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Abstract

In this paper, we propose an alternative direct algebraic method of constructing, for
nonlinear evolution partial differential equations, conservation laws that depend not
only on dependent variables and its derivatives but also explicitly on independent vari-
ables. As illustration, the fifth order Korteweg de Vries (fKdV) and modified (n+1)-
dimensional Zakharov-Kuznetvov (ZK) equations are probed.
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1 Introduction

The concept of conservation laws is substantially used in the field of partial differential
equations (PDEs) ([8, 9] and references therein). Indeed, the investigation of conservation
laws can lead to find some qualitative properties of PDEs such as integrability, stability,
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existence of global solutions and even the linearizability conditions [9, 10, 12, 13]. The
literature prospers in various approaches to construct local conservation laws. For instance,
we can cite the direct method [5, 1, 2], the Noether method [6, 3], the characteristic method
[7, 11] and the variational derivative method [7, 14]. All these approaches allow, in most
cases, to compute polynomial conservation laws that only depend on dependent variables
and its derivatives, and not explicitly on independent variables.

In this paper, an alternative study of time-space dependent conservation laws for some
classes of nonlinear evolution PDEs is performed by judiciously exploiting known algebraic
methods [8, 15]. It generalizes, to any dimensional space, a previous algorithmic scheme
[16] elaborated to construct spatio-temporal dependent conservation laws for n-order (1 +
1)-dimensional Korteweg de Vries (KdV) equations. Finally, we probe, in this framework,
the fifth order Korteweg de Vries (fKdV) [4] and modified (n + 1)-dimensional Zakharov-
Kuznetvov (ZK) equations [8, 17].

2 Preliminaries: basic definitions, theorems and notations

This section, mainly based on [7, 8], addresses relevant definitions, theorems and notations
playing a central role in studying conservation laws for nonlinear PDEs. Consider a system
of s-order PDEs

Fν(x,u(s)) = 0, ν = 1, · · · ,m, (2.1)

where x = (x1, . . . ,xn) and u = (u1, . . . ,um) and X ×U (s), the space whose coordinates are
denoted by (x,u(s)), (encompassing the independent variables x, the dependent variables u
and their derivatives up to order s, u(s)).

Definition 2.1. (Differential function) A function f defined on X ×U (s) is called s-order
differential function if it is locally analytic, i.e., locally expandable in a Taylor series with
respect to all arguments.

Definition 2.2. (Total derivative operator) Let f defined on X ×U (s) be an s-order differ-
ential function. The total derivative of f with respect to xi is defined by:

Dxi f =
∂ f
∂xi +

m

∑
j=1

s j
1

∑
k1=0

· · ·
s j

n

∑
kn=0

u j
k1x1···(ki+1)xi···knxn

∂ f

∂u j
k1x1···knxn

,

where

u j
k1x1···knxn =

∂k1+···+knu j

(∂x1)k1 · · ·(∂xn)kn
,

integer s j
i is the maximal order of derivation of the variable u j with respect to xi in the

differential function f .

Definition 2.3. (Maximal rank condition) The system (2.1) is said to be of maximal rank
if the Jacobian matrix

JF(x,u(s)) =
(

∂Fν

∂x
,

∂Fν

∂u(s)

)
is of rank m whenever u is a solution of (2.1).
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Definition 2.4. (Invariant scaling or dilatation group for a PDE) The system of s-order
PDEs

Fν(x,u(s)) = 0, ν = 1, · · · ,m

is said to be invariant under a dilatation group if there exist a nonzero parameter λ and
vector constants (a1, · · · ,an) ∈ Rn

?, and (b1, · · · ,bm) ∈ Rm
? such that

Fν(x̃, ũ(s)) = 0, ν = 1, · · · ,m

with x̃ = (λa1x1, . . . ,λanxn) and ũ = (λb1u1, . . . ,λbmum).
Moreover, one can attribute weights to the variables and total derivatives as follows:

w(xi) = ai, w(u j) = b j, w(Dxi) =−ai.

Definition 2.5. (Rank of a monomial) Let f defined on X ×U (s) be an s-order polynomial
differential function.

1. An s′-order monomial M is a term of f expressed as

M = c
s′

∏
k=0

n

∏
i=1

m

∏
j=1

(xi)αi
(

Dk
xiu j
)βki j

with s′, αi, βki j ∈ N;c ∈ R?.

2. The rank of the monomial M is the real number

s′

∑
k=0

n

∑
i=1

m

∑
j=1

[
αi w(xi)+βki j

(
w(u j)+ k w(Dxi)

)]
3. f is said to be uniform in rank if all its monomials have the same rank.

Proposition 2.6. The differential functions defining a system of polynomial PDEs invariant
under a dilation group are uniform in rank.

Definition 2.7. (Total divergence) A total divergence of an n-dimensional differential func-
tion F = (F1, · · · ,Fn) is defined by:

DivF = Dx1F1 + · · ·+DxnFn.

Definition 2.8. (Conservation law for a PDE) Let

Fν(t,x,u(s)) = 0, ν = 1, · · · ,m (2.2)

be a system of (n + 1)-dimensional s-order differential equations. A conservation law of
(2.2) is the PDE

Dtρ+DivJ = 0, (2.3)

where ρ is called conserved density whose the associated conserved flux is the vector dif-
ferential function J = (J1, · · · ,Jn).

Definition 2.9. (Zeroth-Euler operator) Let f defined on X×U (s) be an s-order differential
function.
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1. The zeroth-Euler operator (also called the variational derivative) of f is given by

δ

δu
f = (

δ

δu1 f , · · · , δ

δum f ),

where for j = 1, · · · ,m

δ

δu j f =
s j

1

∑
k1=0

· · ·
s j

n

∑
kn=0

(−Dx1)k1 · · ·(−Dxn)kn
∂ f

∂u j
k1x1···knxn

.

2. f is said to be exact if there exists an (s−1)-order differential vector function
C =

(
C1(x,u(s−1)), · · · ,Cn(x,u(s−1))

)
such that f = DivC.

Theorem 2.10. (Exactness theorem) A differential function f is exact if and only if δ

δu j f =
0, j = 1, . . . ,m.

Definition 2.11. (Divergence and divergence-equivalent terms) A term f is a divergence
if there exists a vector C such that f = DivC. Two or more terms are divergence-equivalent
if there exists a linear combination of these terms which is a divergence.

Theorem 2.12. (Characterization of divergence-equivalent terms) When the zeroth-
Euler operator is applied to a set of divergence-equivalent terms, their images under the
zeroth-Euler operator are linearly dependent.

Definition 2.13. (Higher-Euler operator) Let f defined on X ×U (s) be an s-order dif-
ferential function. The (i1, . . . , in)-higher-Euler operator (also called the higher variational
derivative) of f is given by

δ(i1,...,in)

δu
f =

(
δ(i1,...,in)

δu1 f , · · · , δ(i1,...,in)

δum f

)
,

where for j = 1, · · · ,m

δ(i1,...,in)

δu j f =
s j

1

∑
k1=i1

· · ·
s j

n

∑
kn=in

(
k1
i1

)
· · ·
(

kn

in

)
(−Dx1)k1−i1 · · ·(−Dxn)kn−in ∂ f

∂u j
k1x1···knxn

.

Definition 2.14. (Homotopy operator) Let f defined on X×U (s) be an s-order exact differ-
ential function with n independent variables x = (x1, . . . ,xn). The n-dimensional homotopy
operator is an n-component vector,(

H(x1)
u f , . . . ,H(xn)

u f
)

, where for i = 1, . . . ,n

H(xi)
u f =

Z 1

0

m

∑
j=1

(
I(xi)
u j f

)
[λu]

dλ

λ

with the integrands I(xi)
u j f defined as

I(xi)
u j f =

s j
1

∑
k1=0

· · ·
s j

i−1

∑
ki=0

· · ·
s j

n

∑
kn=0

1+ ki

1+ k1 + · · ·+ kn
Dk1

x1 · · ·Dkn
x2

(
u j δ(k1,...,ki+1,...,kn)

δu j f

)
.
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The notation
(

I(xi)
u j f

)
[λu] means that in I(xi)

u j f , all components of the function u as well as
their derivatives are multiplied by λ.

Theorem 2.15. Let f defined on X ×U (s) be an s-order exact differential function with n
independent variables x = (x1, . . . ,xn). Then

Div−1 f =
(

H(x1)
u f , . . . ,H(xn)

u f
)

.

In one, two and three independent variables, the homotopy operator takes the following
forms.

• One-dimensional homotopy operator, x = x1, Hu f :

Hu f =
Z 1

0

m

∑
j=1

(Iu j f ) [λu]
dλ

λ
,

where

Iu j f =
s j

1

∑
k=1

(
k−1

∑
i=0

u j
ix(−Dx)k−i−1

)
∂ f

∂u j
kx

and D−1
x f = Hu f .

• Two-dimensional homotopy operator, x = (x1,x2),
(

H(x1)
u f ,H(x2)

u f
)

:

H(xi)
u f =

Z 1

0

m

∑
j=1

(
I(xi)
u j f

)
[λ,u]

dλ

λ
, i = 1,2,

with the integrands I(xi)
u j f defined as

I(xi)
u j f =

s j
i

∑
ki=1

s j
p

∑
kp=0

ki−1

∑
li=0

kp

∑
lp=0

u j
lixilpxp

(
li + lp

li

)(
ki + kp− li− lp−1

ki− li−1

)
(

ki + kp

ki

)
(−Dxi)ki−li−1(−Dxp)kp−lp

∂ f

∂u j
kixikpxp

,

where

p ∈ {1,2}\{i} and Div−1 f =
(

H(x1)
u f ,H(x2)

u f
)

.

• Three-dimensional homotopy operator, x = (x1,x2,x3),
(

H(x1)
u f ,H(x2)

u f ,H(x3)
u f

)
:

H(xi)
u f =

R 1
0 ∑

m
j=1

(
I(xi)
u j f

)
[λu]dλ

λ
, i = 1,2,3
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with the integrands I(xi)
u j f defined as

I(xi)
u j f =

s j
i

∑
ki=1

s j
p

∑
kp=0

s j
q

∑
kq=0

ki−1

∑
li=0

kp

∑
lp=0

kq

∑
lq=0

u j
lixilpxplqxq

(
li + lp + lq

li

)(
lp + lq

lp

)
(

ki + kp + kq

ki

)
(

ki + kp + kq− li− lp− lq−1
ki− li−1

)(
kp + kq− lp− lq

kp− lp

)
(

kp + kq

kp

)
(−Dxi)ki−li−1(−Dxp)kp−lp(−Dxq)kq−lq ∂ f

∂u j
kixikpxpkqxq

,

where

p,q∈ {1,2,3}\{i}, q+1≡ i [3], p 6= q and Div−1 f =
(

H(x1)
u f ,H(x2)

u f ,H(x3)
u f

)
.

3 Main results

We consider in this section a system of s-order (n+1)-dimensional evolution PDEs

(uν)t = Fν(t,x,u(s)) ν = 1, . . . ,m, (3.1)

where x = (x1, . . . ,xn) and u = (u1, . . . ,um). Assuming that (3.1) is of maximal rank, we
propose to find its conservation laws.

3.1 Construction of conservation laws

The approach consists of three successive steps: i) determination of a scaling symmetry
group; ii) construction of a density and iii) calculation of a flux.

A scaling symmetry group can be obtained using linear algebra, which avoids having
to solve a system of over determined PDEs. This is done by solving an algebraic system
of weights for independent and dependent variables and total derivatives appearing in the
PDEs, assuming that each equation of the system of PDEs is uniform in rank and taking
into account the fact that the values of these ranks are not necessary the same for distinct
equations. In other words, one makes the hypothesis that the pν monomials of the function
Fν have the same rank and one forms a set of pν − 1 equations whose unknowns are the
weights of variables and total derivatives present in the function Fν. The final algebraic
system of weight equations results from ∑

m
ν=1(pν−1) equations of m different determined

sets.
Considering a system of s-order (n+1)-dimensional evolution PDEs

(uν)t = Fν(t,x,u(s), ũ(s)) ν = 1, . . . ,m, (3.2)

of maximal rank and m+q≤∑
m
ν=1(pν−1)−1, where x = (x1, . . . ,xn), u = (u1, . . . ,um) and

ũ = (ũ1, . . . , ũq), then one can check that there exists a scaling symmetry group if w(u j),
w(ũl) and w(Dt) are expressible as functions of some w(Dxi).
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• In the case when the system (3.1) has a scaling symmetry group, since the scaling
parameter λ is arbitrary, in general the solutions of the weight system can be of the
form:

w(u j) = h j (w(Dxi1 ), . . . ,w(Dxik )) , j = 1, . . . ,m

w(Dt) = g0 (w(Dxi1 ), . . . ,w(Dxik )) , (3.3)

w(Dxl ) = gl (w(Dxi1 ), . . . ,w(Dxik )) , l ∈ {1, . . . ,n}\{i1, . . . , ik}.

Setting w(Dxi1 ) = ri1 , . . . ,w(Dxik ) = rik , the relations (3.3) give:

w(u j) = h j (ri1 , . . . ,rik)≡ s j, j = 1, . . . ,m

w(Dt) = g0 (ri1 , . . . ,rik)≡ r0,

w(Dxl ) = gl (ri1 , . . . ,rik)≡ rl, l ∈ {1, . . . ,n}\{i1, . . . , ik}.

Therefore, the weights of independent variables are w(t) = −r0, w(xi) = −ri and a
scaling symmetry group of the system (3.2) is:

(t,x,u) 7→ (λ−r0t,λ−r1x1, . . . ,λ−rnxn,λs1u1, . . . ,λsmum).

• When the system (3.1) does not possess a scaling symmetry group, sometimes identi-
fied by the solution of the weight system under the form w(u j) = w(Dt) = w(Dxi) = 0,
one can transform it into another PDEs system of the form

(uν)t = Fν(t,x,u(s), ũ), ν = 1, . . . ,m, (3.4)

where ũ = (ũ1, . . . , ũq) is a vector of new dependent variables, which now has a scal-
ing symmetry group. Such a transformation can be performed by one or both of the
following actions:

(i) conversion of some arbitrary monomials coefficients of considered PDEs sys-
tem into new dependent variables;

(ii) suitable identification of monomials in the PDEs system and their multiplication
by new dependent variables.

By the same arguments as before, the solutions of the weight system obtained from
the system (3.4) are generally of the form:

w(u j) = h j (w(Dxi1 ), . . . ,w(Dxik )) , j = 1, . . . ,m

w(ũl) = fl (w(Dxi1 ), . . . ,w(Dxik )) , l = 1, . . . ,q

w(Dt) = g0 (w(Dxi1 ), . . . ,w(Dxik )) , (3.5)

w(Dxl ) = gl (w(Dxi1 ), . . . ,w(Dxik )) , l ∈ {1, . . . ,n}\{i1, . . . , ik}.

Putting w(Dxi1 ) = ri1 , . . . ,w(Dxik ) = rik , (3.5) gives:

w(u j) = h j (ri1 , . . . ,rik)≡ s j, j = 1, . . . ,m

w(ũl) = fl (ri1 , . . . ,rik)≡ el, l = 1, . . . ,q

w(Dt) = g0 (ri1 , . . . ,rik)≡ r0,

w(Dxl ) = gl (ri1 , . . . ,rik)≡ rl, l ∈ {1, . . . ,n}\{i1, . . . , ik}.
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Therefore, the weights of independent variables are w(t) = −r0, w(xi) = −ri and a
scaling symmetry group of the system (3.4) is given by:

(t,x,u, ũ) 7→ (λ−r0t,λ−r1x1, . . . ,λ−rnxn,λs1u1, . . . ,λsmum,λe1 ũ1, . . . ,λeq ũq).

In the sequel, we consider the PDEs system (3.4) and treate the new dependent variables
ũ1, . . . , ũq as weighted constants. Once a scaling symmetry group of equation (3.4) is de-
fined, one fixes the value r of the rank for the density ρ which can be constructed step by
step as follows:

(i) Use the independent and dependent variables, and their partial derivatives to form a
set Q of rank r monomials by: first constituting a set Q0 such that

Q0 = {Mµ, µ ∈ Λ ⊂ N, Mµ =
m

∏
j=1

(u j)βµ j , βµ j ∈ N,

0 < |rankMµ| ≤ |r|+wmax}, (3.6)

where wmax = max{|w(u j)|, |w(ũl)|, |w(Dxi)|, |w(Dt)|}. Second, for each Mµ, µ ∈ Λ,
build a set Q0µ such that

Q0µ = {M0µ, M0µ = tαµ0

(
n

∏
i=1

(xi)αµi

)(
q

∏
l=1

(ũl)β̃µl

)(
n

∏
i=1

(Dxi)ηµi

)
Mµ,

rankM0µ = r, αµ0, αµi, β̃µl, ηµi ∈ N}. (3.7)

Finally, the required set can be written as

Q =
[
µ∈Λ

Q0µ.

Remark 3.1. :

• All monomials defining M0µ are taken separately in Q0µ without their coeffi-
cients;

• Take Q0µ = /0 when there do not exist positive integers αµ0, αµi, β̃µl, ηµi such
that rankM0µ = r.

• Take Q0µ = {Mµ} when rankMµ = r.

(ii) Set Q′ the subset of all divergence terms of Q. Then denote by P = Q\{Q′

Q the set of
non divergence terms.

(iii) Using Theorem 2.12, identify in P all subsets of divergence-equivalent terms and
form a set R′ of elements of all such subsets, at the rate of one and only one element
per subset. Then denote by R = P\{R′

P the useful set for the density computation.

(iv) Linearly combine the monomials of R to form a rank r candidate density ρ. By the
conservation law (2.3), Dtρ = −DivJ, Dtρ is a divergence with respect to the space
variables. Therefore, the undetermined coefficients of ρ are found by solving the
linear algebraic system formed by setting to zero the coefficients of monomials in

δ

δu j

(
Dtρ|ut=F(t,x,u(s),ũ)

)
= 0, j = 1, . . . ,m. (3.8)
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Provided a density ρ, the corresponding flux J can be computed by using the homotopy
operator as follows:

J = (J1, . . . ,Jn) = Div−1 (−Dt ρ|ut=F) . (3.9)

Example 3.2. Consider the (1+1)-dimensional fifth order KdV equation given by [4]

ut =−γu5x−βu3x−αupux ≡ F(t,x,u(5)). (3.10)

The uniformity condition for the rank applied to the function F leads to the weight system

w(Dt)+w(u) = 5w(Dx)+w(u)
= 3w(Dx)+w(u)
= w(Dx)+(p+1)w(u) (3.11)

whose solution is w(u) = w(Dt) = w(Dx) = 0 indicating that (3.10) does not possess a
scaling symmetry group. In order to get round this situation, we substitute the parameter β

by a new dependent variable ũ(t,x), i.e. β ↔ ũ(t,x). Equation (3.10) then becomes

ut =−γu5x− ũu3x−αupux ≡ F(t,x,u(5), ũ), (3.12)

with the corresponding weight system

w(Dt)+w(u) = 5w(Dx)+w(u)
= 3w(Dx)+w(u)+w(ũ)
= w(Dx)+(p+1)w(u) (3.13)

yielding the solution

w(Dt) = 5w(Dx), w(u) =
4
p

w(Dx), w(ũ) = 2w(Dx). (3.14)

Setting w(Dx) = 1 leads to

w(x) =−1, w(Dt) = 5 =−w(t), w(u) =
4
p
, w(ũ) = 2 (3.15)

from which we deduce the one parameter dilatation group of equation (3.12) as

(t,x,u, ũ) 7−→
(

λ
−5t,λ−1x,λ

4
p u,λ2ũ

)
. (3.16)

Let us now compute the relevant quantities.

• Conserved density ρ1 of rank r = 8 and its associated flux J1 for (3.12) with p = 1
We have

w(u) = 4, Q0 = {u2,u}, Q01 = {u2}, Q02 = {u4x, ũ2u, ũu2x}.
Q = {u2,u4x, ũ2u, ũu2x}, R = P = {u2, ũ2u}.

From R, we form a candidate density ρ1 = c1u2 + c2ũ2u. Condition (3.8) is sat-
isfied for any constants c1 and c2. Seeking c1 = c2 = 1 gives ρ1 = u2 + ũ2u. Let
E1 = −Dtρ1|ut=F(t,x,u(5),ũ). Applying the one dimensional homotopy operator to the
differential function E1, we obtain the flux

J1 = 2γ(uu4x−uxu3x +
1
2

u2
2x)+2ũ(uu2x−

1
2

u2
x)+

2
3

αu3 + γũ2u4xũ3u2x +
1
2

ũ2
αu2.
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• Conserved density ρ2 of rank r = 8 and its associated flux J2 for (3.12) with p = 2
We get

w(u) = 2, Q0 = {u4,u3,u2,u}, Q = {u4,u2u2x, ũu3, ũ2u2,u2
2x,u6x, ũ3u, ũ2u2x, ũu4x},

R = P = {u4,u2u2x, ũu3, ũ2u2,u2
2x, ũ

3u}.

From R, a candidate density can be written as

ρ2 = c1u4 + c2u2u2x + c3ũu3 + c4ũ2u2 + c5u2
2x + c6ũ3u.

Condition (3.8) is satisfied if and only if c1 = c2 = c3 = c5 = 0 and for any constants
c4 and c6. Setting c4 = c6 = 1 gives ρ2 = ũ2u2 + ũ3u. Let E2 =−Dtρ2|ut=F(t,x,u(5),ũ).
Applying the one dimensional homotopy operator to the differential function E2, we
obtain the flux

J2 = 2ũ3(uu2x−
1
2

u2
x)+ ũ3

γu4x +
1
2

ũ2
αu4

+ 2ũ2
γ(uu4x−uxu3x +

1
2

u2
2x)

1
3

ũ3
αu3 + ũ4u2x.

3.2 Construction of time-space dependent conservation laws

We start this section with the following statement.

Proposition 3.3. If

ρ =
m

∑
ν=1

ρν such that
n

∑
i=1

Dxiρν = Fν (3.17)

is a conserved density for equation (3.2) whose associated flux is J = (J1, . . . ,Jn), then

ρ̃ = tρ+
1
n

(
n

∑
j=1

x j

)
m

∑
ν=1

uν (3.18)

is also a conserved density of equation (3.2) with the associated flux J̃ = (J̃1, . . . , J̃n), where

J̃i = tJi− 1
n

(
n

∑
j=1

x j

)
ρ. (3.19)

Proof.

Dt ρ̃ = tDtρ+ρ+
1
n

(
n

∑
j=1

x j

)
m

∑
ν=1

(uν)t , Dxi J̃i = tDxiJi− 1
n

ρ− 1
n

(
n

∑
j=1

x j

)
m

∑
ν=1

Dxiρν.

Therefore,

Dt ρ̃+DivJ̃ = t [Dtρ+DivJ]+
1
n

(
n

∑
j=1

x j

)
m

∑
ν=1

[
(uν)t −

n

∑
i=1

Dxiρν

]
= 0

whenever ut = F(t,x,u(s), ũ(s)) �
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We consider now the systems of the form (3.4). Let diν be the derivation order of the
function Fν with respect to xi and let dν be the order of the function Fν. The condition (3.17)
shows that the order of the function ρν must be dν−1. Thus, setting

Jν = { j ∈ {1, . . . ,m}, Dη

xiu j is in Fν for some η ∈ N},
Lν = {l ∈ {1, . . . ,q}, ũl is in Fν},

Riν = (diν−1)w(Dxi)+ ∑
k 6=i

dkνw(Dxk)+ ∑
j∈Jν

w(u j)+ ∑
l∈Lν

w(ũl),

Rν = max{Riν, i = 1, . . . ,n}, R = max{Rν, ν = 1, . . . ,m}

affords the following proposition.

Proposition 3.4. Let ρ be a conserved density of equation (3.4) satisfying the condition
(3.17). Then,

rankρ = R, rankρν = Rν,
δ

δu j

(
Dtρ|ut=F(t,x,u(s),ũ(s))

)
= 0. (3.20)

Therefore, a basic algorithm for the construction of time-space dependent conservation
laws for the equation (3.4) can be established as follows:

Step 1. Find a scaling symmetry group for the PDEs system (3.4). See details of computation
in the previous subsection.

Step 2. Construct a rank R conserved density ρ satisfying conditions (3.17) and (3.20) as
follows: First, for each ν ∈ {1, . . . ,m}, form a set Q0ν such that

Q0ν = {Mνλ, λ ∈ Λ ⊂ N, Mνλ = ∏
j∈Jν

(u j)βνλ j , βνλ j ∈ N, rankMν ≤ Rν}.

Second, for each Mνλ, ν ∈ {1, . . . ,m} and λ ∈ Λ, form a set Q0νλ such that

Q0νλ = {M0νλ, M0νλ =

(
∏
l∈Lν

(ũl)β̃νλl

)(
n

∏
i=1

(Dxi)ηνλi

)
Mνλ,

rankM0νλ ≤ Rν,
n

∑
i=1

ηνλi ≤ dν−1, β̃νλl, ηνλi ∈ N}.

Remark 3.5. Note that:

(i) Q0νλ 6= /0 since Mνλ ∈ Q0νλ.

(ii) All monomials that define M0νλ are separately taken in Q0νλ without their coef-
ficients.

Third, form a set Qν such that

Qν =
[
λ∈Λ

Q0νλ = {M0νλ, rankM0νλ ≤ Rν, λ = 1, . . . ,qν} (3.21)
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and define ρν and a rank R candidate density ρ as

ρν =
qν

∑
λ=1

cνλM0νλ, ρ =
m

∑
ν=1

ρν. (3.22)

Fourth, explicitly determine the values of the undetermined coefficients cνλ in such a
way that both conditions (3.17) and (3.20) are satisfied.

Step 3. Compute a flux J associated with ρ by applying the homotopy operator to the differ-
ential function −Dt ρ|ut=F .

Step 4. Determine the time-space dependent conservation laws of equation (3.4) using the
relations (3.18) and (3.19).

Example 3.6. Consider the (1 + 1)-dimensional fifth order KdV equation (3.10) with the
parameter p = 1, namely [4]

ut =−γu5x−βu3x−αuux ≡ F(t,x,u(5)). (3.23)

In Example 3.2, we have shown that equation (3.23) does not have a scaling symmetry
group, but the substitution β ↔ ũ(t,x), where ũ(t,x) is a new dependent variable, leads to
the following equation

ut =−γu5x− ũu3x−αuux ≡ F(t,x,u(5), ũ) (3.24)

in which the weights of different variables and total derivatives are

w(Dt) = 5w(Dx), w(u) = 4w(Dx), w(ũ) = 2w(Dx).

Seeking w(Dx) = 1 gives: w(x) =−1, w(Dt) = 5, w(t) =−5, w(u) = 4, w(ũ) = 2
from which we deduce the corresponding one parameter dilatation group as

(t,x,u, ũ) 7−→
(
λ
−5t,λ−1x,λ4u,λ2ũ

)
and d1 = 5, d11 = 5, R11 = 10, R1 = 10, R = 10.

• Computation of a conserved density ρ of rank R = 10 and its associated flux
We have:

Q01 = {u,u2}, Q012 = {u2,uxu,u2xu,u2
x , ũu2},

Q011 = {u,ux,u2x,u3x,u4x, ũu, ũ2u, ũ, ũux, ũ2ux, ũu2x, ũ2u2x, ũu3x, ũu4x},
Q1 = Q011∪Q012.

Determining a candidate density as a linear combination of all elements in the set
Q1 and looking for the undetermined coefficients in such a way that both conditions
(3.17) and (3.20) are satisfied, we obtain ρ =−γu4x−βu2x− α

2 u2.
Applying the one dimensional homotopy operator to the differential function
E =−Dtρ|ut=F(t,x,u(5),ũ) yields the flux

J = −1
3

α
2u3−2u6xβγ−2uβαu2x−u8xγ

2−2uγαu4x−
1
2

βαu2
x

− 3uxγαu3x−
7
2

u2
2xγα−u4xβ

2.
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• Determination of a time-space dependent conservation laws of equation (3.24)
By using relations (3.18) and (3.19), we obtain the conserved density

ρ̃ = t
(
−γu4x−βu2x−

α

2
u2
)

+ xu

with the associated flux

J̃ = t
(
−1

3
α

2u3−2u6xβγ−2uβαu2x−u8xγ
2−2uγαu4x−

1
2

βαu2
x

− 3uxγαu3x−
7
2

u2
2xγα−u4xβ

2
)
− x
(
−γu4x−βu2x−

α

2
u2
)

.

Example 3.7. Consider the modified (2+1)-dimensional Zakharov-Kuznetsov (ZK) equa-
tion [8]

ut =−α(uux +uuy)−β [(u2x +u2y)x +(u2x +u2y)y]≡ F(t,x,y,u(2)). (3.25)

The uniformity condition applied to the function F leads to the weight system

w(Dt)+w(u) = 2w(u)+w(Dx)
= 2w(u)+w(Dy)
= w(u)+3w(Dx) (3.26)

= w(u)+3w(Dy)
= w(u)+w(Dx)+2w(Dy)
= w(u)+2w(Dx)+w(Dy)

whose solution can be written as

w(Dt) = 3w(Dx), w(Dy) = w(Dx), w(u) = 2w(Dx).

Setting w(Dx)= 1 provides w(x)=−1, w(Dt)= 3, w(t)=−3, w(Dy)= 1, w(y)=−1, w(u)=
2 from which we deduce the one parameter scaling symmetry group of (3.25) as:

(t,x,y,u) 7→ (λ−3t,λ−1x,λ−1y,λ2u).

We get: d1 = 3, d11 = 3, d21 = 3, R11 = 7, R21 = 7, R1 = 7, R = 7.

• Computation of a conserved density ρ of rank R = 7 and its associated flux
We have:

Q01 = {u,u2,u3}, Q011 = {u,ux,uy,u2x,u2y,uxy}, Q013 = {u3},
Q012 = {u2,uux,u2

x ,u
2
y ,uuy,uu2x,uxuy,uu2y,uuxy}, Q1 = Q011∪Q012∪Q013.

Constructing a candidate density as a linear combination of all elements in the set
Q1 and looking for the undetermined coefficients in such a way that both conditions
(3.17) and (3.20) are satisfied, we find ρ =−1

2 αu2−βu2x−βu2y.
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Applying the two dimensional homotopy operator to the differential function
E =−Dtρ|ut=F(t,x,y,u(2)) we obtain the flux J = (J1,J2), where

J1 = −1
3

u3
α

2− 1
2

u2
xβα− 4

3
uβαuxy−

4
5

ux3yβ
2− 2

3
uβαu2y−

6
5

u2x2yβ
2

− 2uβαu2x−
4
5

u3xyβ
2− 1

3
uyβαux−u4xβ

2− 1
6

u2
yβα− 1

5
u4yβ

2,

J2 = −1
3

u3
α

2− 1
2

u2
yβα− 2

3
uβαu2x−

4
5

u3xyβ
2− 4

3
uβαuxy−

6
5

u2x2yβ
2

− 2uβαu2y−
4
5

ux3yβ
2− 1

6
u2

xβα−u4yβ
2− 1

3
uyβαux−

1
5

u4xβ
2.

• Determination of a time-space dependent conservation laws of equation (3.25)
By using relations (3.18) and (3.19), we compute the conserved density

ρ̃ = t
(
−1

2
αu2−βu2x−βu2y

)
+

1
2
(x+ y)u

with the associated flux J̃ = (J̃1, J̃2), where

J̃1 = t
(
−1

3
u3

α
2− 1

2
u2

xβα− 4
3

uβαuxy−
4
5

ux3yβ
2− 2

3
uβαu2y−

6
5

u2x2yβ
2

− 2uβαu2x−
4
5

u3xyβ
2− 1

3
uyβαux−u4xβ

2− 1
6

u2
yβα− 1

5
u4yβ

2
)

− 1
2
(x+ y)

(
−1

2
αu2−βu2x−βu2y

)
,

J̃2 = t
(
−1

3
u3

α
2− 1

2
u2

yβα− 2
3

uβαu2x−
4
5

u3xyβ
2− 4

3
uβαuxy−

6
5

u2x2yβ
2

− 2uβαu2y−
4
5

ux3yβ
2− 1

6
u2

xβα−u4yβ
2− 1

3
uyβαux−

1
5

u4xβ
2
)

− 1
2
(x+ y)

(
−1

2
αu2−βu2x−βu2y

)
.

Example 3.8. Consider the modified (3+1)-dimensional Zakharov-Kuznetsov (ZK) equa-
tion [8]

ut = −α(uux +uuy +uuz)−β [(u2x +u2y +u2z)x +(u2x +u2y +u2z)y

+ (u2x +u2y +u2z)z]≡ F(t,x,y,z,u(2)). (3.27)

The uniformity condition applying to the function F leads to the weight system

w(Dt)+w(u) = 2w(u)+w(Dx), w(Dt)+w(u) = w(u)+w(Dx)+2w(Dy)
w(Dt)+w(u) = 2w(u)+w(Dz), w(Dt)+w(u) = w(u)+w(Dy)+2w(Dx)
w(Dt)+w(u) = w(u)+3w(Dy), w(Dt)+w(u) = w(u)+w(Dz)+2w(Dx)
w(Dt)+w(u) = 2w(u)+w(Dy), w(Dt)+w(u) = w(u)+w(Dx)+2w(Dz)
w(Dt)+w(u) = w(u)+3w(Dx), w(Dt)+w(u) = w(u)+w(Dy)+2w(Dz)
w(Dt)+w(u) = w(u)+3w(Dz), w(Dt)+w(u) = w(u)+w(Dz)+2w(Dy)
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whose solution is

w(Dt) = 3w(Dx), w(Dy) = w(Dx), w(Dz) = w(Dx), w(u) = 2w(Dx).

Setting w(Dx) = 1 gives w(Dt) = 3, w(Dy) = w(Dz) = 1, w(u) = 2, w(x) = w(y) = w(z) =
−1, w(t) = −3 from which we deduce the associated one parameter scaling symmetry
group as:

(t,x,y,z,u) 7→ (λ−3t,λ−1x,λ−1y,λ−1z,λ2u).

We obtain: d1 = 3, d11 = d21 = d31 = 3, R11 = R21 = R31 = 10, R1 = 10, R = 10.

• Computation of a conserved density ρ of rank R = 10 and its associated flux
We have:

Q01 = {u,u2,u3,u4,u5}, Q015 = {u5},
Q011 = {u,ux,uy,u2x,u2y,uxy,uz,u2z,uxz,uyz},
Q012 =

{
u2,uux,uuy,uuz,u2

x ,u
2
y ,u

2
z ,uu2x,uu2y,uu2z,

uxuy,uuxy,uuxz,uuyz,uxuz,uyuz} ,

Q013 =
{

u3,u2ux,u2uy,u2uz,uu2
x ,uu2

y ,uu2
z ,u

2u2x,u2u2y,u2u2z,

uuxuy,u2uxy,u2uxz,u2uyz,uuxuz,uuyuz
}

,

Q014 =
{

u4,u3ux,u3uy,u3uz,u2u2
x ,u

2u2
y ,u

2u2
z ,u

3u2x,u3u2y,u3u2z,

u2uxuy,u3uxy,u3uxz,u3uyz,u2uxuz,u2uyuz
}

,

Q1 = Q011∪Q012∪Q013∪Q014∪Q015.

Forming a candidate density as a linear combination of all elements in the set Q1 and
looking for the undetermined coefficients in such a way that both conditions (3.17)
and (3.20) are satisfied, we obtain

ρ =−1
2

αu2−βu2x−βu2y−βu2z.

Applying the three dimensional homotopy operator to the differential function
E = −Dtρ|ut=F(t,x,y,z,u(2)), with the help of the computer algebraic system Maple,
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yields the flux J = (J1,J2,J3), where

J1 = −4
5

ux2yzβ
2− 4

3
uβαuxy−

2
5

u2y2zβ
2− 1

3
uyβαux−u4xβ

2− 4
3

uβαuxz

− 6
5

u2x2zβ
2−2uβαu2x−

1
5

u4zβ
2− 2

3
uβαu2y−

4
5

ux3zβ
2− 2

3
uβαu2z

− 1
3

α
2u3− 6

5
u2x2yβ

2− 4
5

u3xzβ
2− 4

5
uxy2zβ

2− 1
5

u4yβ
2− 4

5
ux3yβ

2

− 4
5

u3xyβ
2− 1

3
uzβαux−

1
6

u2
z βα− 1

2
u2

xβα− 1
6

u2
yβα,

J2 = −1
2

u2
yβα− 4

5
u3yzβ

2− 1
6

u2
z βα− 4

5
uy3zβ

2− 1
6

u2
xβα− 4

5
u2xyzβ

2

− 4
3

uβαuxy−
4
5

uxy2zβ
2− 1

5
u4zβ

2− 4
5

ux3yβ
2−u4yβ

2− 2
5

u2x2zβ
2

− 6
5

u2x2yβ
2− 1

3
uyβαux−

1
5

u4xβ
2−2uβαu2y−

6
5

u2y2zβ
2− 1

3
uzβαuy

− 1
3

α
2u3− 4

3
uβαuyz−

2
3

uβαu2x−
2
3

uβαu2z−
4
5

u3xyβ
2,

J3 = −1
5

u4yβ
2− 4

5
uy3zβ

2− 2
5

u2x2yβ
2− 4

5
u3yzβ

2− 6
5

u2x2zβ
2− 6

5
u2y2zβ

2

− 4
5

u3xzβ
2− 1

5
u4xβ

2− 4
5

ux3zβ
2− 1

2
u2

z βα− 4
5

ux2yzβ
2− 1

6
u2

yβα

− 4
5

u2xyzβ
2− 1

6
u2

xβα− 4
3

uβαuyz−
1
3

α
2u3− 1

3
uzβαux−

1
3

uzβαuy

− u4zβ
2− 2

3
uβαu2y−2uβαu2z−

4
3

uβαuxz−
2
3

uβαu2x.

• Determination of a time-space dependent conservation laws of equation (3.25)
By using relations (3.18) and (3.19), we compute the conserved density

ρ̃ = t
(
−1

2
αu2−βu2x−βu2y−βu2z

)
+

1
3
(x+ y+ z)u

with the associated flux J̃ = (J̃1, J̃2, J̃3), where

J̃1 = t
(
−4

5
ux2yzβ

2− 4
3

uβαuxy−
2
5

u2y2zβ
2− 1

3
uyβαux−u4xβ

2− 4
3

uβαuxz

− 6
5

u2x2zβ
2−2uβαu2x−

1
5

u4zβ
2− 2

3
uβαu2y−

4
5

ux3zβ
2− 2

3
uβαu2z

− 1
3

α
2u3− 6

5
u2x2yβ

2− 4
5

u3xzβ
2− 4

5
uxy2zβ

2− 1
5

u4yβ
2− 4

5
ux3yβ

2

− 4
5

u3xyβ
2− 1

3
uzβαux−

1
6

u2
z βα− 1

2
u2

xβα− 1
6

u2
yβα

)
− 1

3
(x+ y+ z)

(
−1

2
αu2−βu2x−βu2y−βu2z

)
,

(3.28)
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J̃2 = t
(
−1

2
u2

yβα− 4
5

u3yzβ
2− 1

6
u2

z βα− 4
5

uy3zβ
2− 1

6
u2

xβα− 4
5

u2xyzβ
2

− 4
3

uβαuxy−
4
5

uxy2zβ
2− 1

5
u4zβ

2− 4
5

ux3yβ
2−u4yβ

2− 2
5

u2x2zβ
2

− 6
5

u2x2yβ
2− 1

3
uyβαux−

1
5

u4xβ
2−2uβαu2y−

6
5

u2y2zβ
2− 1

3
uzβαuy

− 1
3

α
2u3− 4

3
uβαuyz−

2
3

uβαu2x−
2
3

uβαu2z−
4
5

u3xyβ
2
)

− 1
3
(x+ y+ z)

(
−1

2
αu2−βu2x−βu2y−βu2z

)
,

J̃3 = t
(
−1

5
u4yβ

2− 4
5

uy3zβ
2− 2

5
u2x2yβ

2− 4
5

u3yzβ
2− 6

5
u2x2zβ

2− 6
5

u2y2zβ
2

− 4
5

u3xzβ
2− 1

5
u4xβ

2− 4
5

ux3zβ
2− 1

2
u2

z βα− 4
5

ux2yzβ
2− 1

6
u2

yβα

− 4
5

u2xyzβ
2− 1

6
u2

xβα− 4
3

uβαuyz−
1
3

α
2u3− 1

3
uzβαux−

1
3

uzβαuy

− u4zβ
2− 2

3
uβαu2y−2uβαu2z−

4
3

uβαuxz−
2
3

uβαu2x

)
− 1

3
(x+ y+ z)

(
−1

2
αu2−βu2x−βu2y−βu2z

)
.
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