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Abstract

We consider an initial-boundary value problem for the equations of one-dimensional
motions of a compressible viscous heat-conducting gas coupled with radiation through
a radiative transfer equation. Assuming suitable hypotheses on the transport coeffi-
cients, we prove that the problem admits a unique weak solution.
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1 Introduction

The purpose of radiation hydrodynamics is to include the effects of radiation into the hydro-
dynamical framework. When the equilibrium holds between the matter and the radiation,
a simple way to do that is to include local radiative terms into the state functions and the
transport coefficients. On the other hand radiation is described by its quanta, the photons,
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which are massless particles traveling at the speed c of light, characterized by their fre-
quency v € R, their energy E = hv (where 4 is the Planck’s constant), their momentum
p= h" Q, where Q € 52 is a vector of the 2-unit sphere. Statistical mechanics allows us
to descrlbe macroscopically an assembly of massless photons of energy £ and momentum
P by using a distribution function: the radiative intensity /(x,z, f),v). Using this intensity,
one can derive global quantities by integrating with respect to the angular and frequency
variables: the spectral radiative energy density Eg(x,?) per unit volume is then Eg(x,7) :=
%ffl(x,t,ﬁ,v) dQ dv, and the spectral radiative flux Fg(x,7) = [ [ QI(x,1,Q,v) dQ dv.

In the absence of radiation the hydrodynamical system is derived from the fundamen-
tal conservation laws ( mass, momentum and energy) by using the Boltzmann’s equation
satisfied by the f,,(x,V,r) and Chapman-Enskog’s expansion [12]. One gets then formally
the compressible Navier-Stokes system for matter. When radiation is taken into account at
a macroscopic level, supplementary source terms appear, coupling matter variables to ra-
diative intensity /, which is supposed to satisfy a transport equation: the so called radiative
transfert equation, an integro-differential equation early discussed by Chandrasekhar in [5].

Supposing that the matter is at local thermodynamical equilibrium (LTE) and in the
non-relativistic framework (the velocity of matter is less than the velocity of light: ii> < ¢?),
the coupled system satisfied by the density p, the velocity #, the temperature 6 and the
radiative intensity 7 in R> reads [26] [28] [4]

( 9,p +div,(pii) =0,

=
at(pﬁ) + divx(pﬁ® ﬁ) +V,p=div, § —SF,

= (1.1)
0;(PE) + divx((pE + p)ii) +divx(§— S i) = —Sk,
liI+Q V=38,
c ot

where £ = 2 2 + e is the total energy withe e the internal energy, S the viscous stress tensor
(we treat the matter as a newtonian fluid with viscous contribution), p the pressure, g the
thermal heat flux and Sy and Sg, are the radiative force and energy source terms, described
below.

Some remarks are in order concerning the relativistic characteristics of the transfer
equation (we refer to the paper by Buet and Despres [4] for a detailed analysis).

In fact this transport equation is written, as the hydrodynamical part, in Eulerian vari-
ables (also called laboratory frame in physics books [26]). However scattering and absorption-
emission processes are best described in Lagrangian frame (also called comoving frame),
and we need to use transformation formulas from special relativity to pass from a frame to
the other. We will affect an index O to a given quantity in the comoving frame and no index
for the same quantity in the laboratory frame.

Now we can describe the various coupling terms in the right-hand sides of (1.1) (see[25]).

In the radiative source splitted in two parts S = S, . + S, the first contribution

- \% " Vo 2 -
Sae(x,1,Q,v) = —70 .l (x,t,Q,V) + (70) c.B (x,t,Q,v) ,
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is the absorption-emission contribution, where variables appear in both frames

Qi S vV | = oyl Qi v
P d Op=— |0 (=2
Vo YL( c )Van 0 Vo c( c <1+YL>>]’
=2

—1/2
with the Lorentz factor y, = (1 — 2‘—2) , and the second one

V - (¢} V - -
Sy(x,1,0,v) = — 0 5 (x,t,Q,v) + 7/7(/) I (x,t,Q’,v’) sy,
A% T A%

fel}

1— &

:
o7 V-
-

In the (fz,v)—space we will use the invariance of the measure v dv dQ i.e.

is the scattering contribution with v/ =

v dv dQ = vy dvy dQy, (1.2)

and the following formulas for quantities in the laboratory frame

= (Y s, 5= (%) B0, Sue= () 0ok, 5= () 500 (3

\Y

The radiative energy is
Sp(r,1) ::/ S(x,1,8,v) 4O dv,
R; J§?

The radiative flux is

-

Sk(x,1) := 1/ Q S(x,1,,v) dQ dv.
cJr, Js2

In the radiative transfer equation (the last equation (1.1)) the functions 6, and G, appearing
in the radiative source S describe in a phenomenological way the absorption-emission and
scattering properties (frequency and angular transitions) of the interaction photon-matter
and the function B describes the thermodynamical equilibrium distribution.

Let us note that the foundations of the previous system have been described by Pom-
raning [28] and Mihalas and Weibel-Mihalas [26] in the full framework of special relativity
(oversimplified in the previous considerations). The coupled system (1.1) has been recently
investigated (in the inviscid case) by Lowrie, Morel, Hittinger [25], Buet, Després [4] with
a special attention to asymptotic regimes, and by Dubroca-Feugeas [8], Lin [23] and Lin-
Coulombel-Goudon [24] for numerical aspects. Concerning the existence of solutions, a
proof of local-in-time existence and blow-up of solutions (in the inviscid case) has been
proposed by Zhong and Jiang [31] (see also the recent papers by Jiang and Wang [18] [19]
for a 1D related “Euler -Boltzmann” model). Moreover, a simplified version of the system
has been investigated by Golse and Perthame [13].

At present time, the multidimensional situation described by the system (1.1) is far
from been understood even at the formal level (however see [10] for a simplified treatment
of radiation) and we restrict our study to the monodimensional geometry. The fluid part of
system (1.1) reads
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p‘C + (pv)y = 07
(pv)1+(pvz)y tpry= (;va)y_ (SF)g (1.4)
1, 15
pletzv + |pv|e+ Vv | +pv—x0,—uvvy| = —(Sg)r,
2 . 2 y
and the transfer equation is

1
I +ol, =S, (1.5)
c

in the slab (0,L) x R, with L > 0, where the density p, the velocity v (with |v| < ¢), the

temperature 6 depend on the coordinates (y,t). The radiative intensity I = I(y,T,V,®),

depends also on two extra variables: the radiation frequency v € R and the angular variable

o € S':=[~1,1] (let us stress that here S! is not the unit circle). The state functions are the

pressure p, the internal energy e, the heat conductivity K and the viscosity coefficient u .
The absorption-emission term is

3
Sa@()’vT,Va(’)) = \;70 Ga(V07p79) [(J) B(Vo,e) —I()’,'CvV?(O)] ) (16)
0
and the scattering term is
Vv A% 3
Ss<yvrav70)) = 70 GS(VOvpae) [(V) i()’,@VO,e) —I(y,T,V,(D)] ) (17)
0

where I(y,7,v) := 1 [1, Y I(y,1,V, 00) do.

In the following we assume that the fluid moves at a low speed so we consider a one
order model, neglecting terms of order greater than 1. Then we take y; = O for the Lorentz
factor and in the previous formulas

_ /
Vo = (l—g)v, Vv = <1_(0)c0)v> v, and (oozo)—(l—(oz)X. (1.8)
C C C

The function B(Vvg,0) depending on the temperature and the frequency, describing the equi-
librium state.
Typically, taking

RPN iy ) -
B(vo,8) =2hvic 2 (e —1) | (1.9)

where kg is the Boltzmann’s constant and 4 is the Planck’s constant, corresponds to the
Planck’s equilibrium distribution of photons in a cavity at temperature 6 (black body).
The coefficients 6, and G are positive but their evaluation is a difficult problem of

quantum mechanics and their general form is not known (an expression of 6, used for stars

c(o _ vy
of moderate stars is given by the Kramers formula 6,(vo,0) = Q (1 —e k3%> , where
Vo
C is a positive function).
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In the following we will also assume a density dependence and growth hypotheses of
G, and O, in function of temperature and density.

Defining the radiative energy

|
ER::f/ / I(y,T,v,®) dv dw, (1.10)
cJ-1Jo
the radiative flux 1
FR::/ / ol (y,7,V,0) dv do, (1.11)
-1Jo
and the radiative pressure
1o,
PR::f/ / o’ I(y,T,v,m) dv do, (1.12)
cJ-1J0

one defines in turn the radiative energy source

1 oo
(Sp)r = /_]/0 S(y,T,v,m) dv do, (1.13)

and the radiative force

1o
(SF)R::f/ / oS(y,T,v,®) dv do. (1.14)
cJ-1Jo

Taking benefit of the one-dimensional geometry, it is now convenient to switch now to
Lagrange (mass) coordinates relative to matter flow: (y,T) — (x,7) with the transformation
rules [3]: dy — pIy and d; +vdy — o;.

The fluid part of the previous system reads now

nt:‘}xv
Vi :Gx_n(SF)R’ (115)
1,
etV ) = (ov—g),~(Se)e
t
and the transfer equation is
L4+ (cog —v)I = ¢S, (1.16)

in the transformed domain Q := Q x R* with Q := (0, M) (M is the total mass of matter in
the slab (0, L)), where the specific volume 1 (withm := %), the velocity v (with |v| < ¢), the
temperature 0 and the radiative intensity / depend now on the Lagrangian mass coordinates
(x,1). We also denote by 6 := —p+u % the stress and by g := —K % the heat flux.

We denote by O = (0,00) x S! the (v, ®)-space, with Oy = (0,%0) x (0,1) and O_ =
(0,00) x (—1,0), and by Oy the corresponding (vo, ®p)-space for the Lagrangian (comoving)
variables.
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Taking into account transformations formulas (1.3), the source term in the right-hand
side of (1.16) takes the simple form

(S(x,t,V(),(D()))Q = Ga(Vo;T],e) [B(V();e) —I(X,I;V(),O)())]

1 1
+065(vo;M,0) L/ll(x,t,vo,(o’) dm’—l(x,t,v,m)]. (1.17)

In the last term we used the following formula adapted from Bruet and Despres (see Ap-
pendix A in [4])

3
Vo \Y% IERIY Lo
— o, —) =/ =1 —1
. 05(v0:p,0) [(VO) 2/_1v, (x,1,V, ) do' = I(x,1, v, 0)

1 1
:GS(V()ap’e) |:2/110(X,Z,V0,0),) dw/_IO(x7t>V0>a)0):| .

Moreover as o is frequency-independent, using formulas (1.2) and (1.3), the following
relation holds, characterizing the isotropy of the scattering in the comoving frame

/Vvi’ss(v,m) dmdv:/ (85)0(Vo, @) de dvy = 0. (1.18)
o Qo

From the last equation (1.15) and the definitions (1.10)-(1.14), one derives the equations
(1), + ((co—v)I), = enSo. (1.19)
and after integrating in frequency and angular variables

(MER), + (Fr — VER), =M (SE)g
(1.20)

(MFR), + (PR —VFR), =N (SF)g-

From now on, we make the nonrelativistic approximation Oy = O and, unless we specify
the contrary, we suppress the index O in the comoving quantities.
We consider Dirichlet-Neumann boundary conditions for the fluid unknowns

v|x:0 = V|x:M = 0?

(1.21)
qli—0 = 9=y =0,
and transparent boundary conditions for the radiative intensity (see [7])
Il,_,=0 forme(0,1)
(1.22)

I,_yy =0 forwe(-1,0),
for t > 0, and initial conditions

N—o=1°x), v[,_o=2"(x), 8],_o=6"(x), on Q. (1.23)



Global Weak Solutions to the 1D Compressible Navier-Stokes Equations 29

and
1],_o = 1°(x,v0,0) on Qx O. (1.24)

Pressure and energy of the matter are related by the thermodynamical relation

Finally we assume that state functions e, p and K (resp. 6, and G;) are Cc? (resp C%) functions
of their arguments for 0 <M < e and 0 < 6 < oo, and, for any N > 0 we suppose the
following growth conditions forn >m and 6 > 0

e(M,0) >0, c1(1+6") <ep(n,0) <Ci(n)(1+6"),
_C2n72(1 +el+r) < pn(n’e) < _C2n72(1 —|—91+r),
[Pe(n,8)| < C3(nm~' (1 +6),
np(n,8) < Cy(1+6'),
es(M)(1+6') < p(n,8) < Cs(n)(1+6'*),
ce(1467) <x(n,8) < Cs(n)(1+67),
K (0.0)] + licqn (. 8)] < Co(m)(1+69), (120
NS, (viM,0)B"(v,0) < Cs0%f(v) form=1,2,
N4 (V,M,0) < Cog(v),

(|(an| +I(0a)el ) (14-B+|Bol + B.]) < Cuoh(v).

noy(vin,0) < Crik(v),

(|(0)a] +1(00)el) (14 B+[Bol) < Crat(v),

\

where the numbers ¢;,C;, j = 1,...,12 are positive constants and the functions f,g,h,k, ¢
are such that
f7g7h € Ll (RJr) me(R+)>

and
ka lc L1+Y(R+) mLW<R+)a

for an arbitrary small y > 0.

The importance of relative growth of the exponents » > 0 and g > 0 has been the subject
of a number of works in the context of real gas flows. A common choice, relying on physics
motivations and covering a number of situations (see [30]) is r € [0,1], ¢ > r+ 1, used for
example by Dafermos and Hsiao [6], Kawohl [20] or Jiang [16].
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Recently, the following “quasi-optimal” choice was proposed by Qin [29]

( g>1/3 if0<r<1/3,
q>2r+1)/5 if1/3<r<4/7,
q>(5r+1)/9 if4/7<r<1, (1.27)

q>(9r+1)/15 if 1 <r<13/3,

g>(11r+3)/19 if13/3<r.

For simplicity, we choose the previous choice r € [0, 1], ¢ > r+ 1, but one can check that our
results also hold for the general choice (1.27). However, for technical reasons made clear
below, we must adapt the method of existence proof given by Dafermos-Hsiao, Kawohl,
Jiang. In fact the original strategy followed by these authors does not apply verbatim in
our case, due to the coupling to the transfert equation, and we use the clever idea of Qin to
consider the uniform bound ||6||;~(¢,) for the temperature as the fundamental quantity.
Finally we also suppose that
0<a<r

Concerning the viscosity, we suppose that it does not depend on temperature and that

0<uo<um) <, (1.28)

for some positive constants iy and ;.
We study weak solutions for the above problem with properties

T] ELDO(QT)? nt ELDO([(LT]?LZ(Q))’
ve L>([0,T],LH(RQ)), v; € L=([0,T],L*(Q)), v, € L=([0,T],L*(Q)),
o, € L~([0,T],L*(Q)), (1.29)

6 €L7(0,7],L9(%)), 6, €L([0,T],L*(Q)),

1€ L7([0,T],L' (@ x 0)),

where Q7 := Q x (0,T), and we assume the following conditions on the data:
(M°>00nQ, N’ e L(Q),

WeL2(Q), Wel*(Q),

(1.30)
80 € L?(Q), infa8° >0,

\ °cL'(Qx0).

Then our definition of a weak solution for the previous problem is the following
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Definition 1.1. We call (n,v,0,1) a weak solution of (1.15) if it satisfies

t
n(x,z) :no(x)+/0 vy ds, (1.31)

for a.e. x € Q and any t > 0, and if, for any test function ¢ € L*([0,T],H'(Q)) with ¢, €
L'([0,T],L*(Q)) such that ¢(-,T) = 0, one has

/ [¢tv+¢xp - /«@x‘}x} dx dt
0 n

= [ 0(0.01°(x) dx, (132
/Q [d)z (e+; v2> + 0, (ov—q) +¢T](SE)R] dx dt

- [40.9 <e0(x)+; VO(x)2> dx, (1.33)

and if, for any test function y € L>([0,T],H' (Q x 0)) with ¢, € L' ([0, T],L*(Q x O)) such
that o(-,T,-,-) =0, one has

/ [0 + & (v —c®) I + ¢S] dv do dx dt
ox0

=/ 0(0,x) N’ (X)1°(x) dv dw dx. (1.34)
x0

In the following we use the following notation for the integrated radiative intensity
I(x,t):= / I(x,t;0,V) do dv.
0

Then our main result is the following

Theorem 1.2. Suppose that the initial data satisfy (1.30) and that T is an arbitrary positive
number.

Then the problem (1.15)(1.21)(1.22)(1.23)(1.24) possesses a global weak solution sat-
isfying (1.29) together with properties (1.31), (1.32) and (1.33).

Moreover one has the uniqueness result

Theorem 1.3. Suppose that the initial data satisfy (1.30) and that T is an arbitrary positive
number.

Then the problem (1.15)(1.21)(1.22)(1.23)(1.24) possesses a global unique weak solu-
tion satisfying (1.29) together with properties (1.31), (1.32) and (1.33).

For that purpose, we first prove a classical existence result in the Holder category. We
denote by C*(Q) the Banach space of real-valued functions on Q which are uniformly
Holder continuous with exponent o € Q, and C*%/2(Qr) the Banach space of real-valued
functions on Q7 := Q x (0,7) which are uniformly Holder continuous with exponent o in
x and o,/2 in . The norms of C*(Q) (resp. C%%2(Qr)) will be denoted by || - || (resp.

- [le0)-
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Theorem 1.4. Suppose that the initial data satisfy

(no,no W00 99 9Y g0 IO,I)?) € (C“(Q))lo,

X 'y Vx Y xxo IYXY VXX

for some . € Q. Suppose also that n°(x) > 0, 8°(x) > 0 and I°(x) > 0 on Q, and that the
compatibility conditions

00(0) = 60(M) =0, +(0) =+"(M) =0,
and
1°(0,,v)=0in Oy, I°(M,®,v) =0in O_,

hold. Then, for any T > 0, there exists a unique solution (N,v,0,1) withm >0, 6 >0
and I > 0 to the initial-boundary value problem (1.15)(1.21)(1.22)(1.23) (1.24) on Q =
Q x [0,T] x O such that

(nanxantvnxtyva V)mvtavxxveaexvetyex,h Ia I)C) S (Ca(QT))14)

and

(Met, Var, Oxr) € (LZ(QT))3.

Then Theorem 1.2 will be obtained from Theorem 1.4 through a regularization process.

Let us recall that the investigation of 1D viscous flows for compressible media goes
back to the pioneer work of Antonsev-Kazhikov-Monakov [3] (see also [14] [15] and [29]
for more recent presentations).

The strategy we use to prove these results consists in an adaptation to the radiative case
of the ideas of Dafermos-Hsiao [6], Kawohl [20], Jiang [16] and Qin [29]: in Section 2
we give necessary a-priori estimates sufficient to get existence and uniqueness of a solu-
tion (Section 3). Finally we give in Section 4 a simple negative result on the absence of
stationary solution for the previous problem.

2 A priori estimates
Let us suppose that the solution is classical in the following sense
nec(Qr), p>0,
v, 8 C'([0,7],C%(Q))NC’(0,T],C*(Q)), 6> 0, .1
1eCY(0r,C%(0)),
In the following T be an arbitrary positive number and we denote by C or C(T') various
positive constants depending on 7' and the physical data of the problem and by K various

positive constants depending also on the physical data of the problem but not on 7.
We first prove the following regularity result
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Theorem 2.1. Assuming that the initial-boundary value problem (1.15)(1.21)(1.23) has a
classical solution described by Theorem 1.4, the solution (M, v, vy, 0,0,,1) is bounded in the
anisotropic Holder space C'/31/°(Qr) such that

T3+ T3+ el lys + 1181z + [116:d11/3 < €

and
1]]li3<C.

Moreover
0<n<n<m, 0<6<6<86,

where N, M, 0,0 are positive constants depending on T, the physical data of the problem and
the initial data.

We first quote a simple mass-energy estimate

Lemma 2.2. Under the following condition on the data
2 0y + IM°lLs ) + 16 iros @) + 121 o, sty S N (22)
there exist a positive constant K = K(N) such that

1. the mass conservation
/ Ndx= / n° dx, (2.3)
Q Q

2. the energy equality

1 t poo pl
/ [e—l—vz—}—nER] dx+// / ol (M,s,v,0) dv do ds
Q 2 0oJo Jo

t poo 0
—/ / / ol (0,s,v,®) dv do ds
0oJo J-1

:/[y+%wy+wﬁ}w, (2.4)
Q 2
where E§(x) = 1 [ [ I°(x,v,®) dv do,
3. the estimate
Il z=0,7:21 @) + VIl = (0,722()) + ||9HL°°(0,T;L6(Q)) <K, (2.5)
forany 1 <d<r+1,

4. the condition

0(x,t) >0 forany (x,t) € Or, (2.6)

hold.
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Proof. 1. Integrating the first equation (1.15) and using boundary conditions give (2.3).
2. Integrating on frequencies and angular momentum the first equation (1.20) and plug-
ging the result in the third equation (1.15), we get

1
<e+ 3 v +T]ER> = (ov—q—Fr+VER),. 2.7)
t

Integrating on Q and using boundary conditions gives (2.4).

3. Estimate (2.5) follows directly from (1.26), (2.3) and (2.4).

4. Using (1.26), the positivity of 8(x,) follows from that of 8°(x) after the maximum
principle applied to the third equation (1.15) [J O

Lemma 2.3. Radiative intensity satisfies the following bounds

max//nl(x,t;v,u)) dodvdx <C(T), (2.8)
o7]JaJo
/ /noa(n,e;v,w)l(x,t;v,co) dodvdxdt <C(T), (2.9)
orJo
max//nﬂ(x,z;v,m) do dv dx < C(T), (2.10)
o01] JaJo
/ /nGa(n,G;v,(x))Iz(x,t;v,m) do dv dx dt < C(T), (2.11)
orJo

/ /ncs(n,e;v) (i(x,z;v)—l(x,z;v,m))2 dwdv dx dt < C(T), (2.12)
orJo

<C(T). 2.13)

}/ N(Se)g dxdi| <K, ’/ N (Sr)p dx dt
Or Oor

Proof. 1. Integrating equation (1.16) on Q x O and using boundary conditions, we get
d
—/ / N/ do dv dx+/ (co—v(M,t))I(M,t;v,®) do dv
dt JaJo 0

—/ (coo—v(0,1))1(0,t;v,®) dmdv+/ /nca(vo;n,e)ldmdv dx
o QJO
://nou(v;n,e)B(v;v,e) do dv dx
elo

+//ncs(v;n,6) [1(x,1,v) —I(x,1,v,00)] dodv dx, (2.14)
alo

As o, does not depend on o, the last integral in the right-hand side is zero and, using bound-
ary conditions, the boundary terms in the left-hand side are non negative, so integrating on
time, we find

//nl(x,t;v,co) do dv dx—/ /nolo(x;v,w) do dv dx
alo alo

T T
+c/ / ol (M,t;v,0) do dv dt—c/ / ol(0,1;v,®) do dv dt
0o Jo, 0o Jo_
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+c/ /ncal dw dv dxdt:/ /ncuB dodv dxdt.
orJo orJo

Observing that, after (1.26), the integral in the right-hand side is bounded by Cs [,,, 0 [, f dwdv dx dt,
we get then (2.8) and (2.9) by using (2.4).
2. Multiplying (1.16) by I, integrating on £ x O and using boundary conditions, we get

5 dt//ﬂlz do dv dx+ = / (co—v(M,0)) > (M,1;v,0) do dv

1
—7/ (cw—v(0,2))I*(0,1;v, ®) dwdv+//n0a12 do dv dx
2Jo QJo

+//n0s(i—1)2 do dv dx://ncsaBldmdvdx.
alo alo

Integrating on time, using (1.26) and estimating the right-hand side by Cauchy-Schwarz,

we have | |
E//1112 du)dvdx—f//n(lo)zdu)dvdx

2//coI2Mtvw)d0)dvdt—f//mIZOtvm)dmdvdt

O+

+/ /ncalz dxd(odvdxdt—i—/ /ncs (I-1)* do dv dx d1
QT o QT (@]

1 1
<~ /ncsal2 do dv dx dt + - / /ncaB2 do dv dx dt.
2 JorJo 2 JorJo
As, using (1.26), the last integral in the right-hand side is bounded by
SCS/ Ga/fdcodvdxdt,
Or o

we get (2.10), (2.11) and (2.12).
3. Using the definitions of the radiative sources, we get the inequalities

‘/ N(Sg)g dx dt g/ /ncadedwdv dx dt, (2.15)
Or OorJo
and
'/ N(Sr)g dxdt g/ /nsadedmdvdxdt
Or OrJoO
—l—/ /ncs|i—ll dx dw dv dx dt. (2.16)
orJo

Using (1.26), the right-hand side of (2.15) is bounded, and using (1.26), Cauchy-Schwarz
inequality and (2.12) we bound the right-hand side of (2.16) which proves (2.13) O [

Lemma 2.4. Under conditions (2.2) on the data, the following entropy inequality holds

KkM,0) »,  uMm) »
< .
/( e 0: + e dxds <K, (2.17)
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Proof. Total entropy s = s, + sg is the sum of the entropy of matter s,, and entropy of
radiation sg.
From the second principle of thermodynamics

e(sm)t = €& +pnl

Using (1.15), (1.8) and (1.18), one finds

KO, uv? n / mv
n), = — [ — e 2.1
(Sm), <n9>x+ 0 n62 S dw dv. (2.18)

From statistical mechanics mechanics [27], we know that the entropy per mode of a
boson gas is kg[(n+ 1)log(n+ 1) — nlogn], where n is the occupation number related to /
by
I
2h V3
Multiplying by the number of modes, we find the entropy per mass unit

n=n(l):=

= [ 2kpv?
SR:T]/O /S1 3 [(n+1)log(n+1)—nlogn] dv do.

Using the last equation (1.15), observing that for any regular function n — %,(n) one has the

identity
3

J— —_— 70 /
(), +[(co—v)x], = 53 XS

and choosing x(n) = (n+ 1)log(n+ 1) — nlogn, we get after a direct computation

2%
[/ /1 5V o) [(n+ 1) log(n + 1) —nlogn] dv do
S
— %5
n/o /sl hv
/m/ kj o n+1
N o Jst hv & n

o k 1
ZT]/ / —Blog’hL 6.(B—1)dvdw
o Jsthv

n

< [k 1 -
+n/ / -5 lognJr o,(I—1I)dvdw,
0 Jsthv

n

X

=: Og. (2.19)

Decomposing

and checking the identity

the right-hand side of (2.19) reads

QR:n/OOO/Sl:f, [Iogn(’izl—;l —logn(B)—H] 6,(B—1)dvdw



Global Weak Solutions to the 1D Compressible Navier-Stokes Equations 37

il il
+§ (Se)r— g v(SP)r
1 I+1 -
+T]/ / [ + —log n( ):F o;(I—1) dv do.
st h n(l) n(l)
Asu — log is decreasing for u > 0, the first and last terms are positive, and we get
finally
e 2k3V2
(s), + / / Y (co—v) [(n+1)log(n+ 1) — nlogn] dv do
0o Jst ¢ .
e B n(I) +1 n( +
= — |1 —1 = os(/—1)dvdw
0 [ et <o ™0t o)
* [ kg n(l)+1 n(B)+1
— —1 B—-1I)dvd
+n/0 /Sl hV |:0g n([) Og n(B) Ga( ) vaw
L (1 _ 9) S0 do dv. (2.20)
0 Jo c ’
Using the technique of [16] and defining the free energy y := e — Os,, of the fluid, with
Yg = —s;; and Yy = —p, let us introduce the auxiliary function

EM,8) :=w(n,0) —y(1,80) — (M —1)wn(1,80) — (6 —60)ye(N,0) — Bpsk-

A direct computation gives

1
<ZI—|— 3 v2+nER> = [ov+p(1,080)v — g — Fr + vERg], — 0os;.

t

Plugging (2.18) and (2.20) in the right-hand side, we get finally
1 u? k0?2
E+ -V 4NE 0
( +2v +n R>t+ 0(n9+n9 >

* [ kg n(I)+1 n(l)+1 -
+90n/0 /SIR [log () —log n(D) }Gx(l—l)dvdco

+60m /Ow /51 % [log n(’iz;l)—l —log n(f();)_ 1} 6,(I—B) dvdn

= [ov+p(1,80)v —q — Fr + VER

2k
+90/ /1 V> (cw—v) [(n+1)log(n+ 1) —nlogn] dvd(o] )
s

X
Integrating on Q; and using (2.4) and (1.21) the contribution of the first three boundary term
is zero. Moreover using (1.22) to compute the contribution of the radiative terms boundary
terms we have the final equality

1, u? k62
— E
/Q<£+2v +n R> dx+90/ <n9 102 dx ds
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_90/ / /Sl [ J)r] logn(?(;)_l] o,(I —I) dv do dx ds
_GO/Q[T]/ /slhv [ nI—)H logn(f();;l] 6,(I—B)dvdwdxds
+/0 /om/o ol (M,s;®,v) dv do ds
/t/m/olo)l(o,s;o),v) dvdwds

12k
—1-90/ / / BV o [(n+1)log(n+ 1) —nlogn|(M,s;®,v) dv do ds

02k
_90/// BV o [(n+1)log(n+ 1) —nlogn)(0,s;®,v) dv do ds

1
_ / (ZO oY +n°E2> dx. 2.21)
Q 2
Now we argue in the same way as [16] noting that, by using Taylor formula, for any n > 0
E(N,6) —w(™,0) +w(n,60) + (6 —60)we(N,0) — Bosr

=Wy(N,00) —W(1,60) — (M —1)yn(1,60) >0,
and that

1
W(1,8) = (n,B0) — (0~ B0)a(n,8) = —(0—80)? | (1—c)yoo(n,0+ (60— )) dor.
Using Weg = —07'eg and estimates (1.26), we find

K(6+6'") —K.

FNY.

v(N,0) —y(n,00) — (6—60)we(n,6) >

Now one checks by elementary computations that NEr — 0gsg > K, so we deduce that
1
T(n,6)+nEr > £ K (04 0'*") —K,

and by plugging this into (2.21) we conclude, after (2.4), that (2.17) holds [ O

Lemma 2.5. Under the previous condition on the data (2.2), there exists positive constants
M and M| depending on T and the data, such that

n<n(xz) <M for(t,x) € Qr. (2.22)

Proof. 1. Introducing the strictly increasing function s — M (s) := [} £ d& one observes
that M maps (0,infon] onto (—o0,0). So the lower bound in (2.22) follows after

M (x,1)) > —C onQr. (2.23)
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Using (1.20), the second equation (1.15) rewrites
(v+A); = (6—B)y,

where A(x,t) :=nFg and B(x,t) := Pg — vFj.
If O(x,1) == [y o ds+ [y 0 dy+ [y A° dy, then ¢ satisfies the equations

q)x = V+A7

and

p(m)

=By —p-B.
o n

Multiplying this last equation by 1 we find that

(M)r = (vO)x +u(M)vy —v? — pn—MPr.

Integrating on Q;, we find

/Qdm dx:/g(u(n)vx—pn—vz—nPR) dx ds

0,,0
+ /Q o'n° dx. (2.24)

Using (2.3) and a standard argument of [3], there exists a point X (r) € Q such that ¢(X(¢),1) =
% Jo M dx with R := [ dx. Then after the definition of ¢ and (2.24), we find

/OIG(X(I),t) ds:/g(,u(n)vxfpnfvzfnPR) dx ds

+ / e / y)dy dx — /OX(Z)VO(y) dy. (2.25)

Now integrating first on [0,z], then on [X(¢),x] the second equation (1.15) rewritten as
My = vi + px+M(SF)g, (2.26)

we find

M (x0) = ')+ [ pdse [ (00 =10) dy

+/O o(X(t),t) ds+/X(t)/0 N (SF)g dt dx, (2.27)

and using (2.25), we get

M) = W)+ [ pds [ (0010 dy

+ /Q (u(M)vy — pn—v* —MPg) dx

X (1) X t
+/n / y)dy dx — / V() dy+/ /n(SF)R dr dx. (2.28)
0 X(1)J0o
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Let us estimates all of the contributions in the right-hand side.
Using Cauchy-Schwarz inequality, we know after a standard argument gives (see [14])

1/2
that 0'/2(x,r) <C+C (fQ (1+6°) % dx) , which implies

7\02
/maxe ds<C< wd d)
o mMe?

Then, using (2.3) and (2.17) we get

‘/ e dx ds

t
§C+C/ maxe(-,t)/ndxdsgC.
0o Q Q

1 u? 1
< = X _
< Z/Q, o dxds—|-2 Q[T]deds

We have also, using (1.26)
/ npdxds<C.
O

Using Lemma 2.3, one get finally that

/nPRdx://nmzldmdvdxg//nldmdvdx§C7
Q alo oo
< [ [ ni(sr)e dr ax

0 JOo

S/ /n(GaB-i-GaI—I—GS\IN—ID dodvdxds <C.
; J O

and )
N(Sr)g dt dx
0

We conclude, by plugging all of these estimates into (2.28) and using (2.4), that (2.23) is
valid, which implies the lower bound in (2.22).

2. It is clearly sufficient to get an upper bound for M (n). Revisiting the previous proof,
we find

t t
M(n)§C+C/ pds§C+C/ m§X91+rds.
0 0

But .
D::/ max 0! " ds§C+C/ 0"(0,| dx ds
0 Q O
1 1+rn2

<CH+-—— | N0 dxds+C X dx ds dx ds
2l o) o o, M6?

1 t
§C+f/ max 8" ds.
2J0 @

Then we see that .
/ max 0" ds < C, (2.29)
0o Q

which implies that D < C then M (n) < C and ends the proof [ O
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Lemma 2.6.
C—CV (1) <0 (x,1) <C+CV(1), (2.30)

where V(t) :== [q 1;26‘1 02 dx, for any A < %ﬂrl.

Proof. Just use the inequality 8 (x,r) < C +C [,0*71|6,| dx together with (2.17) and
Lemma 2.5 [ O

Lemma 2.7. Foranyt € (0,T)

/ (Sg)p dxdr <C, (Sp)% dx dt < C. (2.31)
Or Or

Proof. After the definition of (Sg), and using (2.22), we get

2
/ (Se)7 dxdrg/ (/ nGaBd(ndv) dx ds
o o \Jo
2 2
+/ (/ncaldwdv> dxds+/ (/ nos(I—1) du)dv> dx ds
o \Jo o \Jo

= J1+Jr+Js.

As J3 =0, we estimate J; and J,.
After (1.26) and (2.29), we have first

t t
5 < C/ max 0%% ds < c/ max0'" ds < C.
0o Q 0o Q

Then applying Cauchy-Schwarz inequality and using (1.26) and Lemma 2.3, we get

1 * 1 o
ngf/ / ncsadmdvdxderf/ / No.I* dw dv dx ds < C,
2JorJo 2 Jor Jo

which implies the first bound (2.31).
In the same stroke one get the second bound (2.31) [J ]

Lemma 2.8.
/ vidxdr <C. (2.32)
Oor

Proof. Multiplying the second equation (1.15) by v and integrating by parts on O, for any
t €0,T], we get

/ Vdr+ [ E v2dx ds < C—I—/ plvi| dx ds+ﬁ/ [v(Sg)r| dx ds. (2.33)
Q oM O O

To get (2.32), it is sufficient to observe that in the right-hand side, the last term is
bounded after Lemma 2.7 and that we can estimate the first integral by

1
/p]vx\dxdsgf/ Ev)zcdxds—i-C p*dx ds
o 2 /oM o

1 t
< f/ Ev)zc dxds+C/ max 0" ds,
2J/o.M 0o Q

where the last term is bounded after Lemma 2.6. Plugging this into (2.33), we get (2.32) [J
O
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After Qin [29], we introduce the auxiliary function

T(t) :=1+max0(x,s).

O

Lemma 2.9. The following estimates hold for anyt € [0,T]

1.

t
/ max v’ ds < C,
0o Q

/ (1 —|—9‘1+1+’) Vdxds < C,

t

n(l)a]x/ 2dx+/ +0'") nidxds<C.
t

/ (14677 ) nidxds<C.

t

Proof. 1. Asv(x,t) < CfQ v2 dx, (2.35) follows from (2.4).
2. One has

t

after Lemma 2.6.
3. From (2.26)

1 d

3 E/Q(ﬂ\/[x—v)2 dx:/Q(M—V)Pnnxdx+/

t
g/ mgx(1+eq“+’) ds <C,
0

+/ SF)R dx.

The first integral in the right-hand side reads

| o=y pancdx= [ (600 [ (o,
Q Q M Q

As, after (1.26), the first integral in the right-hand side is bounded by

we have

1
—c/ M, —v)* (1+0) — dx,
29( V) ( )nu x

2 r 2
/Q(:Mx—v) dx+/g(1+e+1)(%—v) dx

t
/ (1+eq+1+’) V2 dxdsg/ mélx(l—i-ﬂ‘”p”)/v2 dx dt
0 Q

— V) peBy dx

—v) P gy,

u

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)
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<C/ —v) (1+671) 6, dx+C/ | M —v| (1+6") |v] dx

+C [ 9= v|nl(Se)el d

Integrating in ¢ and using Lemma 2.7 we get

/(%—v)z det [ (14070 (9, —v)? dx ds
Q O

<C+C| (1+07")6ldxds+C | (1+6)v* dxds.

O O
As r—1 < g—2 and maxg 0! < V(¢), the right-hand side is bounded, which ends the
proof of (2.37).
4. we have

t
/ (1+67t 1) 03 dxdsg/ max/ (146714 max/ N2 dx ds
o @ Jo 04 Jo

t

t
< C/ max/ (1 +9q+1+r) ds <C,
0o Q Jo
where we used (2.37) and Lemma 2.6 [

Lemma 2.10. The following estimates hold for anyt € [0,T]

1.
/v)zcdx—i—/ V2odxds <CTP1,
Q O

where B = max{2r —q+2,0}.

max/ v2(x,s) dx+/ v2dx ds < CT™,
01 Jo o)

t
/ maxvﬁ ds < CTB3,
0o Q

where B3 = B.

(2.39)

(2.40)

(2.41)

Proof. 1. Multiplying the second equation (1.15) by v,, and integrating by parts on Q, we

get

1 d /
5 E,/QV)ZC dx:‘/gvaxde—/Q |:<ﬁ> nxvx+;lvxx:| Ve dx ds

—/ n(SF)RVxx dx.
Q

Integrating now in ¢ and using Cauchy-Schwarz inequality

/vﬁdx—i—@/vﬁxdxds
Q n Jo
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gc+c/ (1+92’+2)n§dxds+c/ nividxds+C | (1+6)67 dxds,
O O O

<c+c (1+e’+q+1)n§dxds+c/ maxv)%/nidxds
O o Q Q

+C [ (1+6%)6: dxds,
O

t
< C+C/ V(s) mQaXOZ’”*q ds,
0 1

after Lemma 2.9, which implies (2.39).
2. After the elementary inequality |vy| < C [q |vi| dx, we have

t
/maxvﬁ ds§C/ V2, dx ds,
0 Q ;

which implies (2.41) after (2.39).

3. Multiplying the second equation (1.15) by v, and integrating by parts on Q, we get

/
/v,2 dx:/va, dx—/ [(,u) nxvﬁ—E vxx] Vs dxds—/n(Sp)Rv, dx.
Q Q o [\nN n Q

Integrating in ¢

/v,zdxds—k/gvfdng—i-C/Q pﬁdxds+c/Q vl dix ds

3/4
§C+Cnbax(/ v%dxds) (/ v%dxds)

1/4

1/2
§C+Cmax</ vidx) (/ v)zcxdxds> )
[0,1‘] Q Qt

which implies (2.40) O

1/4

Lemma 2.11. The following estimates hold for anyt € [0,T]

1.
/ (1+677 1) v dxds < cTh,

t

where By = 1.

/ (1+67772) v dx ds < cThs,

t

where Bs = min{1+ Ba,q+r+2}.

/ (14671 vy dx ds < CTPs,
o

where B¢ = min{%, % +1}.

(2.42)

(2.43)

(2.44)
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/ (1+697") vt dxds <CTP, (2.45)

where B7 = min{q> +2B1,q —r+ %}

Proof. 1. After (2.39)

t
/ (l—l-qu“rH)v%dxdsSC-f—/V(s)/v)%dxdsgC—i—C‘TBl.
0 Q

t

2. We observe first that

/ (1+6772) 32 dx ds < CTPH!,

t

But we have also

/ (1 + 9q+r+2) v)zc dx ds < C‘I‘Hr_z/ v)zc dxds < CTI" 2,

t t

These estimates give (2.43).
3. We have

t t
/ max (1+077) [, * ds < / max (1 —&-Gg(qHH)) ve|? ds
0 Q 0 9

SC/ ve|? dxds+C/ V34 (s)|vi|? dx ds
t Qt

3/4
SCmax/v)%dx</ vﬁdxds) (/ vjzcxdxds>
[0 Jo i O

5/4 1/4 s
+C max/ V2 dx / V2, dx ds <CT-.
[04] Ja O
But we have also

t t 5/4 1/2
/ max (1+677") |v,? dsgC‘Tq“/ (/ V2 dx> </ Vir dXdS> ds
0 Q 0 Q O

3
< cTIH

1/4

These estimates give (2.44).
4. If we note ¢ := max{% ,0}, we observe that

/(1+9"_’)vidxds§C‘Tq2/ (1+9%ﬂ>vidxds.

1 t

1/2

t 3/2
< C‘T‘”/ { </ V2 dx) </ V2. dx ds) ds
0 Q O
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3/2 1/2
+V172(s) </ v dx> </ V2, dx ds) } ds
Q O
1/2 1/2
<CT? max/ V2 dx x (/ v2 dx ds> (/ V2 dx ds) ds
04 J@ o o
1/2 1/2
+max/ v dx x (/ V(s ) (/ V2 dxds> }
[0,1] O

< CT+2Pr

But we have also
(14+697")vidxds <CTI™" / v dx ds

O O
1/2 1/2
§CTq*rmax/ v2 dx x </ v dxds> (/ V2 dxds) ds
04] Jo O O
< C‘T‘FH% Br

These estimates give (2.45) U ]
Lemma 2.12. The following estimate holds

[ (6071 axt [ (1+007)02 dxdr <CTHH. (2.46)

Q Or

Proof. Multiplying the second equation (1.15) by e+ % v? and integrating by parts on Q;,
we get

1 1 1
f/ <e+v > x—f/ ( 02) dx+ <,u v2v2+— 6992> dxds
2Ja 2 o \Nn n

— / pvenMx dx ds+ [ pvegBy dx ds+ pvzvx dx ds— / % venvMy dx ds
Qt Ql QI t

K K
—/1 % vegv, 0y dx ds — /l 1 enN«Ox dx ds — /1 n v, dx ds

1 8
_/Q,n(SE)R (e+2 v2> dx ds =: ZJk.

First note that the left-hand side has the lower bound

1
/ <e+v2> dx+ —vv dx ds +—/ (1+0)"702 dx ds —C.
Q 2 oM n Jo
Let us estimate the right-hand side. As we follows the lines of [29], we only detail the first
estimate and sketch the subsequent computations.
After Lemmas 2.2 to 2.11, we have the inequalities

r+l
maxy? <CT 7, /vzvﬁ
Q

) r
>~ and / V22 dx ds<CT'T
[Ovt} Qt
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Let € be an arbitrary positive number.

I<C [ (14622 dxds
O

<C|[| (1+0) " n2dxds+C [ (1+08) W dxds<C.
O O

|| < c/ (140)> " 1ve,| dx ds < C—i—s/ (1+0)*1v8,| dx ds.
O

1

|5 < C/ (1+0)" 12|y, | dxds < cTv .
O

lJy| < C/Q (140)77 12|y, | dx ds < C‘T+£/ (14-0)"1902 dx ds.

t

3(r+1)

|J5|§C/ (14 8)4|v,] dx ds < CT™ +e/ (148)7+962 dx ds.
O :

r+
2

| /6| SC/ (1+0)"|vwb,| dx ds < cT'T +£/ (1+6)"7902 dx ds.
Q[ 1

r+
2

|J7] SC/Q (1+6)" |vwnyl dxds<CT' —l—i—:/ (140)"1902 dx ds.

1 1,\°
| /3] g/ Nn|(se)r| <e+ v2> dxds <C+ (e+v2> dx ds.
o 2 o 2

Gathering all of these estimates, choosing € < 05‘%" and using Gronwall’s Lemma, we get

(2.46) O O

Lemma 2.13. Let us introduce the two quantities

Y(r) ::/Q(Hezq)eﬁ dx, X(1) ::/ (146977) 67 dx ds.

t

The following estimate holds

X(t)+Y(r) <CTPs, (2.47)
where Bg = w.
Proof. From (1.15), the equation for the internal energy reads

),
n

H 5

669t+9Per—ﬁVx: < > —N(Se)g-

Defining the auxiliary function K (n,0) := [ K(E’”)

by K; and integrating by parts, we get

du, multiplying the previous equation

0
/ (eee, +Opgv, — L vﬁ) K, dxds+ <Kx> K dx ds
or n or \ M

- / N (Sg)x K; dx ds = 0. (2.48)
or
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Observing that K; = Kyv, + % 0;, Ky = (%e‘) + Kynvinx + (%) N.0; and that after
t n
(1.26) |Kn |+ |Kqn| < C(1+09%1), we can estimate all the contributions in (2.48).
After (1.26) we have the lower bound
/ R @2 g ds > €L x (1),
or M n
Using (1.26) and Lemma 2.5

‘/ €90 Knvy dx ds
Or

< c/ (14+0)77110,v,| dx ds
Or

C6cl

<2 X+4+CT
8n

In the same stroke

’/ <9p9vx _H v%) K—et dx ds
Or n n

+C/ (1+0)9|6;v2 dx ds
Or

< c/ (14+0)77110,v,| dx ds
Or

< S X o4 [ (14+0)1v dx ds.
M Or

The last term can be estimated as follows

3
/ (14+0)47"v dx ds < CT# (/ v dxds+/ Vl/z(s)/v;t dxds)
T T 0 Q
1/2

1/2
<CT® (/ v dxds) (/ v dxds) max/ v2 dx
Or Or [Ovl} Q
3/2 ¢ 1/2 1/2
+max </ v dx> (/ V(s) ds> (/ V2 dx>
01 \Jo 0 Q

with g3 = max{‘H%,O} and By = g3 +2r+ 2. So we find

jg C{Tﬂ47

’/ (Gpevx—'u v%) bl dxds‘ < — S X oT? o7
Or n n 8n

H -
Opgvy — — vx> Knv, dx ds
‘/QT ( n i

+C/ (140)4H v, dx ds < CTPwo,

<C [ (140)7"42 dxds
Or

r+1

with Bio = max{r+2,q4 + =5~ } and g4 = max{0, %ﬂrl)} Using (1.26) and Lemmas

2.10 and 2.12 we have
0, 0,
‘/ Ko <K> dxds| > CY(t)—-C,
QT T] n Ky
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12
<c (/ (1+0)7+702 dx ds)
Or

0,
‘/ KOx Ky dx ds
or M

1/2
(/ (14+0)377 22 dxds) <CcTPs,
or

and 0
‘/ &Knn"xnx dx ds SCTB“,
or M
with By = w. Using (1.26) and Lemma 2.10 we have also
1) K
/ x () N6, dx ds| < S x b,
or M N/ y 8
with B]z = w

Let us estimate the last term in (2.48).

§/ </ /ncﬁdvdw) |K;| dx ds
Or \Jo J§!
+ </ /n(saldvdm> |K:| dx ds

or \Jo Js§!

+ <//nGS]f—I|dvd0)>|Kt|dxds::P+Q+R.
or \Jo J§!

After (1.26) and Lemma 2.3

'/ N(Sg)gK: dx ds
Or

ch/ |K;| (1+6%) dxds
Oor

SC/ (1467t | dxds+C/ (1-+677%) 16| dx ds =: A+ B.
Or Or

Using Cauchy-Schwarz inequality and Lemma 2.6 we have
ASCT ™ +C [ (146972%7) dxds <C+CT"™2,
Or

and

B<SUxyc [ (14677) dxds< L x4
8N Or 8

Using (1.26), Lemma 2.3 and Cauchy-Schwarz inequality we have

Rgc// 00, [|(7— DKy + (T~ DKe8, ] dv do> dx ds
QorJo JS§

SC/ / /ncs\f—llzdvd(odxds+c (1+6%%2) v dx ds
OorJo Js! Or

+c/ (14+69)|[T—1] |8, dx ds
Oor
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<C+ [ (1+6*") vl dxds —|——X+/ / (14+6977) (I-1)*dv dw dx ds
Or Or S1

CoCl

<C+CTI2 4 . DX+ CT

Using the same technique, we get also

Q< C+CTI2 4 Sﬂ oy Lo,
Combining all the previous inequalities, we get (2.47) which ends the proof [ 0

Lemma 2.14. All the quantities

rréax 0, X(1), Y(1), (2.49)

fort €10,T] are bounded.

Proof. As 02172 < C [6%72 dx+ (2q+2) [6%71]6,| dx, we have

1/2 1/2
TH2 < oM 4 C < / p2+2 dx> < / 02102 dx> <C+CTPs,
Q Q

where 13 = max {2q +1-— M} As one checks that B3 < 2g+ 2, (2.49) follows
after Lemma 2.13 [ ]

Corollary 2.15. All the quantities

/v)zcdxdt, / 02 dx dr, / V2 dx d, / 02 dx dr, (2.50)
Or Or Or Or

are bounded.

Proof. The first bound follows after Lemmas 2.11 and 2.14 the second bound after Lemmas
2.12 and 2.14, the third bound after Lemmas 2.10 and 2.14 and the last one after Lemmas
2.13and 2.14 0O O

Lemma 2.16.

max/ / I?dwdvdx<C, (2.51)
[0,T] s!

max / / / Pdodvdx<C. (2.52)
[0,1] st
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Proof. Going back to Eulerian coordinates, it is sufficient to prove that I; € L2(O x [0, T] x
0) with O := (0,L), and I, € L*(O x [0,T] x O), where I(y,T;V,®) solves the problem

) 0
e I(y,T;v,®) +co a—y I(y,T;v,0)

= cG,4(V,®,M,0) [B(v,0) —I(y,T;V,0)]
+c0,(v,1,0) [[(y,7;v) — I(y,T;V,0)] =: S(I;y,;v,@) onOx[0,T]x O,
1(0;v,0) =0 forme (0,1),

I(L;v,0) =0 forwe (—1,0),

L 1(,0;v,) =1°(y;v,@) onOx O.

(2.53)
We can use a bootstrap method. Derivating the equation with respect to T and putting J := I,
one checks that J solves the problem

Ji+coJy =8 on0Ox[0,T]x O,
J(O;v,0) =0 forwe (0,1),
J(Lyv,0) =0 forwe (—1,0), (2.54)

J(3,0;v,0) =J°(,0;v,0)

| = -0 (yv,0)+SI°(y:v,0)) on0xO0,
with the right-hand side
St =S(/;y, v, 0) + (L, T3V, 0),

where ® € L2 (0 x [0,T] x O), after the Eulerian counterparts of Lemmas 2.2-2.16. Note
that we have used the equation to derive the initial condition.

Now we proceed as in Lemma 2.3. Multiplying equation (2.54) by J integrating by
parts on [0,7] X O x O and using Cauchy-Schwarz, we get

1 1
—//szcodvdy——//(Jo)zdc)dvdy
2 JoJo 2 JoJo

T T
+£/ oJ*(L,7;v,0) do dv ds—E/ / ®J?(0,7;v,0) do dv ds
2Jo Jo, 2Jo Jo_

1 /7 T -
+f/ //ncaﬂ do dv dy ds+/ //ncs (F—J)* dodv dy ds
2Jo JoJo 0 JoJo

1 /7 1 /7
gf///nsaBzd(odvdyderf///(bzd(odvdyds.
2 Jo JoJo 2 Jo JoJo
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After (1.26) the right-hand side is bounded, so this last inequality clearly implies (2.51).
In the same stroke, derivating the equation with respect to y and putting K := I, one
checks that K solves the problem

0B,

K(0;v,m) = 0;v,m) forwe (0,1),

(2.55)

o,B
K(L;v,0) = ;(L;v,m) for w € (—1,0),

| K(,0:v,0) = K°(5,0;v,0) =I)(y;v,®) onOx O,
with the right-hand side
Sy =S(K;y,7;v,0) +¥(K;y, TV, 0),

where W € L2 (0 x [0,T] x O), after the Eulerian counterparts of Lemmas 2.2-2.16. Ob-
serve that after (1.26), the boundary conditions are meaningfull.
As previously, multiplying equation (2.55) by K and integrating by parts on [0,1] X O X

0, we get
1 1
f//szcodvd ——//(Ko)zdmdvdy
2 JoJo 2 JoJo

T T
+c/ / 0K?(L,7;v,0) do dv ds—c/ / 0K?(0,7;v,0) do dv ds
0 Jo. 0 Jo.

1 r° T 5
+—/ //cal(zdwdvdyder/ //nGS(K—K)Z dw dv dy ds
2Jo JoJo 0o JoJo

1 [t 1 [t
gf///ncsaBzd(odvdyderf///dﬂdmd\/dyds.
2 Jo JoJo 2 Jo JoJo

This inequality clearly implies (2.52) [ 0
Lemma 2.17.
max / V2 dx+ / v2 dx dt <C, (2.56)
[OvT] Q QT
2
dx <C, 2.57
max [ 1, dr< 2.57)
2
dx<C. 2.58
max [ dr < (2.58)

Proof. 1. Formally derivating the second equation (1.15) with respect to #, multiplying by
vy, integrating by parts and using (1.26), we find

1 2 Ho 2
= dx+ — dx dt
2,/QVI )H—zﬁ QTVX, X
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<C+C dxdt—l—/ 1ve [(SF)l, | dox d.
Or

Or

2
pf+<y> v
N/q

<Cc+cC (1+92’+2)v§dxdt+c//(1+92’+2)v§dxdzdxdr
Or Or JOr

+C [ v dxdt+£max/ vidxdt+C | ((Sp)g)? dxdt.
Or 0,77 /& or

As [((SF)R)i| < C+C[(146%)[6;] + [vx| + [£]], we get
1 2 Ho 2
- dx+ = dx dt
2/9\/, x—|—2ﬁ QTvx, X
<C+C [ [i+vi+6;+1] dxdt+emax/v,2 dx dt
or 0.7] J

SC—l—Smax/ vtzdxdth,
[0,7] Jo

for € small enough, which proves (2.56).
2. From the second equation (1.15)

Vx = —

Vi + Py — <‘u> nxvx+n(SF)R] 5
N/

then we get
/Qvix dx < C+C/Q [V +n2+02+n3vi] dx,

which implies (2.57), after (2.56)
3. Using the first equation (1.15), one gets

1/2

T
I« <C+C </ V2 dx> :
0

/Qn)%deC—i—C/Qv%xddeSC,

SO

after (2.57) O

O

Lemma 2.18. Under the previous condition on the data there exists positive constant 8 and

0 depending on T and N such that
0<0<0(x,t) <0 for (t,x) € Or.

Proof. Applying the maximum principle to the parabolic equation

K0,
€90, +Opgvy — % vi= <T]> —N(SE)g>

(2.59)

observing that the terms Opgv, and 1 (Sg), are bounded and using Lemma 2.14, we get

(2.59) O

O]
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Lemma 2.19. All the quantities

max\vx\ max/v dx, / v dx, max/v, dx, / v dx dt,
Or [0,7]

are bounded.

Proof. The first quantity is bounded after Lemma 2.17, the second one is bounded after
Lemma 2.10, the third is bounded after Lemma 2.11 and the boudedness of the two last
quantities follows after Lemma 2.17 [ O

Lemma 2.20. The following estimate holds

0 dx dr <C. (2.60)
Oor

Proof. 1. After the inequality
t
0% dx dr < / maxeif 02 dx ds,
Or 0 Q Q
and Lemma 2.14, we have
t

0% dx dr < c/ mgxe}; ds (2.61)

0

Oor

s0, in order to prove (2.60), it is sufficient to bound the right-hand side.
First multiplying the equation of the internal energy

K0,
€90, +Opgvy — % V)ZC = <n> —MN(Se)g>

by % 0, and integrating on Q,, we get

0
/n—ieetzdxdt—i— ner dx dt — /fﬂ,v dx dt
QT QT t

N, (K6 n?
)% e,( N ) dxdt—/[K 0; (Sg)y dx dr. (2.62)

The first term in the right-hand side of (2.62) rewrites

I
/ n e,(Ke ) dx di = / X 0,62 dx di + <K”—> 0,0, dx di
¢ n X 1 O K K

+/ 0,0, dx dr.
O

Integrating by parts, plugging into (2.62) and using Lemmas (2.5) and (2.18), we get

1
n—z"ef dxdr+§/e§ dx dt
O Q
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§C+C/Q {10ve] + 84 [v2 +16:162 + 16,0,1| + 16, (Sg)g |} dlx dit.

So, for any € > 0

1
'Lz"e%dxdmf/eﬁ dx dt
O

<C+e szxdt—i—C/ max92ds+/ 0202 dx dr
O

<C+e G,dedt—i—C/ maxeids+/ maxeﬁ/nﬁdxds.
O 0 Q 0 Q Q
Finally
t
07 dx dr + / 02 dxdt <C+C / max 67 ds. (2.63)
O Q 0o Q

2. Multiplying the previous equation of the internal energy by (=M« )

on Q, we get

/(X_Zw)metﬂxdx—l—/(x_mqepgﬂxvxdx—/(xmﬂ v dx
Q n Q n Q n?

_/ KG <Knex>x dx_/g(x_M)Kex(SE)R dx.

Then integrating in ¢ and using boundary conditions, we have the estimate

0, and integrating

0,
2/ <K ) (0,5) ds<C+C/ (6246242414} dxdr.

So we end with

f 2
/O <K3"> (0,5) ds < C. (2.64)

3. Multiplying now the same equation of the internal energy by £ 1 0, and integrating on
[0,x], we get
Keg K Tk, 5
—eed+/—e Gvd—/—ev,d
/0 n ¢ y oM PeOyvy dy 0 M2 y Vy @y

¥ %0y K6y> /x
() g [ keuse). d
/o M (n L b (SE)g dy

Then integrating in ¢ and using boundary conditions, we have the estimate

KO, 1 [ (0, 2
< — —
2/( ) X, 5 ds_20<n>(0,s)ds

+c+c/ (02402 +12 +*) dudr.
O

t k0. 2
/ (“) (x,5) ds < C, (2.65)
o\
which gives (2.60). O

So after (2.64) we end with
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Lemma 2.21. All the quantities

max e dx, max / 02, dx, / 02, dx dt, (2.66)
[0,T] [0,T]

are bounded.

Proof. 1. By derivating formally the internal energy equation with respect to #, multiplying
by €0, and using integration by parts on Or, we get

1 1
1 / (e60))? (x,1) dx — = / (060,)? (x,0) dx+ / Poveed? dx di
2Jo 2Ja Or

—i—/ Gpeevxeeet2 dx dt +/ Gpenv)zceeet dx dt +/ Opgvyeqb; dx dt
Or Or Or

_/ <,u(1”|)> v)3c —|—2'lm Viva | eeB; dx dt
Or N /q n

:—/ X o602, dxdt—/ <K>
or M Or n

_/ O, (eenﬂx+eeeex) dx dt—/
QT QT

After [6] (see the proof of Lemma 3.6), we get

V.0, —|— 9,9 ] (e00;)x dx dt
n n

N[(Se)x], eobr dox di — /Q ve(Sk)r eoB dox dt.
T

1
f/ (e0;)* (x,1) dx+ Ke(.)92 dx dt
2Ja or M

<c— [ [(Se)r], e, dxdi — / ve(SE)r €08 dox dt. (2.67)
Or Or

As the two integrals in the right-hand side are bounded after Lemmas 2.16 and 2.20, we
obtain the first two estimates (2.66).
2. From the internal energy equation

K, (K=MK Ko goo
ﬁ exx* < n2 > nxex_ﬁ 9x+€eet+epevx—ﬁ Vx+n(SE)R7

then
10.x] < C (INx0x] + 02 + (6, + [ +v3 + | (Se)g ) »

where all of the terms in the right-hand side are in L?(Q) after Lemmas 2.21, 2.20, 2.19 and
2.7, which proves the last bound (2.66) [ ]

Proof of Theorem 2.1

1. As maxg, |vy| is bounded we have

T 1/2
) -] <l ([ Zar) - <cle-r
0
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We have also
In(x,1) =, 1)| < Clx—x|'? (1 +/ n2 dx) <Clx—x|'?,
Q

so we find that n € C'/>1/4(Qr).
2. After Lemma 2.21 we have

T 1/2
10(x,1) — 8(x,)| < |t —1'[1/? (/ 02 dt)
0

T 1/2
<Clt—1|'? </ / 26,0 dx dt) <Clt—1'|"/2.
0 Jao

We see also that

T
|6(x,t)—9(x’,t)‘§C\x—x’]1/2 (T-max/ Gtzdx—i-/ /e;za dx>
0.7] Jo 0o Jo

so we find that ® € C'/>1/4(Qr). We have also

12
16,(6,) — 0, (.1)| < Jx— | 1/2 (/ 02, dt) < —x|'2,
Q

we conclude, by using an interpolation argument of [22], that 8, € C'/3!/ °(Qr).
3. The same arguments holding verbatim for v and v,, we have that v,v, € C 1/3,1/ 6(QT).
4. Letus note I(x,t) := [y [qI(x,t;0,V) do dv.
As max 7 || || 2(q) < C, after Lemma 2.16, it follows that

X
100) = 1(.0] < [yl dy < Cle =,
xl
As maxo 1) || Ll 12(q) < C, also after Lemma 2.16, it also follows that
t
1(x,t) — I(x,7)| g/ I1,| ds < Cl — /|2,
t/

Then we conclude in particular that I € C'/3!/ °(Qr), which ends the proof [J.

3 Existence and uniqueness of solutions

In this section we prove existence of classical solution by means of the classical Leray-
Schauder fixed point theorem in the same spirit as in [20, 6], then using a limiting process
asin [11] we will get the existence of a weak solution.

Let us recall the Leray- Schauder fixed point theorem

Theorem 3.1. Let B be a Banach space and suppose that P : [0,1] x B — B has the fol-
lowing properties:



58 B. Ducomet and S. Necasové

e i) For any fixed A € [0, 1] the map P(\,.) : B — B is completely continuous.

e ii) For every bounded subset S C ‘B the family of maps P(.,y) : [0,1] — B, x € S is
uniformly equicontinuous.

e iii) There is a bounded subset S of ‘B such that any fixed point in B of P(,.),A € [0, 1]
is contained in S.

e iv) P(0,.) has precisely one fixed point in ‘B.
Then, P(1,.) has at least one fixed point in ‘B.

In our case B will the Banach space of functions (1,v,0, I') on Qr such thatn,v,v,,0,6,,I €
C'/31/%(Qr), with the norm

v, 0)lll == [l 1/3 + VT3 + el + 1181z + 10173 + [ ]1]1/3-

For A € [0, 1] we define P(),.) as the map which carries {f},7,0,7} € Binto {n,,0,1} € B
by solving the system

ée(ﬁvé)et - K(TI’ 9) exx = <K(1179)) éx xt G(Tj’e) é)zc
M 1] n 3.1
H o Ao = A\ = (&
+= 7y —0pe(7,0)% — AR (SE)R7
I —i—ﬁ_l(cm—ﬁ)lx =6,B—1)+6; < 1I d(o—l> ,
S
together with the boundary conditions
v‘x:O.,M = 0’
(3.2)
ex‘x:O = O’ e|x:M = 0’
and
I|,_o =0 foro>0,
3.3)
I,y =0 form <0,
for t > 0, and initial conditions
N(x,0) = (1 =24) +2n’(),
v(x,0) = M0 (),
(3.4

8(x,0) = (1 —A) +A8%(x),

1(x,0;0,v) = I°(x;0,V).
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We can consider the second and the third equations of (64) as parabolic type and apply the
classical Schauder-Friedmann estimates

vl + vlligs < elmllgs + 1905+ 18xll/3 + 17113}

1011 /3 +118xl1/3 < C{||éxH1/3 F Vel 3+ H7||1/3}-

After properties of strong solutions of transport equation (see [7]), we have also

171 /3 < e{lflli/s + 180173+ 1903}

Moreover from the first equation (3.1), we get

MMz < vxllys-

It implies that P(A,.) : B — B is well defined and continuous.

Using a priori estimates from Section 2 it follows that for any {f{, 7,0, T} from any fixed
bounded subset the family P(.,{R,7,8,1}) : [0,1] — B of mappings is uniformly equicon-
tinuous.

Now, in order to verify (iii), we observe that any fixed point of P will initially satisfy
original problem, therefore 1 and © cannot escape from [1,7], [6, 6] up to time 7. This fact
follows clearly from Theorem 2.1. B

In order to check (iv) we see by inspection that the unique fixed point of P(0,.) is given
by

nlx1) =1, v(x,1) =0, 8(x,1) =1, O(x,1)},

where ¢(x,7) is the unique solution (see [7]) of the linear equation
0+ copy = 5°(9),

where the source is
5°(0) = 6a(v,®;1,1) [B(v,®;0,1) — 9] +65(v; 1,1) [0 — 0],

satisfying absorbing conditions (3.3) and initial condition 0(x,0; ®,v) = I°(x; @, V).

Note that the simpler (and “physical”) choice 0°(x; ®,v)) = B(v,®;0, 1) is not allowed:
as the compatibility boundary conditions are not satisfied, the corresponding solution ¢ is
discontinuous and then lies out of ‘B.

All the previous facts allow us to apply Theorem 3.1, which imply the existence of
classical solutions of (1.15)-(1.23) in Q x (0,T).

This ends the proof of Theorem 1.4.

Let us now consider the existence of a weak solution. From previous results it follows
e vy —vinLF(0,T;C%(Q)) strongly and in L” (0, T; H'(Q)) weakly for 1 < p < oo,
e vy —vae. in Qx[0,T] and in L=(0,T);L*(Q)) weakly *,

o (vi); — v, in L*(0,T,L*(Q)) weakly,
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e 0; —0in L?(0,T,C%(Q)) strongly and in L*(0,T,H'(Q)) weakly,
e 0, —0ae. inQx[0,7] and in L*(0,T;L*(Q)) weakly,
e G; — Ay in L*(0, T;H'(Q)) weakly,
It implies that
Nk — M ae. in Q x [0,7] and L*(Q x [0, T]) strongly for all s € [1,00].
All this implies that

o % — Ay weakly in L2(0,7,H' (Q)),

* y(nik) (vi)x — A3 in L7(0,T,L*(Q)) weakly *,

o Mi{(Sg)r}k — Aqin L2(0,T; H'(Q)) weakly.
Then applying similar technique as in [11] it follows that

e Ai=0inL*0,T);H'(Q),

o Ay = % in L2(0,T,L*(Q)),

o Ay =Ny in12(0,T,H'(Q)),

e Ay =n(Sg)g in L?(0,T,H' (L)), which ends the proof of the existence of a weak
solution.

Finally we prove uniqueness of the solution.

Let n;,v;,0;,1;, i = 1,2 be two solutions of (1.15), and let us consider the differences:
E:T]] —MNo2, T:91 —GZ,V:vl —w,J=L-1 and]: I — D

From the first equation (1.15) written for 1y, v; and 1y, v, subtracting, multiplying by a
test function %, integrating by part and putting y = E we obtain

1d )

—— [ E“dx= | EViydx < |E|>2]|Vx||2-

2o | Edx= [ BV dx < Eal v,

Using Cauchy Schwarz inequality for € > 0
d
d—/Ezdx§8\|VxH%+C£HEH§. 3.5)
rJjo

Rewriting the second equation (1.15) for v, and vy, subtracting, multiplying by a test
function ¢, integrating by part and putting ¢ =V we obtain the following

1d 2 H2 1 S
- de—i—/fV dx = — i
2dt Jo eam ;ﬂ'

with

14| = ‘/Q(Pz—m)dex
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< AWVl (Il + 1Ell2) < ellVill3 +Ce(IT 115+ 1 E]13),
where we used Cauchy Schwarz inequality for € > 0.

In the same stroke

1
00 =| [ o G =¥ s < IVl < Vo3 + GlEIE

‘/q3| = N2 —MN1 ,U2V2xVx dx < CHEHZHVXHZ < SHVXH% +C£||E”%’
Q MaMi
and
‘ﬂ4| - /Q/o /5:1 (nl[(SE)R]l _nz[(SE)R}Z)V do dv dx

<C(IEIZ+IVIE+ITIZ+117113)-

So we get finally, taking € small enough
d
& [ viaes [viax<c(ITi3+ BB +1713).
Q Q

Now, dividing the energy equation by eg, we have

0
_ﬁ Wx‘f‘@‘FL V)%_H (SE>R
€g g Teg €

et:

(3.6)

Subtracting this equation written for 1y, v;,0; from the same for 13, v;,0,, multiplying

by a test function V, integrating by part and putting y = T we obtain

1d/ ) /[91199(111791) 02p0(N2,02) ]
- T“dx = — Viy — V2x T dx
2dt Jo ol eeM,01) 7 eo(N,02)

k(M1,01) K(M2,62) }
+/ — Td
Q [ﬂlee(ﬂhel) N2ep(M2,62) g

p(Mi)viz p(M2)vas }
+/ - Td
Q [mee(mael) N2eg(MN2,62) !

4
Al —nal(Se)ala} T dvi= = Y .
i=1
Bounding the ‘B;, using as previously Cauchy Schwarz inequality for € > 0, we get

1By| < e (IVill3+1Tl13) + Ce (IEIZ+IT13)
Bl < [ 20 e [ 12 ansc (BB ITIR).
 M2es(M2,02) Q
|Bs| < €||Vi|l3 + Cel E I3,

and
|Bs| <

//"“/ (M1[(Se)rlt —M2[(SE)r]2) T dw dv dx
QJo Jst
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<C(IEIZ+IVIZ+ITIE+117113)-

d
—/Tzdx—i—/sz dx
dt Jo Q

SS/QVXZ dx+C(|IEIZ+ T3+ IVIE+ITI3+117113) - 3.7

We obtain finally

Finally writing the last equation (1.15) for I, and [, subtracting, multiplying by a test
function {, integrating by part on Q x R, x S! and putting { = J we obtain

2
(M, t; dod
2dt/] Zth//Sle ®,v) do dv

c o )
- o/ (0,t;m,v) do dv
@ S OO50N)

<C(IEIZ+IVIE+ITIZ+1713)- (3.8)

Then adding inequalities (3.5), (3.6), (3.7) and (3.8) and choosing € small enough, we
get

1d
5 BV T2 ) ar <C(IER+ IVIE+ITIB+11915).
which clearly implies uniqueness.

4 A remark about the large time behaviour

We have the following negative result
Proposition 4.1. The system (1.15) (1.21)(1.22)(1.23) admits no stationary solution.
Proof. Any stationary solution of (1.15) satisfies

v, =0,
Px = _n(SF)R7 (41)

gx = —M(SE)r,
ol, =nS,

From the definitions (1.10)-(1.14), one also get the equations

(FR)x = n (SE>R7
{ (Pr)y =M (SF)g- (4.2)

As before, we fix the boundary condition for the temperature
qlieo = qly=pr =0, (4.3)
and the previous transparent boundary conditions for the radiative intensity

{ I|x:0:0 fOI‘O)E(O,l) (4.4)

I|,_y =0 forwe (—1,0),
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for t > 0. Integrating the previous system leads to

v=0,
p+Pr=0Cy,
q+Fgr =y,
mlx:nsa

4.5)

where Cj » are two constants. Using boundary conditions in the third equation (4.5), we get

Cy = FR(0) = Fr(M),

ol _ doodv:/ /wl _, dodv.
/0 /71 |x70 0 0 |x7M

As I > 0, this implies that /| _,=0and I|,_,, =0, for any o € st
From the last equation (4.5)

which implies

ol, =no,(B—1)+o,(I-1),

(I(x;(o,v) exp {/Ox n(%mw dy})x

:exp{/ n(ca(;rcs) dy} N(GaB +0.0)
0

we get

®

X

so for ® > 0, the function x — ¢(x,®, V) :=I(x; , V) exp {fo W dy} is not decreasing.

As O(M;m,v) = 0, we conclude that /(x;®,v) = 0 for @ > 0.
Using the same argument, we have also

(I(x;u),v)exp {/XMW dy}>x

y .
:_exp{/ n((saojcs) dy} T](GaBC:-GSI)

)

so for @ < 0, the function x — y(x,®,V) := I(x;®,V)exp {fo w

ing. As 0(0;,v) = 0, we conclude that /(x; ®,v) = 0 for ® < 0.
We get finally that 7 is identically zero on Q x R, x S', which cannot be a solution of
the last equation (4.5),as B> 0 [J ]

dy} is not increas-
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