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Abstract

In this paper we study an elliptic equation involving variable exponents and containing
a singular lower order terms with p(x)—growth in the gradient. Through an approx-
imation approach, we prove the existence of a nonnegative distributional solution in
the whole space RV.
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1 Introduction

Quasilinear equations containing a gradient term with different growth conditions without
singularity, have been exhaustively studied in several papers in which many results of ex-
istence or nonexistence of solutions have been established. Among them are for instance
[5-8, 18, 20, 21, 25]. Problems with terms having different kinds of singularities at the
origin have known a great interest in the recent years and many papers dealing with this
subject have been published. See for instance [3, 4, 15, 30]. In [3], the authors considered
the problem
—div(M(x,u)Vu) + g(x,u)|Vul> = f  inQ

where Q is a bounded domain of RY and g(-,-) : Q@ X (0,+c0) — R is some nonnegative
Carathéodory function having singularity at s = 0. Under suitable conditions on M(:,-) and
on the data f, a result of existence of positive solution was found. This solution was ob-
tained through a convergence process of some sequence of approximated solutions and, in
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order to overcome the main difficulty they had to face, which was the passage to the limit in
the singular term, the authors established an important result ( see [3, Proposition 2.3]) in
which it was proved that the sequence of the approximated solutions is uniformly bounded
from below in every compactly contained open subset of Q. In [15], the authors investigated
the problem of existence of distributional solution to the following elliptic equation

|Vul?

K
lu

where 1> 0, k>0 and f € L*(R") such that f > 0. In the case 0 < k < 1, existence re-
sult has been proved independently of the singular term’s sign, while, for the case k > 1,
a positivity condition is needed. Using, as in [3], approximation approach but arguing
differently concerning the passage to the limit in the singular term, Giachetti and Murat
established the existence of a finite energy solution satisfying some properties. Inspired
by their work, we have tried to extend their result to the case of anisotropic equations. In
fact, quasilinear equations involving variable exponent is one of the most interesting topic
in recent years. This great interest given for such type of equations could be explained by
the many applications of such type of equations in modelling various physical phenomena
as electrorheological fluids, image restoration and elastic mechanics. Concerning this type
of problem with non-standard growth condition, we can refer, for example, to [12-14, 16,
19, 22, 23]. In the present work, we are concerned by a quasilinear equation modelling
the motion of an incompressible fluid in a nonhomogeneous and anisotropic medium. Let
us denote by V and p the velocity and the pressure of the fluid. In a homogeneous and
isotropic medium, the incompressible fluid satisfies the continuity equation: —diV(V) =0.

—Au+Au=+

+f inQ

With the Darcy law, i.e. V= ~&|Vp|*~2Vp where A and & are constants, the above conti-
nuity equation becomes: —div (lV pl 2V p) = 0. Let now the medium be nonhomogeneous
and anisotropic, i.e. its characteristics may vary in dependence on directions and points. So
A= A(x) and &€ = £(x). In this case, if we also assume the existence of exterior forces, then
the pression of the incompressible fluid satisfies the following quasilinear equation:

~div (£ V"2 Vp) = h(x. p. V).

If 1 (x, p, V p) contains a term of type A(x, p) |Vp[*™¥, this last term describes the diffusion of
mass factor. For more details, see[1]. We are mainly interested by coefficient A(:,-) having a
singular behaviour which seems to represent a new topic. As in [15], for the case 0 <k < 1,
we establish an existence result of a nonnegative and nontrivial solution without specifying
the sign of the singular term and a similar result is proved for the case k > 1 in the particular
case of positive singular term. Furthermore, and in contrast of [15], by making modification
in the approximating problem, we have been able to prove an existence result for the case
k = 1 when the singular term is negative.

2 Overview on Generalized Sobolev Spaces

Assume Q C R is an nonempty domain( bounded or unbounded).
Set C,(Q) = {h e C@QNL(Q), h(x)> 1 forall x € Q}.

For any p € C+(ﬁ), we define

pr=supp(x) and p~ =inf p(x).
xeQ xeQ
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Foreach pe C, (Q), we define the variable exponent Lebesgue space
LPOQ) = {u; u : Q — R mesurable such that f ()P dx < +oo}.
Q

This space becomes a Banach space with respect to the Luxemburg norm, that is

px)
|u|Lp(~)(Q) = lnf{/.l > 0, f dx < 1}
Q

Moreover, LV (Q) is a reflexive space provided that 1 < p~ < p* < +o0. Denoting by

LPO(Q) the conjugate space of LPO(Q) where W E (x) =1; for any u € LPO(Q) and

v e L (Q) we have the following Hélder type inequality

f uvdx
Q

u(x)

1 1
< (; + I?) |l oo Vo)

2.1)
< 2Mulprong) |V|Lp’(~>(Q) .
Similarly, if —— T (x) pzl(x) + m(x) =1 Vx e Q, then for any u e LMO(Q), v e LY(Q) and
w e LP3()(Q),
f d (1 + 1 + )I I vl [l
uvw dx — + —+ — | |{U|r1Q) IVILP2(Q) IWILP3 (O
Q py p, p;) H@THRE@TR@ 2.2)

< 3lulzri @) Wer2 @) Wl @) -

If |Q| < +00 and p;, p; are variable exponents so that p;(x) < pa(x) for all x € 5, then
there exists the continuous embedding

LP2O(Q) — LPO(Q).
We introduce now the modular of the Lebesgue-Sobolev space LP)(Q), as the mapping
Ppy s LPO(Q) — R defined by pp(u) = L |u|P™ dx.
We give here some relations which can be established between the Luxemburg norm

and the modular. If (u,), u € LPV(Q) and 1 < p~ < p* < +0o, then the following relations
hold true

P p*
|M|L17(*)(Q) >1= |M|LP(,)(Q) < ppy(W) < |M|L,,(A>(Q) ) (2.3)
p* I
IM|LP(‘)(Q) < 1 = |u|Lp(»)(Q) Spp()(u) S |u|Ll’(‘)(Q) > (24)
|Ltn - Mle(»)(Q) -0 pp(.)(un - u) - 0. (2.5)

Next, we define WP (Q) as the space
WhPOQ) = {u € LP(Q); [Vul € LPV(Q)
and it can be equipped with the norm

”u”l,p(-) = |M|Lp(->(g) + |VM|Lp(-)(Q) .
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The space W'*0)(Q) is a Banach space which is reflexive under condition
l<p <p" <+co.
Let p,q € C,(Q). If we have p Lipschitz continuous and

Np(x)
N-p(x)

then there is a continuous embedding WhrO(Q) «— LIO(Q).
Ihis last embedding is compact provided that Q is bounded in RY and that g(x) < p*(x) V x¢€
Q. Finally, we denote by W, ”(Q) the closure of C(€) in WO(<).

p(x) < q(x) < p*(x) = VxeQ,

In the present work, we look for solution in W*©(RV) which is supposed equipped
with the norm

[leel| = |VM|LI>(~>(RN) + |M|Ll7(‘)(RN) .

For more properties of anisotropic variable exponent Lebesgue-Sobolev spaces, we re-
fer to the book [24] and the papers [9-11, 26, 27].

3 Hypotheses and Main Results

In the present paper we are concerned by the problem of existence of nonnegative solution
for the following equation:

—div(qulp(x)_z Vu) F PO 2w = A uw) [VulP® + f(x,u)+h  inRY (P)

where p(-) € C.(R") is a Lipschitz continuous function such that 1 < p~ < p* <N, N >2
and A(-,-) : RY xR — R is a Carathéodory function. Our basic hypotheses are cited below:

(H)) f:R¥xR — Risa Carathéodory function such that
If(x, ) < lg)lsPP™1  ae. xinRY and forevery seR

with B8(-) € C.(RM), B < p~, g € LORY)N L*®(RY) where
r € C4(RN) and there exists u € C,(R") such that

p(x) < u(x) < p*(x), 1 +@ =1, VxeRV.

r(x) )

We also assume that f(x,s) =0 a.e. x in R" and for every s < 0.
(Hy) heL®®RM)NLPO®RN), h>0and i # 0 where p’(-) denotes the conjugate of p(-).
By (H)) and (H>»), we can easily find a positive real number M > 1 such that

PP it PO =B

RN
p(x)—1 P0—1 <0 ae xinR". 3.1

We define, for s € R, the function ,
D(s) = s, (3.2)
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where 7 is a positive real number. Also, we introduce the following truncature function,
defined for s > 0 and ¢ > 0, by

t ifs<t
T’(S):{ s ifs>t (3.3)

From now on, we will denote by C? (RN) the space of all functions in C*(R") with compact
support.

Definition 3.1 We define a weak (or distributional) solution of the problem (P) as a
function u € Wllo’f O®M) satisfying

VP92V - Vvdx + f

|u|p(x)_2uvdx=f ACx,u) |[VulP vdx
RN RN

RN

+ f fOx,uyvdx+ f hvdx ¥ veCyRM).
RN RN

If moreover u € WPO(RN), we say that u is a finite energy solution.
The main results of the present paper are cited in the following theorems :
Theorem 3.1 Assume that (H) and (H>) hold true. If we also suppose that

(H3) |A(x, )| < ¢(s) a.e x € RN and for every s > 0 where ¢ : (0,+00) — (0,+00) is a
continuous function such that

o sup(W(s) <+c0 Y6>0

[s|>6
e s+ sy(s) is nondecreasing in (0, 1)
e  is integrable in a neighborhood of zero.

then the problem (P) has at least one weak nontrivial and nonnegative solution u € WHPO(RN)N
L®(RN). Furthermore, the function u satisfies that (qul”(') z//(u))({u>0}) € L;OC(RN ).

Theorem 3.2  Assume that (H) and (H>) hold true. If we also suppose that

(Hy) g(s) <A(x,s) < J(s) ae.x inRY and forevery s > 0 where 2 ¥ (0, +00) —
(0, +00) are two continuous functions such that

e supy(s)<+oo Y >0

|s|>6
) ﬂ is nonincreasing in (0, M) where M is defined by (3.1).

then the problem (P) has at least one weak nontrivial and nonnegative solution u € Wllo’f (')(RN )n
L®(RN). Furthermore, the function u satisfies that (IVuI”(') w(u)/\/{u>0}) eLl RM).

loc

Theorem 3.3  Assume that (H) and (H3) hold true. If we also suppose that
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(Hs) there exists a positive constant c¢g > 0 such that

—C—OSA(x,s)SO aexeRY and for every s >0
S

then the problem (P) has at least one weak nontrivial and nonnegative solution u € WHPO(RN)N
L®(RN). Furthermore, the function u satisfies that (%X{u>0}) eL, RY)and
(uAC,w) [VulPO xpun0p) € L'RY),

In the next sections, we shall try to prove these three theorems. The keystone of the
proofs is approximating (P) by a sequence of problems (P,) for which we construct a se-
quence of weak solutions (u,). We are essentially interested by the behaviour of this se-
quence. A uniform a priori estimates of (u,) are proved. We point out that there is many
common points in the proofs of Theorems 3.1, 3.2 and 3.3. We shall emphasize on the
differences existing between these proofs.

4 Proof of Theorem 3.1

We begin by defining, for s > 0 and n > 1 an integer, the following functions

w(s) if  s>1
n = d n = n d
Yn(s) {w(%) i 0<s<l and  yu(s) fol/f(t)t

For n > 1 an integer, we consider the problem
\% M|P(X)

—div(|[VulPP 2 Vu) + [uPO?u = A, (x, u) ————
( ) n 1+ % |Vu|p(x)

+ f(x,u)+h(x) in B, (P,)

Alx,s) if  s>1
where B, = {x € RY; |x| <n}and A,(x.s) ={ nsA(x,s) if 0O<s<!

0 if s<0

We observe first that A, satisfies, for a.e. x in R and for every s >0,

liIP Aqlx,s) = A(x,s)
|A,(x, s)l < JA(x, 9)|
|A,(x, $)l < Yn(s)

Next, we note that there exists a positive constant ¢, > 0 such that
lA,(x,8) <c, ae xinRY and for every s € R.

Hence, as for constant coefficient p(-), we prove the existence of a solution u, € Wé P (')(Bn) N

L*(B,) of the problem (P,). Indeed, set X, = Wé’p (’)(Bn) and X its dual and define the
operator L : X,, — X, by

|Vu|1’(x)

L(u) = —=div (VP92 Vi) + [ulPPO 2 u - A, (x, u) —————
( ) T 4 L e

— f(x,u).
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Note first that
(L(u),u)

— 400 as |ul|, = +oo
leell,,

where ||ull, = |Vulrop,) is @ norm on X,,. Thus L is coercive. We claim now that L is a
pseudomonotone operator(see [29]). Let (ux) C X,, be such that uy — u in X,, and

lim sup (L(uy) — L(w), up, —uy < 0.

k—+00

By the boundedness of the open set B,,, it follows that

0 < limsup f (1V20l” 72 Vg = [Vl V) V(g — w)dx < 0.
Q,

k—+00

Then uy — u strongly in X,, and therefore L is of (S:) type. Observing also that L is
demicontinuous, it yields that L is pseudomonotone. According to [29, Theorem 27.A], we
deduce that the operator L is surjective. Moreover, this solution satisfies u,, > 0. Indeed,
denoting, for s € R, s* = max(s,0) and s~ = min(s,0) and taking u;,, as test function in (P,),

we get
f Va7 o+ f ;" dx <0
B, B,

and therefore u, >0 a.e in B,. Observe now that we can extend u, by zero outside of B,.
We will continue denoting by u,, the zero-extension of u, outside of B, and it belongs now
to WHPORN) N L2RY).

Lemma 4.1 The sequence (u,) is bounded in L®RM).

Proof  Since u, € Wy (B,) N L*(B,), then the function e?") (u, — M)* € Wy "' (B,)n
L*(By) ( M is defined by (3.1)) and we can take it as test function in (P,) getting

f Va2 Vi, - V (u, — M)* € lx + f Vet [P (i) (1 — M)+ 7" dlx
B, B,

+f (un)p(X)—l (uy, — M)+ e}’n(un)dx < f Yn(itn) |Vun|p(X) e%l(un) (up — M)+ dx
B, B,

+f 8Ol (= M &7 i+ f ) (1t — MY €740 dx,
B, B,

Cancelling identical terms and forgetting the nonnegative term
f Vit P72 Vi, -V (t, — M)* 70 = f IV (= M) x> 0,
B, By

we obtain

f ()™ (= M)* el < f 18Ol (1t = M)* €l x

o < @.1)

+ f h(x) (uy, — M)t ¥ dx.
By
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Observe now that by Young’s inequality, we have
—_ x)—1
8O tnlP " (1t — M)Y* 7 < —p()? ) 'B(IX) (lg(x)lm (up — M)* ey"(”"))
px)—
4.2
BO-1 p-1 + () 42
+p(x)—l(un) Uy —M)™ e,
Using (4.2), it follows from (4.1) that
f PO =B 0=t _ gy el gy
B, P()—1
— n(x)—1
= f % 8O (= M) €7 43)
B)l -

+ f h(x) (uy — M) "™ dx.
By

Adding to both sides (— f MMW)-1 (up —M)* e""("”)dx), we get from (4.3)
B, pP(x)—1
f p(x) ~BX) ()P = MPO1) 1, = M 10 1
B, pP(x)-1
< f (M |g(x)| IJZ'c())j/;(lx) + h(x) — MMP(X)_I ) (un — M)+ e)’n(un)dx.
B,\ p(x)—1 px)—1
Taking into account (3.1), it yields

f ()71 = MPO1) (4, — My 22 < 0, (4.4)
B,

Observe now that (see [13, 17, 23, 28]) we have the following strict monotonicity inequali-
ties satisfied for & and 77 in RV

(1672 =m2n) € =m|" (7 + )7 > (p= 1)l —np

4.5)
forl<p<2
and
(IgP=2&=ImlP2n) € —m = 2P |E=nlP, p=2. (4.6)
Using now (4.5) and (4.6), we deduce from (4.4) that
0<u,(x) <M ae.xinB, Vn>1
and by the zero-extension of u, outside of B,, we finally get
0<u,(x)<M aexinRY Vnx>1 (4.7)

Lemma 4.2 The sequence (u,) is bounded in WHPORM).
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Proof Taking u,e”"“") as test function, we get

f |Vun|p(x)eyn(un)dx+f |Vun|p()‘)l//n(un)e"”(””)dx+f (un)p(x)eyn(un)dx
RN RN RN

< f Un(1t) [ Vit [P 0l x + f L0 e dx + f hitpe? ™ dx.
RN RN

RN
Since 0 < u, < M uniformly in n and y,(u,) > 0, then by (2.1), (H) and (H3)

f Vi, [P dix + f |t [P dx
RN RN

<c Iglch)(RN) ||”n|’8(‘)

oy F Rl ogy) il gy
< crlglrommy |Mn|Z(.>(RN) +crlhl oy Ul ppony
where 3 € [8~,8*] (see[11, Lemma 3.4]). It follows, by (2.3) and (2.4), that

. + - 8
inf (lleall?””  Hotall”) < €2 18100y laalf® + €2 1l s oy it

Since 1 <~ <pB* < p~, then the sequence (u,) is bounded in WH?O(RY). Hence, there
exists u € WHPO(RN) such that (u,) is weakly convergent to u in WLPORN) as n tends to
+00. Moreover, we deduce from (4.7) that u € L°(RY) and 0 < u(x) < M a.e. x in RV.

Lemma 4.3 The sequence (zpn(un) IVu,,lp(')) is bounded in L! (RM).

loc

Proof LetyeCy (RM) be such that ¢ > 0. Taking (eV"(”") - l)go as test function, we get

f Vaunl? 72 Vi, - Vip (€7 — 1) dx
RN

+ |Vun|l7(x) wn(un)ey"(un)‘ﬁdx
RN

N f P2 1, (75600) — 1) gdx
RN

< f Un(1t) Vit P (€70 = 1) ol x
RN

+ ‘L;N flx, un)(ey”(”") - l)godx+ fRN h(ey"(”") - l)godx.

Since (u,) is bounded in WHPO(RN) and in L®(RV), we obtain the existence of a constant
c3 > 0 such that

f Un(t) Vin PP p(x)dx < c3 V> 1. (4.8)
RN
Let K be any compact of RV, there exists ¢ € Cy (RM) such that ¢ = 1 on K. By (4.8), it
yields that the sequence ( f Y (tt) |Vitn [P dx) is bounded.
K
We give here a convergence result of the nonlinearity term f(-,-). The proof of this result

can be found in [12, Lemma 3.2] and, for the convenience of the reader, we have included
it in the appendix.
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Lemma 4.4 Denoting by W-LP'ORN) the dual space of WIPO(RVN), then we have

fCouy) = f(,u) strongly in WP ORY).

Lemma 4.5 The sequence (u,) is strongly convergent to u in W'"PO(RN),

Proof  Taking ¢”"’)(u, —u)* as test function, we get

|Vun|l7(x)—2 Vi, - V(i — u)t e’y
RN
+ f Yn(uy) |Vun|p(x) (uy, — u)+37"(“")dx
RN
+ f |un|p()€)—2 un(un _ M)+eyn(un)dx
RN
< f U (ut) [Vt P® (utyy — 1) " ¥ x
RN
* f Fx 1)ty — ) e dx + f By — u)t e’ dx.
RN RN

Cancelling identical terms, it yields
f (|Vun|l7(x)—2 Vu, — |Vu|17(x)—2 Vu) -V, — u)+ey,,(u,,)dx
RN

+ f (|un|p(x)—2 U, — |u|P(x)—2 u) (- u)+e')’n(u/1)dx
RN

< f f(-x’ un)(un - u)+ey"(u”)dx + f h(un —_ u)+eyn(un)dx (49)
RN RN

_ |Vu|p(x)—2 Vu-Vu, - u)+ey"(””)dx

RN
— f |u|p(x)_2 u(un _ u)‘*'eyn(un)dx.
RN

By the weak convergence of (u,) to u in WPO[RN) and the boundedness of (7)), it
follows that the following equalities hold true

lim h(uy, —u)te?“dx = 0, (4.10)

n—+oo RN

lim IVulPP=2 V- V(u, —u)te”“dx = 0, 4.11)

n—+oo RN

lim ul? 2 u(uy, — u)* e’ dx = 0. (4.12)
n—+oo RN
On the other hand, in virtue of Lemma 4.4, we have

lim O )y — u) e dx = 0. (4.13)

n—+oo RN
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Combining (4.10), (4.11), (4.12) and (4.13) and having in mind the nonnegativity of (y,(u,)),
we deduce from (4.9) that

lim (qunlp(")_z Vu, — |VulP®2 Vu) V(uy, —u)tdx
n—+oo RN

(4.14)

+ nliIP . (Iunlp(x)_2 Uy — P92 u) (ty, —u)"dx=0.
—+00 Jp.

Using the strict monotonicity conditions (4.5) and (4.6), we get from (2.5) that
(up—u)t — 0 strongly in WHPORN).
In a similar way, taking (u, —u)~e~""(“") as test function and using the fact that
e ln) > M > 0050 Vnx1,

we get
(up—u)~ — 0 strongly in WHPORM).

Therefore, we conclude that

Uy, — u  strongly in WHPORN).
In order to pass to the limit in the singular term, we need the following lemma:

Lemma 4.6  For every compact K in R", we have

lim Un(ttn) VityP® dx =0 uniformly in n.
1=0" J gn{u, <t}

Proof For ¢ € C8°(RN) such that ¢ > 0 and 0 < ¢ < 1, we take —(eV"(t)‘V"(”") - 1)+ gof as
test function, getting

— p+ f |Vun|[7(x)—2 Vun . VQD (e')/n(t)_yn(un) _ 1)¢p+_1dx
{u, <t}
+ f |Vl/tn|p(x) €y’l(t)_y"(u'l)$n(un)(,0p+dx
{u,<t}
_ f |un|17(X)—2 U, (eyn(t)—yn(un) _ l)golﬁ dx
{u, <t}
< f V20079 ) (70700 — 1) "
{u, <t}
N f 1800 P01 (7 000) _ 1) "
{u, <t}

— f h(eyn(l)_yn(un) _ 1) ‘pp+dx.
{u, <t}

Since & > 0, then

W) VP " dx < 5 f Via[? ! Vool "~ dx

{un<t} {u, <t}
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tes | PO dx + e f OGP gy, (4.15)
RN RN

Taking now (u, — )P as test function, we obtain
+ pt-1 p(x)-2 _

p % [V, Vu, -Vo(u, —t)dx
{un <t}

+ f Vatn P P dx + f P2 (11 — )P dx (4.16)
(<t} {up <t}

< W) Vit PO (1 — D g?” dx + £ )y — 1)@ dx.
{un<t} {up,<t}

Observing that
U () Vit POty — 1] 07" dx

{u, <t}
<t f Wnit) [Vt P " dx
RN
<cgt (by Lemma 4.3)

and

f Vi, |PP2 YV, - Vo(u, —t)dx
{u,<t}

t ] IVulPO Vel dx
RN

<cqpt (by the boundedness of (i,,) in W'"PORN )).
It follows from (4.16) that

f IVt [P 0" dx < cg f (70 +FO) P dx + cqt. 4.17)
{u, <t} RN
Using (4.17) with (4.15), we deduce

lim Un(t) [Vitn?P @P dx =0 uniformly in n.
t—0* {Mnﬁl‘}

Let K a compact on RY, choosing ¢ € Cg"(RN ) such that ¢ = 1 on K, we get the claimed
result.

Lemma 4.7 The function u is a weak solution of the problem (P). Moreover u satisfies
f Vil y(u)dx < +00  for every compact K c RV,
KN{u>0}

Proof Let K be a compact of RY and E a measurable set such E ¢ K. We have, for
O<r<l,

A X, U A X, U Vu dx
n n 1 | |p(x) <) n n n

+ f A, 1) Vit P .
Enf{u, >t}
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From Lemma 4.6, we get that

lim |An(x, )| |VitnP® =0 uniformly in 7.
1=0% JEn{u, <)

Hence, for every € > 0, there exists 0 < fy < 1 such that
f |A, (x, uy)| IVunlp(") dx < < Vn> 1. (4.18)
ENun<o) 2
On the other hand, we have
[ mwmmar s [ S
En{u,>to} EN{u,>to}

SC9f|Vun|”(x)dx.
E

By Lemma 4.5, we can choose mes(E) small enough that

co f Vit [P dx < g (4.19)
E

Combining (4.18) and (4.19), we get the equi-integrability of the sequence ( WGy — 22— W””lp() )

1+ 1194, PO

. . (x)
This, together with the convergence of (An(x, un)%) to A(x,u)|VulP™Y ae. xin {x eRN; u(x) > 0}
implies by Vitali’s theorem that ’

Vit

lim An(x,uy)

Jm ) msp - f{ >O}A(x,u)|Vu|p(x)(pdx Vo e Co®RM). (4.20)
u n n u

It remains to prove that

I A V™ 0 pe o @Y
n_l)IPOO {u:O} l’l(-x’ ul‘l)l N l |Vun|p(x)‘10 X = ‘)0 € 0 ( )
n
Observe first that by the equi-integrability of ( n(es un)1 W;’Gl I"()) for every € > 0, there
exists 0, > 0 such that
|Vun|p(x) €

¥ E ¢ supp(¢), mes(E) <5, f A Gt ) @21)
E

<
1+ 1 vy, P9 2llelle

Next, by the boundedness of (supp(¢)) in RY and in virtue of Egorov’s theorem, we can
divide it into two measurable sets: K¢ with mes(K€) < 6, and (supp(¢)\K¢) in which the
sequence (u,) converges uniformly to u. By (4.21), we have

|Vun|p(x)
1A (X, )] ——————— lepldx
fm{uzo, T 4 L v,

|Vt

4.22)
< llgelles f A (X, )| — i (
Kenw=0) 1+ LV, P

<

l\)lﬂ\
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On the other hand, there exists ¢ > 0 small enough and ny(€) large enough such that, for all
n > no(€)
Vit

AR, up)| —F———
T Lwy, e

| ol
(Supp(@)\K€)n{u=0}

< ll¢lle f |A, (X, )] |V it |PP
(SUPP@\KE)N{u,<te}

and it follows from Lemma 4.6 that

f |An (X, )] Vit |PP | dx < € Vn> no(€). (4.23)
(SUPP(¢)\K<)N{u=0} 2
Combining (4.22) and (4.23), we get
1m X, Upy) ——————@dx = . .
n—+e0 Jo,—0) n n 1+ % |Vun|p(x) 4 ¢ 0

By (4.20) and (4.24), we deduce that, for every ¢ € C# (RM), we have

Vit [P P
medx=| A |Vul” " xusoppdx. (4.25)
RN

lim | Ao u)————
A YL T

n—+oo

In a similar way, we can easily establish that, for every ¢ € C’ RM),

lim Vi PPV, - Vodx = | [VulP® 2 Vu-Vodx (4.26)
n—+oo RN RN
and
lim PP 2 uppdx = | |ulP? updx. (4.27)
n—+oo RN RN
On the other hand, by Lemma 4.4, we also get
lim J(x, uy)pdx = f f(x,u)pdx. (4.28)
n—+oo RN RN

(Note, that this result can be obtained directly by applying Lebesgue dominated conver-
gence theorem because of the boundedness of (f(x,u,)) ). Combining (4.25), (4.26), (4.27)
and (4.28), we conclude that u is a weak solution of the problem (P) and since & # 0, then
u # 0. By inequality (4.7), we get0 < u(x) <M a.e. xin RY. Moreover, in virtue of Fatou’s
Lemma, we immediately deduce from Lemma 4.3 that

(W) VUl o)) € L, (RY).

This ends the proof of Theorem 3.1.

5 Proof of Theorem 3.2

Here, the function A(:,-) is no longer assumed to be bounded from above by an integrable
function in a neighborhood of zero. In this case and in order to get a solution for the problem
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(P), we have to make changes concerning the coefficients A,(:,-) defined in section 4. For
n > 1 an integer, we define, now,

1
1 (5.1

w(s) if s>1 w(s) if s>L1 s
w)={ = = S = f Inlt)dr
- g(;) if s< lﬁ(;) if s< M
with M defined by (3.1). We consider the approximate problem
(x)
—di P02 p-2, _ _Vu :
div (|Vu V) + ul u=An(x,u) I +f(r,u)+h in B, (P,)

where B,, = {x eRN; |x] < n} and A, (:,-) is now defined by (5.1). The existence of a solution

U, € Wé’p (‘)(Bn) N L*(B,) of the problem (P,) can be justified exactly as in section 4. Indeed,
it is sufficient to notice that there exists a positive constant ¢, > 0 such that

|An(x,8)| < ¢, ae. xin RY and for every s € R.

The nonnegativity of (u,) is immediate. We mention again that u,, can be extended by zero
outside of B, getting that u, € WLPOMRN) N L®(RN). Taking now v, = eV (y, — M)* as
test function in (P,) and following the same steps as in Lemma 4.1, we can prove that
the estimate (4.7) still holds true. The main difference here arises when we are searching
to estimate the sequence (u,) in WLPO(RN). Whereas, in section 4, we have been able to
prove the uniform boundedness of the sequence (u,,) in WLPORN), for the present case and
under hypothesis (H4), we can only obtain a local estimate.

Lemma 5.1 The sequence (u,) is bounded in Wllo’f (')(RN ). Moreover (A,,(-, u,) |Vu,|P (')) is
bounded in L} (RY).

Proof LetypeCy (RM) be such that ¢ > 0. Taking (677(”") - l)gop+ as test function in (P,)
and observing that (67"(”") - 1) <0, we get

P [ IVl Vi T (50 1) dx
RN
+f V1t [P G (11,) 7" 0P dlx
RN
+ |un|l7(x)—2 u, (eﬁ(un) _ 1)¢P+ dx
RN
< [ VP g dx
]RN
- f An(X, 1) [Vt PO P dx
RN

+ f FOxu) (74 = 1) 0P dx.
RN
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Since (u,) is bounded in L®(RY) (by relation (4.7)), it follows that

f A6 1) Vit P9 P dx < 10 f o dx+cry f Vit PO Vgl dx. (5.2)
RN RN RN

By (H4), we deduce from (5.2) that

Yn(14) IVt [P0 9P dx < cqy + 1 f Vi [P0 [Vl g~ dx. (5.3)
RN — RN
For 0 < € < 1, writing p* -1 = p* (1 - ﬁ) + [f’(—;) — 1, it yields from Young inequality that
+ _px) + \Y/ p(x)
VPO [Vl 1 < €51 [V P 15
eP(x) (5 4)
® V"™ '
< eﬂ(M)ﬂ(”n”V”nlp 9017 +C12 ()
Using (5.4) and choosing € such that 0 < 1 - cneﬂ(M ), we obtain by (5.3) that
( f () Vit | gol’*) is bounded.
RN
Observing that ﬂ(un) > m ¥ n > 1, then we get immediately that (|Vun|p (')) is bounded

in Llloc(RN ). Taking again into account that (u,) is uniformly bounded in L*®@RM), we con-

clude that (u,) is bounded in Wllo’f (')(RN ). We denote by u the weak limit of (u,,).

Lemma 5.2 The sequence (T,(u,)) (wWhere T;(-) is defined by (3.3)) is strongly convergent
to T,(u) in Wllo’f (')(RN ) for every ¢ > 0.

Proof  For simplicity in notation, we will denote by €!, €2,--- various sequences of real

numbers converging to zero when n tends to +co. For n > 1 and ¢ > 0, we also denote by
Wat = T(uy) — Te(u) and yy s = Yn(un) = ¥Yu(Tr(un)). Let ¢ be a function in C (RM) such that
¢ >0 and @ be as in (3.2). Taking CD((wn,,)J“)e”"Jgp as test function, we get

fR X Vut|P2 Vi - V(wiE ) (Wi e pdx

[ T T e o0 o

+ fR ) Viual” 72 Vit - Vo @ (W) ") € dx

- fR VP02V -V (T 1) U (T () €7 DOy o x (5.5)
+ . [t [P) 2 U O(w, e’ pdx

< f Un(tt) [Vt O(w} e pdx
RN

+f f(x,un)CD(w;t)ey”"godx+f h®(w; e’ pdx.
RN ’ RV ’
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Let R > 0 be such that supp(¢) C B(0, R); since B(x) < p*(x) VY xe R, then the embedding
of WHPO(B(0,R)) into IPV(B(0,R)) is compact. This fact together with the weak conver-
gence of (w ;) to zero and the boundedness of the sequence (¢”/) imply that

f fx,u)®(w, e’ pdx — 0 (5.6)
RN

and
f h®(w; e’ pdx — 0. (5.7)
R¥ '

On the other hand, using again the boundedness of ('), by (2.1) we have
‘f Vi, |PP2 YV, - Vo © ((wn,,)+) e’ dx
RN

< ¢13 ||V PO |LP'<‘>(B(O,R)) | Vel [@0w; )|

LPO(B(O,R))

Since (u,,) is bounded in Wllo’f (')(RN ) and (D(w;,t) converges to zero a.e. in RY, we immedi-
ately deduce that

) Vatal? 72 Vit - Vo @ (W) ) ?4dx — 0 (5.8)
R
Observe now that

f ) lual? 72 14, D (W e o x

R

= f |T ()P T )D(W],pd x
{MnZl}

= f (TP To) = 1T PO T100)) @0y pdx
R

. f TP 2 T (DO, .
]RN

By the weak convergence of (w;;,) to zero, we get

f ) TP T (w)D(w; pdx — 0
R
and it follows that

f |l D 7% 0, D (W}, e pdx
& (5.9)

= f (TP Tun) = TP T) 0wy g + 6.
R

Next, we have
fR VUl V- (w7, ) @ iy e o x
= f{; - VT, u)IPO-2 VT () - V (W;,z) O (W )dx
- f (IVT @) P2 VT () = VT, )P 2 VT, (w)) - Vwig ) (w7 o x

RN

+ | VTP 2T (u) - V(w; YD (W) pdx.
RN
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Again by the weak convergence of (w; ,) to zero, we obtain

f X Vut|P2 Vi - V(wiE YO (Wi e pd x
R

= f (IVT )P 2 VT )~ VT, )P 2 VT o)) - Vg ) (i pdx 10
RN

+el
In a similar way, for n large enough, we have
fR VP72Vt - VT ) Wi (Tot))e™ DOwy o x
~ [ T G0 e
{u, >t}

< c14(0) f (IVT i) PO VT ) = (VT (@) PO VT, () - Vwy Y(w g x
RN
+e

which implies that

- f VPOV V(T )W (Ti ) 7™ R (w;, Yol x
R

> —c14(0) f (IVT )P VT ) = IV T ()P VT () - Vo Y] e O
RN
—é.
Combining (5.6), (5.7), (5.8), (5.9), (5.10) and (5.11) with (5.5), we obtain
f (VT )P =2 VT ) = VTP VT, (w)) - VAT o(t) = To(u))*)
RN
X (@' (wr) = ci3 (W) gdx (5.12)

+ f (TP T) = TP T)) () = To(w)* gdx < .
R
Notice now that( see [2, Lemma 1.2]) we can choose 77 > 0 such that
P+ + 1
Q' (W) —cra(H)®(w,, ) = 5 Vn> 1.
Using the strict monotonicity conditions (4.5) and (4.6), we deduce from (5.12) and (2.5)

that
(Ty(u) — To(w))* — 0 strongly in W, PO (RY).

Similarly, taking ®(w,, )e” "¢ as test function, we get
(Ty(up)—Ty(w))” - 0 strongly in Wllo’f(')(RN).

Therefore, we conclude that T(u,) — T,(u) strongly in WP (')(RN ).

loc
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Lemma 5.3  For every compact K in R, we have

Vi, [P
lim Aty — V!

—T < 5dx¥=0 uniformly in n.
=0" Skt Lt V[0

Proof Let ¢ € C3(RY) be such that ¢ > 0, for 0 <7 < 1, taking (emﬂ)—m - 1)_ @ as

test function and observing that (eW”")‘W’) - 1)_ is bounded, we get

|Vun|p(x) + (X)—l +_1
An(x,un) —F————=¢" dx<cis Vi7" [Vl P~ dx
{MnSZ} {Mnﬁl‘}

¢
1+ 11wy, [P0
+cl5f t’B(x)_lt,op+dx+cl5f PO P dx,
RN RV

Continuing as in the proof of Lemma 4.6, we reach the claimed result.

Using the previous results, the passage to the limit can be achieved by following the
same steps as in Lemma 4.7. Therefore, we prove that u is a nontrivial and nonnegative
weak solution of the problem (P) which ends the proof of Theorem 3.2.

6 Proof of Theorem 3.3

In order to prove Theorem 3.3, we have to consider a modified approximating problem. We
introduce, here, the following approximate coeflicients

Afxs'=n) if s>
An(x,s) = (ns)%A(x,sl_%) if 0<s<i (6.1
0 if s<0

and the corresponding approximate problem

|Vu|p(x)

_di p(x)-2 p-2 _Vul
dlv(IVul Vu)+|u| u A,,(x,u)1+ Ty

+f(x,u)+h in B, (Pn)

where B, still denotes the set B, = {x eRVN; x| < n} It is clear that, for every n > 1, the
coefficient A, (-,-) defined by (6.1) satisfies

|An(x, )| <c” ae xinRY and forevery seR

for some positive constant ¢;/. It yields, as in sections 4 and 5, the existence of u, €
Wé’p (')(Bn) N L*(B,) which is a weak solution of the problem (P,). By zero-extension out-
side of B,,, u, may be assumed to belong to W"O(RN) N L=(RN).

Putting u,, = min(u,,0) as test function in (P,) and taking into account the nonpositivity
of A,(:,-), we get immediately the nonnegativity of u,,. We prove now that relation (4.7) still
holds true giving a uniform estimate of the sequence (u,,) in L*(RM).
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Lemma 6.1 The sequence (u,) is uniformly bounded in L* RM).

Proof Let M be as in relation (3.1). Observing that (u, — M)* € Wé’p (')(B,,) and taking it
as test function, we get by the nonpositivity of A,(:,-) that

f [V =2y " dx+ f )"y — MY dx
By By

< f 12(0)] PP~y — M) dx + f h(u, — M)t dx.
B,

By

Continuing exactly as in Lemma 4.1, we get that

0<up(x)<M ae. xinRV.

The boundedness of (u,), in WHPO(RY) is immediate. Indeed, taking u, as test function
in (P,) and using again the nonpositivity of A, (-,-) and the nonnegativity of u,, we obtain,
so easily, that (u,), is bounded in WHPO(RN). It follows the existence of u € WPO(RN)
such that (u,,) is weakly convergent to u in WLPO[RN). Moreover, by (4.7), u € L*(R") and
u>0.

Lemma 6.2 The sequence (IAn(-, up)| M) is bounded in L}(}C(RN ).

1+1 |V, P
Proof LetpeCy (RM) be such that ¢ > 0. Taking ¢ as test function, we get

Vi, [P
f Vit |72 Vi - Vipd x + f ()" pdx + f |An(x,un)||lL(x)(pdx
RV RN RN 1+ n |leln|p

:f f(x,u,,)tpdx+f hedx.
RN RN

By the boundedness of (u,) in WLPORN), we obtain the claimed result.
We notice now that under minor modifications, we can prove, as in Lemma 5.2, that
T(u,) — Ty(u) strongly in Wllo’f (')(RN ) foreveryt>0.

Indeed, for n > 1 and s > 0, we define the following functions

1 : 1
L s>l

an(s)={ (S'f’_l and  ¥,(s) = fo Yn()dt.

l)" if s<1
n n

Reasoning as in Lemma 5.2 by taking successively, as test function, ¢ (w;,,) e oY) =co¥n(T(t))

and ¢(w,‘m) goeCO%(T’(”"))‘CO%(”") where ¢ € C° (RM) be such that ¢ > 0, we can easily get the
strong convergence result. In same way, we can also establish that

lim Un(uty) VunP® dx =0 uniformly in n
=0 Jkn{u, <t}
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for every compact K ¢ RV, Passing now to the limit by proceeding as in Lemma 4.7, we
obtain that u is a weak nontrivial and nonnegative solution of the problem (P). Furthermore,
we have

f AGI IVl o < +oo
R

for every ¢ € C° (RV) verifying that ¢ > 0. Taking now account of the boundedness of the
sequence ( f 1A, (x, )| Vit |P undx), we get that
RN
f LAGx, )] [VulP™® wy 5 0ydx < +o0.
RN
So that, the proof of Theorem 3.3 is complete.

Appendix

Proof of Lemma 4.4 For ¢ > 0, we denote by B; the open ball in RY of radius 7, i.e.
B, = {x eRV; x| < t}. Let now ¢ > 0 and v € WPO(RN) such that ||v|| < 1, by (2.1) we have

fB ot = FCo IVl < 201 Cottn) = ) Loy Wlusogs,

Since B, is bounded in RY and B(x) < p*(x) ¥ x € RY, then

| LfCoun) = fCu)l |m'<->(3,) —0 as n—o+oo

which implies that

lim sup (f(x,up) — f(x,u))vdx|| =0 Vt>0. (A.1)
n—+oo sewlpOENy |J B,
i<
Observing that
1 -1 1
LY.l S Vo

pu(x)  px) o r(x)
and using (2.2), we get

f |f () = f (x, )l [v]dx
RM\B,

< f 18Ol P O+ (PO ] dx (A2)
RM\B,

()-1 ()-1
u +|u . V|ppuc .
| n|’B | IB |Lﬁ€§-)l(RN\B,)| |M<)(RN\B,)

< 31glpro@vs,)
Since (u,) is bounded in W'?O(RN), from (A.2) we deduce that

f | Cet) = FOe I Mdx < 1618l o) (A3)
RN\B,
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Now, since g € L"O(R"), then
|g|U('>(RN\BI) —0 as t— +oco.

Thus for every € > 0, there exists #y > 0 large enough such that

€
C16 |g|Lf(-)(RN\B[0) < 5

By (A.3), we get

f i) — fr | Vdx < S Vn> 1. (A.4)
RN\BtO 2

Taking ¢ = fg in (A.1) and combining (A.1) with (A.4), we obtain the claimed result.
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