1

(p1−1)‖x− xk‖+
1

16p1 p2
(p1−1)‖x− xk‖.

Since for all t > t1, {xk(t)} converges uniformly to x(t) as k→∞, limk→∞ | (Bxk)(t)−
(Bx)(t) |= 0 for t > t1. Thus, B is continuous.

To show that BS is relatively compact, it suffices to show that the family of functions
{Bx : x ∈ S } is uniformly bounded and equicontinuous on [t1,∞)T. The uniform bounded-
ness is clear. To show that BS is equicontinuous, let x ∈ S and t

′′

, t
′

> t1. Then

|(Bx)(t
′′

)− (Bx)(t
′

)|

6

∣∣∣∣∣∣F(α−1(t
′′

))
p(α−1(t′′))

−
F(α−1(t

′

))
p(α−1(t′))

∣∣∣∣∣∣+
∣∣∣∣∣∣ k(α−1(t

′′

))
p(α−1(t′′))

−
k(α−1(t

′

))
p(α−1(t′))

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
p(α−1((t′))

∫ ∞

α−1(t′ )

σ(s)−α−1(t
′

)
r(s)

∫ ∞

s
(σ(u)− s)q(u)G(x(β(u)))∆u∆s

−
1

p(α−1(t′′))

∫ ∞

α−1(t′′ )

σ(s)−α−1(t
′′

)
r(s)

∫ ∞

s
(σ(u)− s)q(u)G(x(β(u)))∆u∆s

∣∣∣∣∣∣
so |(Bx)(t

′′

)− (Bx)(t
′

)| → 0 as t
′′

→ t
′

. Therefore, {Bx : x ∈ S } is uniformly bounded and
equicontinuous on [t1,∞)T. Hence, BS is relatively compact. By Krasnosel’skii’s fixed
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point theorem (see, for example, Lemma 3 in [9] or Lemma 2.4 in [7]), there exists x ∈ S
such that Ax+Bx = x. Thus, the theorem is proved. �

Remark 3.7. Results similar to Theorem 3.6 can be proved for other ranges of values for
p(t).

4 Examples

We conclude this paper with some examples of our main results.

Example 4.1. Let T = R and consider the differential equation(
e

t
2

(
y(t)+

1
2

e
−4t
3 y(t/3)

)′′)′′
+

1
2

e
9t
2 y3(t)−14e−t(1+ e−t)

y(t/4)
1+ y2(t/4)

= 0, t ≥ 0. (4.1)

It is easy to verify that the hypotheses of Theorem 2.2 are satisfied. Here, y(t) = e−2t is a
nonoscillatory solution of (4.1) that converges to 0 as t→∞.

Example 4.2. Let T = R and consider the differential equation(
e

t
2

(
y(t)−

1
2

e−ty(t/2)
)′′)′′

+ e
9t
2 y3(t)−

11
2

e−t(1+ e−t)
y(t/4)

1+ y2(t/4)
= 0, t ≥ 0. (4.2)

It is easy to see that the hypotheses of Theorem 2.5 are satisfied. Here, y(t) = e−2t is a
nonoscillatory solution of (4.2) that converges to 0 as t→∞.

Our next example is one of a difference equation.

Example 4.3. Let T = Z and consider the difference equation

∆2[en∆2(y(n)+ e−5ny(n−2))]+ e1/3(e+1)2(e2+1)2e5n/3y
1
3 (n−1)

− e−2(e−4+1)2(e−3+1)2(1+ e2n)e−4n y(n)
1+ y2(n)

= 0, n ≥ 2. (4.3)

Conditions (H1)–(H6) are satisfied so equation (4.3) satisfies the hypotheses of Theorem 2.2
and Corollary 2.3. Here we have y(n) = (−1)nen as an unbounded oscillatory solution.

Next, we have an example of a forced equation.

Example 4.4. Let T = R and consider the equation(
et

(
y(t)+ e−4ty(t−π)

)′′)′′
+8et+2πy(t−2π)

−50e−3t+π/2
(
1+ e2t−3π cos2 t

) y(t−3π/2)
1+ y2(t−3π/2)

= 6e2t cos t, t ≥ 2π. (4.4)

Conditions (H1)–(H4), (H10), and (H11) are satisfied with F(t) = et

25 (9sin t−12cos t), so
equation (4.4) satisfies the hypotheses of Theorem 3.1, and all solutions are oscillatory.
Here y(t) = et sin t is such an oscillatory solution.
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Our final example is on the time scale T = hZ.

Example 4.5. Let T = hZ with h a quotient of odd positive integers and consider the equa-
tion

∆2
h(et∆2

h(y(t)− eh(1+ e−5t)y(t−h)))+2eh
(eh+1

h

)2(e2h+1
h

)2
e

5t
3 y

1
3 (t−3h)

− e2h
(e−4h+1

h

)2(e−3h+1
h

)2
(1+ et−2h)e−4t y(t−2h)

1+ | y(t−2h) |
= 0, t ≥ 3h. (4.5)

It is fairly easy to see that conditions (H1), (H2), and (H4) hold and −2eh < p(t) < −eh < −1.
In order to show that (H8) holds, take l = 1+ 1

6 > 1 and first note that

R1(σ(t)) = R1(t+h) =
∞∑

s=t+h

s− t−h
es = 0+

h
et+2h +

2h
et+3h +

3h
et+4h + . . .

>
h

et+2h (1+
1
eh +

1
e2h + . . . ) =

h
et+2h (

1
1− 1

eh

) =
h

et+h(eh−1)
,

so

R
7
6
1 (σ(t)) ≥ (

h
eh(eh−1)

)
7
6

1

e
7t
6

.

Also,

R2(β(t)) = R2(t−2h) =
∞∑

s=t−2h

s− t+3h
es >

h
et (

1
e−2h +

1
e−h +1+

1
eh +

1
e2h + ...)

>
h
et (1+

1
eh +

1
e2h + ...) =

heh

(eh−1)et ,

so

G(R2(β(t))) =
( heh

(eh−1)et

) 1
3
=

( heh

(eh−1

) 1
3 1

e
t
3
.

Then, ∫ ∞

t0
R

7
6
1 (σ(t))q(t)G(R2(β(t)))∆t =

∞∑
t=t0

R
7
6
1 (σ(t))q(t)G(R2(β(t)))

>
∞∑

t=t0

(
(

h
eh(eh−1)

)
7
6

1

e
7t
6

)(
2eh

(eh+1
h

)2(e2h+1
h

)2
e

5t
3

)(( heh

(eh−1

) 1
3 1

e
t
3

)
=

( h
eh(eh−1)

) 7
6
(
2eh

(eh+1
h

)2(e2h+1
h

)2)( heh

eh−1

) 1
3
∞∑

t=t0

e
t
6 =∞.

Hence, the hypotheses of Theorem 2.6 hold so any solution of (4.5) is either oscillatory,
satisfies liminft→∞ | y(t) | = 0, or satisfies | y(t) | → ∞ as t→∞. Here y(t) = (−1)tet is an
oscillatory solution.
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