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1 Introduction

Boundary value problems with integral boundary conditions constitute a very interesting
and important class of problems. Various problems arising in heat conduction, chemical
engineering, underground water flow, thermo-elasticity, and plasma physics can be reduced
to the nonlocal problems with integral boundary conditions. Another example is that of
Goursat’s problem with integral boundary conditions. Integral boundary conditions for un-
steady biomedical CFD applications are taking much importance these days. For a detailed
description of the integral boundary conditions, we refer the reader to the papers [1, 2] and
references therein.

Differential equations and inclusions of fractional order have recently been addressed by
several researchers for a variety of problems. Fractional calculus has found its applications
in a variety of disciplines of science and engineering such as physics, chemistry, biology,
economics, control theory, signal and image processing, biophysics, blood flow phenom-
ena, aerodynamics, fitting of experimental data, etc.([3]-[8]). For some recent development
on the subject, for instance, see ([9]-[31]) and the references therein. More recently, Ah-
mad and Sivasundaram [32] discussed the existence of solutions for a nonlocal four-point
integral boundary value problem of nonlinear fractional differential equations.

In this paper, we continue the study initiated in [32] for multivalued case. Precisely,
we consider a nonlocal four-point integral boundary value problem of nonlinear fractional
differential inclusions given by

cDqx(t) ∈ F(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

δ1x(0)+δ2x′(0) = α
∫ ξ

0
x(s)ds, δ1x(1)+δ2x′(1) = β

∫ η

0
x(s)ds, 0 < ξ, η < 1,

(1.1)

where cD is the Caputo fractional derivative, F : [0,1]×R→ P(R) is a multivalued map,
P(R) is the family of all nonempty subsets of R, and δ1, δ2,α,β are real numbers.

Our first existence result is based on the nonlinear alternative of Leray Schauder type
together with the selection theorem of Bressan and Colombo for lower semi-continuous
maps with decomposable values, while the second result relies on Wegrzyk’s fixed point
theorem for multivalued maps.

2 Preliminaries

Let us recall some basic definitions on multi-valued maps.
Let X denote a normed space with the norm | · |. A multivalued map G : X → P(X) is

convex (closed) valued if G(x) is convex (closed) for all x ∈ X. G is bounded on bounded
sets if G(B) = ∪x∈BG(x) is bounded in X for all bounded sets B in X (i.e. supx∈B{|y| : y ∈
G(x)} < ∞). G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set
G(x0) is a nonempty closed subset of X, and if for each open set N of X containing G(x0),
there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N. G is said to be completely
continuous if G(B) is relatively compact for every bounded set B in X. If the multivalued
map G is completely continuous with nonempty compact values, then G is u.s.c. if and only
if G has a closed graph (i.e. xn −→ x∗, yn −→ y∗, yn ∈G(xn) imply y∗ ∈G(x∗)). G has a fixed
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point if there is x ∈ X such that x ∈G(x). The fixed point set of the multivalued operator G
will be denoted by FixG.

For more details on multivalued maps, see the books of Aubin and Cellina [33], Aubin
and Frankowska [34], Deimling [35], Hu and Papageorgiou [36], and Smirnov [37].

Let C([0,1],R) denote the Banach space of all continuous functions from [0,1] into R
with the norm

‖u‖ = sup{|u(t)| : t ∈ [0,1]}.

Let L1([0,1],R) be the Banach space of measurable functions u : [0,1] −→ R which are
Lebesgue integrable and normed by

‖u‖L1 =

∫ 1

0
|u(t)|dt for all u ∈ L1([0,1],R).

Let E be a Banach space, X a nonempty closed subset of E and G : X→P(E) a multi-
valued operator with nonempty closed values. G is lower semi-continuous (l.s.c.) if the set
{x ∈ X : G(x)∩ B , ∅} is open for any open set B in E. Let A be a subset of [0,1]×R. A
is L⊗B measurable if A belongs to the σ-algebra generated by all sets of the form J ×D,
where J is Lebesgue measurable in [0,1] and D is Borel measurable in R. A subset A
of L1([0,1],R) is decomposable if for all u,v ∈ A and J ⊂ [0,1] measurable, the function
uχJ + vχ[0,1]\J ∈ A, where χJ stands for the characteristic function of J .

Definition 2.1. If F : [0,1]×R → P(R) is a multivalued map with compact values and
x(·) ∈C([0,1],R), then F(·, ·) is of lower semi-continuous type if

S F,x = {w ∈ L1([0,1],R) : w(t) ∈ F(t, x(t)) for a.e. t ∈ [0,1]}

is lower semi-continuous with closed and decomposable values.

Let (X,d) be a metric space associated with the metric d. The Pompeiu-Hausdorff dis-
tance of the closed subsets A,B ⊂ X is defined by

dH(A,B) =max{d∗(A,B),d∗(B,A)}, d∗(A,B) = sup{d(a,B) : a ∈ A},

where d(x,B) = infy∈B d(x,y) [38].

Definition 2.2. ([39]) A function l : R+→ R+ is said to be a strict comparison function if it
is continuous, strictly increasing and

∑∞
n=1 ln(t) <∞, for each t > 0.

Definition 2.3. A multivalued operator N on X with nonempty values in X is called

a) γ-Lipschitz if and only if there exists γ > 0 such that

dH(N(x),N(y)) ≤ γd(x,y), for each x, y ∈ X;

b) a contraction if and only if it is γ-Lipschitz with γ < 1;

c) a generalized contraction if and only if there is a strict comparison function l : R+→
R+ such that

dH(N(x),N(y)) ≤ l(d(x,y)) for each x,y ∈ X.
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The following lemmas will be used in the sequel.

Lemma 2.4. ([40]). Let Y be a separable metric space and let N : Y → P(L1([0,1],R))
be a lower semi-continuous multivalued map with closed decomposable values. Then N(·)
has a continuous selection; i.e., there exists a continuous mapping (single-valued) g : Y →
L1([0,1],R) such that g(y) ∈ N(y) for every y ∈ Y.

Lemma 2.5. (Wegrzyk’s fixed point theorem [41]). Let (X,d) be a complete metric space.
If N : X→P(X) is a generalized contraction with nonempty closed values, then FixN , ∅.

Lemma 2.6. (Covitz and Nadler’s fixed point theorem [42]). Let (X,d) be a complete metric
space. If N : X→P(X) is a multivalued contraction with nonempty closed values, then N
has a fixed point z ∈ X such that z ∈ N(z), i.e., FixN , ∅.

In order to define the solution of (1.1), we consider the following lemma whose proof is
given in [32].

Lemma 2.7. For a given σ ∈C[0,1], the unique solution of the boundary value problem
cDqx(t) = σ(t), 0 < t < 1, 1 < q ≤ 2,

δ1x(0)+δ2x′(0) = α
∫ ξ

0
x(s)ds, δ1x(1)+δ2x′(1) = β

∫ η

0
x(s)ds, 0 < ξ, η < 1,

(2.1)

is given by

x(t) =
∫ t

0

(t− s)q−1

Γ(q)
σ(s)ds−αa1(t)

∫ ξ

0

(∫ s

0

(s−m)q−1

Γ(q)
σ(m)dm

)
ds

+a2(t)
[
β

∫ η

0

(∫ s

0

(s−m)q−1

Γ(q)
σ(m)dm

)
ds−δ1

∫ 1

0

(1− s)q−1

Γ(q)
σ(s)ds

−δ2

∫ 1

0

(1− s)q−2

Γ(q−1)
σ(s)ds

]
, (2.2)

where

a1(t) =
1
∆

(
δ1+δ2−

βη2

2
− (δ1−βη)t

)
, (2.3)

a2(t) =
1
∆

((
δ2−

αξ2

2

)
− (δ1− ξα)t

)
, (2.4)

∆ =

[
(δ1−βη)

(
δ2−

αξ2

2

)
− (δ1−αξ)

(
δ1+δ2−

βη2

2

)]
, 0. (2.5)

Definition 2.8. A function x ∈ AC1([0,1]) is a solution of the problem (1.1) if there exists
a function f ∈ L1([0,1],R) such that f (t) ∈ F(t, x(t)) a.e. on [0,1] and

x(t) =
∫ t

0

(t− s)q−1

Γ(q)
f (s)ds−αa1(t)

∫ ξ

0

(∫ s

0

(s−m)q−1

Γ(q)
f (m)dm

)
ds

+a2(t)
[
β

∫ η

0

(∫ s

0

(s−m)q−1

Γ(q)
f (m)dm

)
ds−δ1

∫ 1

0

(1− s)q−1

Γ(q)
f (s)ds

−δ2

∫ 1

0

(1− s)q−2

Γ(q−1)
f (s)ds

]
.
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3 Main results

For the first result, it is assumed that F is not necessarily convex valued and the proof
of this result is based on the nonlinear alternative of Leray-Schauder type together with
the selection theorem of Bressan and Colombo [40] for lower semi-continuous maps with
decomposable values.

For computational convenience, we set

ν =
1

Γ(q+2)

(
(q+1){1+ |δ1ā2|+ |δ2ā2|q}+ |αā1|ξ

q+1+ |βā2|η
q+1

)
, (3.1)

where ā1 =maxt∈[0,1] |a1(t)|, ā2 =maxt∈[0,1] |a2(t)|.

Theorem 3.1. Assume that:

(H1) there exists a continuous nondecreasing function ψ : [0,∞)→ (0,∞) and a positive
continuous function p such that

‖F(t, x)‖ := sup{|y| : y ∈ F(t, x)} ≤ p(t)ψ(‖x‖) for each (t, x) ∈ [0,1]×R;

(H2) there exists a number M > 0 such that
M

νψ(M)‖p‖
> 1,

where ν is given by (3.1).

(H3) F : [0,1]×R→P(R) is a nonempty compact-valued multivalued map such that

(a) (t, x) 7−→ F(t, x) is L⊗B measurable,
(b) x 7−→ F(t, x) is lower semicontinuous for each t ∈ [0,1].

Then the boundary value problem (1.1) has at least one solution on [0,1].

Proof. It follows from (H1) and (H3) that F is of l.s.c. type. Then from Lemma 2.4,
there exists a continuous function f : C([0,1],R)→ L1([0,1],R) such that f (x) ∈ S F,x for all
x ∈C([0,1],R).

Consider the problem
cDqx(t) = f (x)(t), t ∈ [0,1], 1 < q ≤ 2,

δ1x(0)+δ2x′(0) = α
∫ ξ

0
x(s)ds, δ1x(1)+δ2x′(1) = β

∫ η

0
x(s)ds, 0 < ξ, η < 1.

(3.2)

Observe that if x ∈ AC1([0,1],R) is a solution of (3.2), then x is a solution to the problem
(1.1). In order to transform the problem (3.2) into a fixed point problem, we define the
operator Ω : C([0,1],R)→C([0,1],R)

Ω(x)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f (x)(s)ds−αa1(t)

∫ ξ

0

(∫ s

0

(s−m)q−1

Γ(q)
f (x)(m)dm

)
ds

+a2(t)
[
β

∫ η

0

(∫ s

0

(s−m)q−1

Γ(q)
f (x)(m)dm

)
ds−δ1

∫ 1

0

(1− s)q−1

Γ(q)
f (x)(s)ds

−δ2

∫ 1

0

(1− s)q−2

Γ(q−1)
f (x)(s)ds

]
.
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The proof consists of several steps.
(i) Ω is continuous. Let {yn} be a sequence such that yn→ y in C([0,1],R). Then

|Ω(yn)(t)−Ω(y)(t)|

=

∣∣∣∣∣∣
∫ t

0

(t− s)q−1

Γ(q)
[ f (yn)(s)− f (y)(s)]ds

−αa1(t)
∫ ξ

0

(∫ s

0

(s−m)q−1

Γ(q)
[ f (yn)(m)− f (y)(m)]dm

)
ds

+a2(t)
[
β

∫ η

0

(∫ s

0

(s−m)q−1

Γ(q)
[ f (yn)(m)− f (y)(m)]dm

)
ds

−δ1

∫ 1

0

(1− s)q−1

Γ(q)
[ f (yn)(s)− f (y)(s)]ds−δ2

∫ 1

0

(1− s)q−2

Γ(q−1)
[ f (yn)(s)− f (y)(s)]ds

]∣∣∣∣∣∣
≤

∫ t

0

(t− s)q−1

Γ(q)
‖ f (yn)(s)− f (y)(s)‖ds

+|αa1(t)|
∫ ξ

0

(∫ s

0

(s−m)q−1

Γ(q)
‖ f (yn)(m)− f (y)(m)‖dm

)
ds

+|a2(t)|
[
|β|

∫ η

0

(∫ s

0

(s−m)q−1

Γ(q)
‖ f (yn)(m)− f (y)(m)‖dm

)
ds

+|δ1|

∫ 1

0

(1− s)q−1

Γ(q)
‖ f (yn)(s)− f (y)(s)‖ds

+|δ2|

∫ 1

0

(1− s)q−2

Γ(q−1)
‖ f (yn)(s)− f (y)(s)‖ds

]
.

Hence
‖Ω(yn)−Ω(y)‖ = sup

t∈[0,1]
|Ω(yn)(t)−Ω(y)(t)| → 0 as n→∞.

Thus Ω is continuous.
(ii) Ω maps bounded sets into bounded sets in C([0,1],R). Indeed, it is enough to show
that there exists a positive constant ν1 such that, for each x ∈ Br = {x ∈C([0,1],R) : ‖x‖ ≤ r},
we have ‖Ω(x)‖ ≤ ν1. From (H1) we have:

|Ω(x)(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
p(s)ψ(‖x‖)ds+ |αa1(t)|

∫ ξ

0

(∫ s

0

(s−m)q−1

Γ(q)
p(m)ψ(‖x‖)dm

)
ds

+|a2(t)|
[
|β|

∫ η

0

(∫ s

0

(s−m)q−1

Γ(q)
p(m)ψ(‖x‖)dm

)
ds

+|δ1|

∫ 1

0

(1− s)q−1

Γ(q)
p(s)ψ(‖x‖)ds+ |δ2|

∫ 1

0

(1− s)q−2

Γ(q−1)
p(s)ψ(‖x‖)ds

]
≤

1
Γ(q+2)

(
(q+1){1+ |δ1ā2|+q|δ2ā2|}+ |αā1|ξ

q+1+ |βā2|η
q+1

)
‖p‖ψ(‖x‖).

Taking norm and using (3.1), we get

‖Ω(x)‖ ≤ ν‖p‖ψ(r) := ν1.
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(iii) Ω maps bounded sets into equicontinuous sets in C([0,1],R). Let t1, t2 ∈ [0,1], t1 < t2
and Br be a bounded set in C([0,1],R). Then

|Ω(x)(t2)−Ω(x)(t1)|

≤

∣∣∣∣∣∣
∫ t1

0

(t2− s)q−1− (t1− s)q−1

Γ(q)
p(s)ψ(‖x‖)ds

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫ t2

t1

(t2− s)q−1

Γ(q)
p(s)ψ(‖x‖)ds

∣∣∣∣∣∣
+|α||a1(t2)−a1(t1)|

∫ ξ

0

∫ s

0

(s−m)q−1

Γ(q)
p(m)ψ(‖x‖)dmds

+|a2(t2)−a2(t1)|
[
|β|

∫ η

0

∫ s

0

(s−m)q−1

Γ(q)
p(m)ψ(‖x‖)dmds

+|δ1|

∫ 1

0

(1− s)q−1

Γ(q)
p(s)ψ(‖x‖)ds+ |δ2|

∫ 1

0

(1− s)q−2

Γ(q−1)
p(s)ψ(‖x‖)ds

]
.

As t1→ t2 the right-hand side of the above inequality tends to zero independently of x ∈ Br.

Therefore it follows by the Arzelá-Ascoli theorem that Ω : C([0,1],R) → C([0,1],R) is
completely continuous.
(iv) Finally, we discuss a priori bounds on solutions. Let x be a solution of (3.2). In view
of (H1), for each t ∈ [0,1], we obtain

|x(t)| ≤
1

Γ(q+2)

(
(q+1){tq+ |δ1a2(t)|+q|δ2a2(t)|}

+|αa1(t)|ξq+1+ |βa2(t)|ηq+1
)
‖p‖ψ(‖x‖)

≤
1

Γ(q+2)

(
(q+1){1+ |δ1ā2|+q|δ2ā2|}

+|αā1|ξ
q+1+ |βā2|η

q+1
)
‖p‖ψ(‖x‖),

which, on taking norm and using (3.1), yields

‖x‖
ν‖p‖ψ(‖x‖)

≤ 1.

In view of (H2), there exists M such that ‖x‖ , M. Let us set

U = {x ∈C([0,1],R) : ‖x‖ < M}.

Note that the operator Ω : U → C([0,1],R) is upper semicontinuous and completely con-
tinuous. From the choice of U, there is no x ∈ ∂U such that x = µΩ(x) for some µ ∈ (0,1).
Consequently, by the nonlinear alternative of Leray-Schauder type [43], we deduce that
Ω has a fixed point x ∈ U which is a solution of the problem (3.2). Consequently, it is a
solution to the problem (1.1). This completes the proof. �

Now we prove the existence of solutions for the problem (1.1) with a non-convex valued
right hand side by applying Lemma 2.5 due to Wegrzyk.

Theorem 3.2. Suppose that:

(H4) F : [0,1]×R −→ P(R) has nonempty compact values and F(·,u) is measurable for
each u ∈ R;
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(H5) dH(F(t, x),F(t, x))≤ k(t)`(|x− x|) for almost all t ∈ [0,1] and x, x ∈Rwith k ∈C([0,1],R+)
and d(0,F(t,0))≤ k(t) for almost all t ∈ [0,1], where ` :R+→R+ is strictly increasing.

Then the BVP (1.1) has at least one solution on [0,1] if γ` : R+→ R+ is a strict comparison
function, where γ = ν‖k‖ (ν is given by (3.1)).

Proof. Suppose that γ` : R+ → R+ is a strict comparison function. Observe that by the
assumptions (H4) and (H5), F(·, x(·)) is measurable and has a measurable selection v(·) (see
Theorem III.6 [44]). Also k ∈C([0,1],R+) and

|v(t)| ≤ d(0,F(t,0))+Hd(F(t,0),F(t, x(t)))

≤ k(t)+ k(t)`(|x(t)|)

≤ (1+ `(‖x‖))k(t).

Thus the set S F,x is nonempty for each x ∈C([0,1],R).
Transform the problem (1.1) into a fixed point problem. Consider the operator ΩF :

C([0,1],R)→P(C([0,1],R)) defined by

ΩF(x) =



h ∈C([0,1],R) :

h(t) =



∫ t

0

(t− s)q−1

Γ(q)
f (s)ds

−αa1(t)
∫ ξ

0

(∫ s

0

(s−m)q−1

Γ(q)
f (m)dm

)
ds

+a2(t)
[
β

∫ η

0

(∫ s

0

(s−m)q−1

Γ(q)
f (m)dm

)
ds

−δ1

∫ 1

0

(1− s)q−1

Γ(q)
f (s)ds−δ2

∫ 1

0

(1− s)q−2

Γ(q−1)
f (s)ds

]
,


for f ∈ S F,x. We shall show that the map ΩF satisfies the assumptions of Lemma 2.5. To
show that the map ΩF(x) is closed for each x ∈ C([0,1],R), let (xn)n≥0 ∈ ΩF(x) such that
xn −→ x̃ in C([0,1],R). Then, x̃ ∈ C([0,1],R) and there exists yn ∈ S F,xn such that, for each
t ∈ [0,1],

xn(t) =
∫ t

0

(t− s)q−1

Γ(q)
yn(s)ds−αa1(t)

∫ ξ

0

(∫ s

0

(s−m)q−1

Γ(q)
yn(m)dm

)
ds

+a2(t)
[
β

∫ η

0

(∫ s

0

(s−m)q−1

Γ(q)
yn(m)dm

)
ds−δ1

∫ 1

0

(1− s)q−1

Γ(q)
yn(s)ds

−δ2

∫ 1

0

(1− s)q−2

Γ(q−1)
yn(s)ds

]
.

As F has compact values, we pass onto a subsequence to obtain that yn converges to y
in L1([0,1],R). Thus, y ∈ S F,x and for each t ∈ [0,1],

xn(t) −→ x̃(t) =
∫ t

0

(t− s)q−1

Γ(q)
y(s)ds−αa1(t)

∫ ξ

0

(∫ s

0

(s−m)q−1

Γ(q)
y(m)dm

)
ds

+a2(t)
[
β

∫ η

0

(∫ s

0

(s−m)q−1

Γ(q)
y(m)dm

)
ds−δ1

∫ 1

0

(1− s)q−1

Γ(q)
y(s)ds

−δ2

∫ 1

0

(1− s)q−2

Γ(q−1)
y(s)ds

]
.
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So, x̃ ∈ΩF(x) and hence ΩF(x) is closed.
Next, we show that

dH(ΩF(x),ΩF(x)) ≤ γ`(‖x− x‖) for each x, x ∈C([0,1],R).

Let x, x ∈ C([0,1],R) and h1 ∈ ΩF(x). Then, there exists y1(t) ∈ F(t, x(t)) such that for each
t ∈ [0,1],

h1(t) =
∫ t

0

(t− s)q−1

Γ(q)
y1(s)ds−αa1(t)

∫ ξ

0

(∫ s

0

(s−m)q−1

Γ(q)
y1(m)dm

)
ds

+a2(t)
[
β

∫ η

0

(∫ s

0

(s−m)q−1

Γ(q)
y1(m)dm

)
ds−δ1

∫ 1

0

(1− s)q−1

Γ(q)
y1(s)ds

−δ2

∫ 1

0

(1− s)q−2

Γ(q−1)
y1(s)ds

]
.

From (H5), it follows that

dH(F(t, x(t)),F(t, x(t))) ≤ k(t)`(|x(t)− x(t)|).

So, there exists w ∈ F(t, x(t)) such that

|y1(t)−w(t)| ≤ k(t)`(|x(t)− x(t)|), t ∈ [0,1].

Define U : [0,1]→P(R) as

U(t) = {w ∈ R : |y1(t)−w(t)| ≤ k(t)`(|x(t)− x(t)|)}.

Since the multivalued operator U(t)∩F(t, x(t)) is measurable (see Proposition III.4 in [44]),
there exists a function y2(t) which is a measurable selection for U(t)∩F(t, x(t)). So, y2(t) ∈
F(t, x(t)), and for each t ∈ [0,1],

|y1(t)− y2(t)| ≤ k(t)`(|x(t)− x(t)|).

For each t ∈ [0,1], let us define

h2(t) =
∫ t

0

(t− s)q−1

Γ(q)
y2(s)ds−αa1(t)

∫ ξ

0

(∫ s

0

(s−m)q−1

Γ(q)
y2(m)dm

)
ds

+a2(t)
[
β

∫ η

0

(∫ s

0

(s−m)q−1

Γ(q)
y2(m)dm

)
ds−δ1

∫ 1

0

(1− s)q−1

Γ(q)
y2(s)ds

−δ2

∫ 1

0

(1− s)q−2

Γ(q−1)
y2(s)ds

]
.
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Then

|h1(t)−h2(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
|y1(s)− y2(s)|ds

+|αa1(t)|
∫ ξ

0

(∫ s

0

(s−m)q−1

Γ(q)
|y1(m)− y2(m)|dm

)
ds

+|a2(t)|
[
|β|

∫ η

0

(∫ s

0

(s−m)q−1

Γ(q)
|y1(m)− y2(m)|dm

)
ds

+|δ1|

∫ 1

0

(1− s)q−1

Γ(q)
|y1(s)− y2(s)|ds

+|δ2|

∫ 1

0

(1− s)q−2

Γ(q−1)
|y1(s)− y2(s)|ds

]
≤ ν‖k‖`(‖x− x‖).

Thus
‖h1−h2‖ ≤ ν‖k‖`(‖x− x‖) = γ`(‖x− x‖).

By an analogous argument, interchanging the roles of x and x, we obtain

dH(ΩF(x),ΩF(x)) ≤ ν‖k‖`(‖x− x‖) = γ`(‖x− x‖)

for each x, x ∈C([0,1],R). So, ΩF is a generalized contraction and thus, by Lemma 2.5, ΩF

has a fixed point x which is solution to (1.1). This completes the proof. �

Remark 3.3. It is imperative to note that Theorem 3.2 holds for several values of the func-
tion `, for example, `(t) = ln(1+t)

µ , where µ ∈ (0,1); `(t) = t, etc. Furthermore, condition (H5)
reduces to dH(F(t, x),F(t, x)) ≤ k(t)|x− x| for `(t) = t, where a contraction principle for mul-
tivalued map due to Covitz and Nadler [42] (Lemma 2.6) is applicable under the condition
ν‖k‖ < 1. Thus, our result dealing with a non-convex valued right hand side of (1.1) is more
general.
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