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Abstract
Let k be a natural number and s be real. In the 1-dimensional case, the k-th order
derivatives of the functions |x|s and log|x| are multiples of |x|s−k and |x|−k, respec-
tively. In the present paper, we generalize this fact to higher dimensions by introducing
a suitable norm of the derivatives, and give the exact values of the multiples.
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1 Introduction

In the present paper, we show two identities for derivatives of radial homogeneous functions
and a radial logarithmic function. A logarithm logr always stands for the natural logarithm
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loge r. Let k ∈N = {1,2, . . .} and s ∈R. In the 1-dimensional case, we readily have that the
functions (d/dx)k[|x|s], (d/dx)k[log|x|] are homogeneous of degree s− k, −k, respectively.
Precisely we have

|x|k−s

∣∣∣∣∣
(

d
dx

)k

[|x|s]

∣∣∣∣∣= |(s)k| , |x|k
∣∣∣∣∣
(

d
dx

)k

[log|x|]

∣∣∣∣∣= (k−1)! for x ∈ R\{0}. (1.1)

Here we use the Pochhammer symbol for the falling factorial (lower factorial);

(ν)k =


k−1

∏
j=0

(ν− j) for ν ∈ R, k ∈ N,

1 for ν ∈ R, k = 0.

We denote the space dimension by N ∈ N. Let ∇k be a partial differential operator on
RN which contains only k-th order derivatives. Then the functions ∇k[|x|s], ∇k[log|x|] for
x ∈ RN \ {0} are also homogeneous of degree s− k, −k, respectively. However, it is not
trivial whether the functions

|x|k−s|∇k[|x|s]|, |x|k|∇k[log|x|]| (1.2)

are constants or not. It deeply depends on the definition of the norm |∇ku(x)| of the vector
∇ku(x) for a smooth function u defined on a domain in RN . See Remark 1.5 below for a
counterexample.

In the present paper, we shall define an appropriate norm of the vector ∇ku(x) to solve
this problem affirmatively, and specify the constants in (1.2).

In what follows, we specify the dimension N as a sub- or super-script and denote by
| · |N the Euclidean norm on RN ;

|x|N = (x2
1 + x2

2 + · · ·+ x2
N)1/2 for x = (x1,x2, . . . ,xN) ∈ RN .

Let us write IN = {1,2, . . . ,N} for short. For a k-tuple of indices i = (i1, i2, . . . , ik) ∈ Ik
N ,

define the k-th order partial differential operator Di as

Di = Di1Di2 · · ·Dik =
∂

∂xi1

∂

∂xi2
· · · ∂

∂xik
.

For a smooth real-valued function u on a domain Ω in RN , define the vector

∇
k
Nu(x) = (Diu(x))i∈Ik

N
for x ∈ Ω

and its norm as

|∇k
Nu(x)|Nk =

∑
i∈Ik

N

(Diu(x))2

1/2

=

(
N

∑
i1=1

N

∑
i2=1

· · ·
N

∑
ik=1

(
∂

∂xi1

∂

∂xi2
· · · ∂

∂xik
u(x)

)2
)1/2

for x ∈ Ω;
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we make the agreement ∇0
Nu(x) = u(x) and then |∇0

Nu(x)|1 = |u(x)|. When k = 1, ∇1
Nu(x)

coincides with the gradient vector of u(x), and |∇1
Nu(x)|N is its Euclidean norm. When

k = 2, ∇2
Nu(x) can be identified with the Hessian matrix of u(x), and |∇2

Nu(x)|N2 is its
Frobenius norm. Then we have the following results. Let Z+ = {0}∪N = {0,1,2, . . .}.

Theorem 1.1. Let N ∈ N.

(i) For any k ∈ Z+ and s ∈ R, there exists a constant γ
s,k
N ≥ 0 such that

(|x|k−s
N |∇k

N [|x|sN ]|Nk)2 = γ
s,k
N for x ∈ RN \{0}.

(ii) For any k ∈ N, there exists a constant `k
N > 0 such that

(|x|kN |∇k
N [log|x|N ]|Nk)2 = `k

N for x ∈ RN \{0}.

It follows from (1.1) that for any k ∈ N and s ∈ R,

γ
s,k
1 = ((s)k)2, `k

1 = ((k−1)!)2. (1.3)

We can determine explicitly the constants γ
s,k
N and `k

N given in Theorem 1.1 for a general
dimension N as follows. Before we go into the detail, we provide some notation. Let

bνc= max{k ∈ Z; k ≤ ν}, dνe= min{k ∈ Z; k ≥ ν} for ν ∈ R.

Define the binomial coefficient(
ν

k

)
=

(ν)k

k!
for ν ∈ R, k ∈ Z+.

The following theorem provides the explicit values of the constants γ
s,k
N and `k

N .

Theorem 1.2. Let N ∈ N.

(i) For any k ∈ Z+ and s ∈ R, it holds

γ
s,k
N = k!

bk/2c

∑
l=0

(k−2l)! l!
(

N−3
2

+ l
)

l

(
k−l

∑
n=dk/2e

22n−k+l
(

s/2
n

)(
n

k−n

)(
k−n

l

))2

.

(ii) For any k ∈ N, it holds

`k
N = k!

bk/2c

∑
l=0

(k−2l)! l!
(

N−3
2

+ l
)

l

(
k−l

∑
n=dk/2e

22n−k+l (−1)n

2n

(
n

k−n

)(
k−n

l

))2

.

We also obtain the following result as a special case of Theorem 1.2.

Theorem 1.3. (i) For any N ∈ N and k ∈ Z+, it holds

γ
−(N−2),k
N = 2k(N + k−3)k

(
N
2

+ k−2
)

k
.
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(ii) For any k ∈ N, it holds
`k

2 = 2k−1((k−1)!)2.

Remark 1.4. For small k, we have calculated the concrete values of γ
s,k
N and `k

N ;

γ
s,1
N = s2, γ

s,2
N = s2(s2−2s+N), γ

s,3
N = s2(s−2)2(s2−2s+3N−2),

γ
s,4
N = s2(s−2)2(s4−8s3 +(16+6N)s2 +(12−36N)s+3N2 +54N−48),

`1
N = 1, `2

N = N, `3
N = 4(3N−2), `4

N = 12(N2 +18N−16),

`5
N = 192(5N2 +30N−32), `6

N = 960(N3 +78N2 +224N−288),

`7
N = 34560(7N3 +196N2 +308N−496),

`8
N = 241920(N4 +204N3 +3052N2 +2736N−5888).

As we mentioned before, it is essential to define the norm |∇ku(x)| appropriately.

Remark 1.5. One may also adopt some other plausible definition instead of |∇k
Nu(x)|Nk

defined before. For instance, let us define

|∇̃k
Nu(x)|(N+k−1

k ) =

(
∑

α1+α2+···+αN=k
(Dα1

1 Dα2
2 · · ·DαN

N u(x))2

)1/2

=

(
∑

1≤i1≤i2≤···≤ik≤N
(Di1Di2 · · ·Dik u(x))2

)1/2

,

which gives a norm of ∇ku(x). Putting k = 2, we see that both the functions

(|x|2−s
N |∇̃2

N [|x|sN ]|N(N+1)/2)
2 = s2

(
N +2s−4+(s−2)2

∑
1≤i1≤i2≤N

x2
i1x2

i2

|x|4N

)
,

(|x|2N |∇̃2
N [log|x|N ]|N(N+1)/2)

2 = N−4+4 ∑
1≤i1≤i2≤N

x2
i1x2

i2

|x|4N

are not constants on RN \{0} unless N = 1 or s∈ {0,2}. To illustrate how they are different
clearly, note that

|∇k
Nu(x)|Nk =

(
∑

α1+α2+···+αN=k

k!
α1!α2! · · ·αN!

(Dα1
1 Dα2

2 · · ·DαN
N u(x))2

)1/2

=

 ∑
1≤i1≤i2≤···≤ik≤N

k!
N

∏
l=1

]{n; in = l}!

(Di1Di2 · · ·Dik u(x))2


1/2

,

where ]S denotes the cardinality of a finite set S.
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The present work is originated in our desire to investigate Brézis-Gallouët-Wainger
type inequalities. The authors together with Wadade [6], [7] and [8] investigated the sharp
constants of such inequalities in the first order critical Sobolev space W 1,N

0 (Ω) on a bounded
domain Ω in RN with N ∈ N\{1}. In their forthcoming paper [5], they shall give a lower
bound in terms of `k

N for the sharp constants of such inequalities in the k-th order critical
Sobolev space W k,N/k

0 (Ω) by calculating the exact values of homogeneous Sobolev norms
of the radial logarithmic function on annuli. To explain more concretely, we can give a
sufficient condition for λ1 > 0 and λ2 ∈ R that the inequality

‖u‖N/(N−k)
L∞(Ω) ≤ λ1 log(1+‖u‖As,N/(s−α),q(Ω))+λ2 log(1+ log(1+‖u‖As,N/(s−α),q(Ω)))+C

for u ∈W k,N/k
0 (Ω)∩As,N/(s−α),q(Ω) with ‖∇

ku‖LN/k(Ω) = 1

fails for any constant C independent of u, where k ∈ {1,2, . . . ,N − 1}, 0 < α ≤ s < ∞,
0 < q < ∞ and we denote by As,p,q either the Besov space Bs,p,q or the Triebel-Lizorkin
space Fs,p,q. The results in [2] and [3] obtained by Brézis, Gallouët and Wainger imply
that this inequality holds for sufficiently large λ1 and arbitrary λ2 with a suitable constant
C provided that As,N/(s−α),q(Ω) is replaced by the Sobolev space (or the potential space)
Hs,N/(s−α)(Ω). Since Hs,N/(s−α)(Ω) = Fs,N/(s−α),2(Ω), the same assertion holds in the cases
As,N/(s−α),q(Ω) = Fs,N/(s−α),q(Ω) with 0 < q≤ 2 and As,N/(s−α),q(Ω) = Bs,N/(s−α),q(Ω) with
0 < q ≤ min{N/(s−α),2} by virtue of the embedding theorems of Besov and Triebel-
Lizorkin spaces.

We now describe how we organized the present paper; Sections 2, 3 and 4 are devoted
to proving Theorems 1.1, 1.2 and 1.3, respectively.

2 Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. The following two propositions are easy to
prove.

Proposition 2.1. Let s ∈ R and u ∈C(RN \{0}) be homogeneous of degree s, that is,

u(λx) = λ
su(x) for x ∈ RN \{0}, λ > 0.

(i) If v ∈C(RN \{0}) is homogeneous of degree s as well, then so is u+ v.

(ii) For ν ∈ R, |u|ν is homogeneous of degree sν.

(iii) If u ∈C1(RN \{0}) and i ∈ IN , then Diu is homogeneous of degree s−1.

For a square matrix A of order N, let us define

A[x] = t(A tx) = x tA for x = (x1,x2, . . . ,xN) ∈ RN .

Proposition 2.2. Let s ∈R and u ∈C1(RN \{0}) be homogeneous of degree s and radially
symmetric, that is,

u(A[x]) = u(x) for x ∈ RN \{0}, A ∈ O(N),
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where O(N) denotes the orthogonal group of order N. Then there exists a constant c ∈ R
such that

u(x) = c|x|sN for x ∈ RN \{0}.

To prove Theorem 1.1, we need to use the Fourier transform on RN . Let S(RN) denote
the Schwartz class on RN . Define the Fourier transform FN and its inverse F −1

N on RN by

FNu(ξ) =
1

(2π)N/2

Z
RN

e−
√
−1(x,ξ)N u(x)dx for ξ ∈ RN ,

F −1
N u(x) =

1
(2π)N/2

Z
RN

e
√
−1(x,ξ)N u(ξ)dξ for x ∈ RN , u ∈ S(RN),

respectively, where
√
−1 denotes the imaginary unit and

(x,ξ)N =
N

∑
i=1

xiξi for x = (x1,x2, . . . ,xN),ξ = (ξ1,ξ2, . . . ,ξN) ∈ RN .

The crux of Theorem 1.1 is the following observation by using the Fourier transform.

Lemma 2.3. If u ∈ S(RN) is real-valued and radially symmetric, then so is |∇k
Nu|2Nk for

k ∈ Z+.

Proof. This is trivial if k = 0; we may assume k ∈ N below. Let i = (i1, i2, . . . , ik) ∈ Ik
N . By

the Fourier inversion formula and [4, Proposition 2.2.11 (10)], we have two expressions of
Diu(x);

Diu(x) = Di1Di2 · · ·Dik [F
−1

N [FNu]](x)

=
(
√
−1)k

(2π)N/2

Z
RN

e
√
−1(x,ξ)N ξi1ξi2 · · ·ξik FNu(ξ)dξ for x ∈ RN

and

Diu(x) = Di1Di2 · · ·Dik [FN [F −1
N u]](x)

=
(−
√
−1)k

(2π)N/2

Z
RN

e−
√
−1(x,η)N ηi1ηi2 · · ·ηik F −1

N u(η)dη for x ∈ RN .

Thus we deduce

(Diu(x))2

=
1

(2π)N

ZZ
RN×RN

e
√
−1(x,ξ−η)N ξi1ξi2 · · ·ξik ηi1ηi2 · · ·ηik FNu(ξ)F −1

N u(η)dξdη for x ∈ RN .

Hence we obtain

|∇k
Nu(x)|2Nk

= ∑
i∈Ik

N

(Diu(x))2

=
1

(2π)N ∑
i∈Ik

N

ZZ
RN×RN

e
√
−1(x,ξ−η)N ξi1ξi2 · · ·ξik ηi1ηi2 · · ·ηik FNu(ξ)F −1

N u(η)dξdη

=
1

(2π)N

ZZ
RN×RN

e
√
−1(x,ξ−η)N (ξ,η)k

NFNu(ξ)F −1
N u(η)dξdη for x ∈ RN .
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For A ∈ O(N), we have

(A[x],y)N = (x, tA[y])N , (A[x],A[y])N = (x,y)N for x,y ∈ RN .

Since Fourier transform and its inverse of a radially symmetric function are also radially
symmetric (see e.g. [4, Proposition 2.2.11 (13)]), we see that

[FNu](A[ξ]) = FNu(ξ), [F −1
N u](A[ξ]) = F −1

N u(ξ) for ξ ∈ RN .

Changing variables (ξ,η) = (A[ξ̃],A[η̃]), we have

|∇k
Nu(A[x])|2Nk =

1
(2π)N

ZZ
RN×RN

e
√
−1(A[x],ξ−η)N (ξ,η)k

NFNu(ξ)F −1
N u(η)dξdη

=
1

(2π)N

ZZ
RN×RN

e
√
−1(x,tA[ξ−η])N (ξ,η)k

NFNu(ξ)F −1
N u(η)dξdη

=
1

(2π)N

ZZ
RN×RN

e
√
−1(x,ξ̃−η̃)N (A[ξ̃],A[η̃])k

N [FNu](A[ξ̃])[F −1
N u](A[η̃])dξ̃dη̃

=
1

(2π)N

ZZ
RN×RN

e
√
−1(x,ξ̃−η̃)N (ξ̃, η̃)k

NFNu(ξ̃)F −1
N u(η̃)dξ̃dη̃

= |∇k
Nu(x)|2Nk ,

which shows that |∇k
Nu|2Nk is radially symmetric.

We conclude the proof of Theorem 1.1. Let

BN
r = {x ∈ RN ; |x|N < r} for r > 0.

Proof of Theorem 1.1. For j ∈ N, choose ψ j ∈C∞
c ((0,∞)) satisfying

ψ j(r) =


1 for

1
j
< r < j,

0 for 0 < r <
1
2 j

or r > 2 j.

Then the functions ψ j(|x|N)|x|sN , ψ j(|x|N) log|x|N belong to S(RN) and are real-valued, ra-
dially symmetric. Also, they satisfy

ψ j(|x|N)|x|sN = |x|sN , ψ j(|x|N) log|x|N = log|x|N for x ∈ BN
j \BN

1/ j.

Since Lemma 2.3 yields that |∇k
N [ψ j(|x|N)|x|sN ]|2Nk and |∇k

N [ψ j(|x|N) log|x|N ]|2Nk are radially

symmetric, we deduce that so are |∇k
N [|x|sN ]|2Nk and |∇k

N [log|x|N ]|2Nk on BN
j \BN

1/ j, and then
on RN \{0} because j ∈ N is arbitrary.

(i) It follows from Proposition 2.1 that for i ∈ Ik
N , the functions |x|sN , Di[|x|sN ] and

(Di[|x|sN ])2 are homogeneous of degree s, s−k and 2(s−k), respectively. Hence |∇k
N [|x|sN ]|2Nk

is also homogeneous of degree 2(s− k). Then the desired conclusion immediately follows
from Proposition 2.2.

(ii) Since
Di[log|x|N ] =

xi

|x|2N
for x ∈ RN \{0}, i ∈ IN ,

we deduce that this function is homogeneous of degree −1. The rest of the proof is quite
similar to (i).
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3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We decompose it into the following three lemmas.

Lemma 3.1. Theorem 1.2 holds true for N = 1. Namely:

(i) For any k ∈ Z+ and s ∈ R, it holds

γ
s,k
1 =

(
k!

k

∑
n=dk/2e

22n−k
(

s/2
n

)(
n

k−n

))2

.

(ii) For any k ∈ N, it holds

`k
1 =

(
k!

k

∑
n=dk/2e

22n−k (−1)n

2n

(
n

k−n

))2

.

Lemma 3.2. Let N ∈ N\{1}.

(i) For k ∈ Z+ and s ∈ R, it holds

γ
s,k
N = k!

bk/2c

∑
l=0

(k−2l)!
(2l)!

(
k−l

∑
n=dk/2e

22n−k
(

s/2
n

)(
n

k−n

)(
k−n

l

))2

γ
2l,2l
N−1.

In particular, for m ∈ Z+, it holds

γ
2m,2m
N = (2m)!

m

∑
l=0

(2(m− l))!
(2l)!

(
m
l

)2

γ
2l,2l
N−1.

(ii) For k ∈ N, it holds

`k
N = k!

bk/2c

∑
l=0

(k−2l)!
(2l)!

(
k−l

∑
n=dk/2e

22n−k (−1)n

2n

(
n

k−n

)(
k−n

l

))2

γ
2l,2l
N−1.

Lemma 3.3. For N ∈ N and m ∈ Z+, it holds

γ
2m,2m
N = 22mm!(2m)!

(
N
2

+m−1
)

m
. (3.1)

Combining these three lemmas yields Theorem 1.2. We now concentrate on proving
them. We need some propositions. For m ∈ Z+, define

φ
m(t) = (t2 +2t)m for t ∈ R.

Proposition 3.4. Let m,k ∈ Z+.
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(i) It holds

[φm](k)(0) = χ[m,2m](k)2
2m−kk!

(
m

k−m

)
,

where χS denotes the characteristic function of a set S.

(ii) It holds
|∇k

N [| · |2m
N ](0)|2Nk = δk,2mγ

2m,2m
N = δk,2mγ

k,k
N .

Proof. (i) Expand φm by means of the binomial theorem;

φ
m(t) =

m

∑
j=0

2m− j
(

m
j

)
tm+ j for t ∈ R.

Let ν+ = max{ν,0}. For k ∈ Z+, we have

[φm](k)(t) =
m

∑
j=(k−m)+

2m− j
(

m
j

)
(m+ j)ktm+ j−k

=
2m−k

∑
l=(m−k)+

22m−k−l
(

m
k−m+ l

)
(k + l)kt l for t ∈ R,

which implies the assertion.
(ii) If k > 2m and i ∈ Ik

N , then Di[|x|2m
N ] = 0 for x ∈ RN , which implies

|∇k
N [|x|2m

N ]|2Nk = 0 for x ∈ RN .

Meanwhile, if k ≤ 2m, then Theorem 1.1 (i) shows that

|∇k
N [|x|2m

N ]|2Nk = γ
2m,k
N |x|2(2m−k)

N for x ∈ RN \{0}.

Hence a passage to the limit as x → 0 yields the assertion.

In what follows, we use the notation

x′ = (x1,x2, . . . ,xN−1) ∈ RN−1 for x = (x1,x2, . . . ,xN−1,xN) ∈ RN

when N ∈ N\{1}. Let Ω be a domain in RN , and for u ∈Ck(Ω), we write

|∇k
N−1u(x)|2(N−1)k = ∑

i′∈Ik
N−1

(Di′u(x))2 for x ∈ Ω.

Proposition 3.5. Let N ∈ N\{1}, k ∈ Z+ and Ω be a domain in RN . Then for u ∈Ck(Ω),
we have

|∇k
Nu(x)|2Nk =

k

∑
j=0

(
k
j

)
|∇ j

N−1[D
k− j
N u](x)|2(N−1) j for x ∈ Ω.
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Proof. The conclusion is trivial if k = 0; we may assume k ∈ N below. Define

jN−1[i] = ]{n ∈ {1,2, . . . ,k}; in ∈ IN−1} for i = (i1, i2, . . . , ik) ∈ Ik
N

and
I j;k
N−1 = {i ∈ Ik

N ; jN−1[i] = j} for j ∈ {0,1, . . . ,k}.

For i = (i1, i2, . . . , ik) ∈ I j;k
N−1, let

(n′1[i],n
′
2[i], . . . ,n

′
j[i])

be all the n’s listed in ascending order such that in ∈ IN−1, and let

(ñ1[i], ñ2[i], . . . , ñk− j[i])

be all the n’s listed in ascending order such that in = N. If we define

i′N−1[i] = (in′1[i], in′2[i], . . . , in′j[i]), ĩN [i] = (iñ1[i], iñ2[i], . . . , iñk− j[i]),

then
i′N−1[i] ∈ I j

N−1, ĩN [i] = (N,N, . . . ,N) ∈ {N}k− j for i ∈ I j;k
N−1

and
Diu(x) = Di′N−1[i]DĩN [i]u(x) = Di′N−1[i][D

k− j
N u](x) for x ∈ Ω, i ∈ I j;k

N−1.

We next define

Σ
k− j
k = {σ = (σ1,σ2, . . . ,σk− j) ∈ {1,2, . . . ,k}k− j; σ1 < σ2 < · · ·< σk− j}

for j ∈ {0,1, . . . ,k−1}

and
I j;k
N−1(σ) = {i ∈ I j;k

N−1; (ñ1[i], ñ2[i], . . . , ñk− j[i]) = σ} for σ ∈ Σ
k− j
k .

Since the mapping I j;k
N−1(σ) 3 i 7→ i′N−1[i] ∈ I j

N−1 is bijective for any σ ∈ Σ
k− j
k , we have

∑
i∈I j;k

N−1(σ)

(Diu(x))2 = ∑
i∈I j;k

N−1(σ)

(Di′N−1[i][D
k− j
N u](x))2

= ∑
i′∈I j

N−1

(Di′ [D
k− j
N u](x))2

= |∇ j
N−1[D

k− j
N u](x)|2(N−1) j for x ∈ Ω, σ ∈ Σ

k− j
k .

Since

]Σ
k− j
k =

(
k

k− j

)
=
(

k
j

)
for j ∈ {0,1, . . . ,k−1},

we deduce

|∇k
Nu(x)|2Nk = ∑

i∈Ik
N\Ik

N−1

(Diu(x))2 + ∑
i′∈Ik

N−1

(Di′u(x))2

=
k−1

∑
j=0

∑
σ∈Σ

k− j
k

∑
i∈I j;k

N−1(σ)

(Diu(x))2 + |∇k
N−1u(x)|2(N−1)k

=
k

∑
j=0

(
k
j

)
|∇ j

N−1[D
k− j
N u](x)|2(N−1) j for x ∈ Ω.

This completes the proof.
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Define eN = (0,0, . . . ,0,1) ∈ RN and

ρN(x) = |x+ eN |2N −1 for x ∈ RN ,

which becomes

ρN(x) =

{
φ1(x) for x ∈ R if N = 1,

|x′|2N−1 +φ1(xN) for x ∈ RN if N ∈ N\{1}.

Note that

|ρN(x)|= | |x|2N +2xN | ≤ |x|2N +2|xN | ≤ |x|2N +2|x|N < ε for x ∈ BN
(1+ε)1/2−1

for all ε > 0.

Proposition 3.6. Let ε > 0 and

f (t) =
∞

∑
n=0

antn for − ε < t < ε

be analytic, where {an}∞
n=0 ⊂ R.

(i) Let N = 1 and k ∈ Z+. Then it holds

[ f (ρ1)](k)(0) = k!
k

∑
n=dk/2e

22n−kan

(
n

k−n

)
.

(ii) Let N ∈ N\{1} and k ∈ Z+. Then it holds

|∇k
N [ f (ρN)](0)|2Nk = k!

bk/2c

∑
l=0

(k−2l)!
(2l)!

(
k−l

∑
n=dk/2e

22n−kan

(
n

k−n

)(
k−n

l

))2

γ
2l,2l
N−1.

Proof. (i) It follows from the definition of ρ1 and φn that

[ f (ρ1)](k)(x) = [ f (φ1)](k)(x) =
∞

∑
n=0

an[φn](k)(x)

for − ((1+ ε)1/2−1) < x < (1+ ε)1/2−1.

If we invoke Proposition 3.4 (i), then we have

[ f (ρ1)](k)(0) =
∞

∑
n=0

an[φn](k)(0) = k!
k

∑
n=dk/2e

22n−kan

(
n

k−n

)
.

Thus, (i) is established.
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(ii) Using the binomial expansion, we have

f (ρN(x)) =
∞

∑
n=0

an(ρN(x))n

=
∞

∑
n=0

an(|x′|2N−1 +φ
1(xN))n

=
∞

∑
n=0

an

n

∑
m=0

(
n
m

)
φ

n−m(xN)|x′|2m
N−1 for x ∈ BN

(1+ε)1/2−1.

Proposition 3.5 gives

|∇k
N [ f (ρN)](x)|2Nk

=
k

∑
j=0

(
k
j

)
|∇ j

N−1[D
k− j
N [ f (ρN)]](x)|2(N−1) j

=
k

∑
j=0

(
k
j

)∣∣∣∣∣ ∞

∑
n=0

an

n

∑
m=0

(
n
m

)
[φn−m](k− j)(xN)∇ j

N−1[|x
′|2m

N−1]

∣∣∣∣∣
2

(N−1) j

=
b(k−1)/2c

∑
l=0

(
k

2l +1

)∣∣∣∣∣ ∞

∑
n=0

an

n

∑
m=0

(
n
m

)
[φn−m](k−2l−1)(xN)∇2l+1

N−1 [|x′|2m
N−1]

∣∣∣∣∣
2

(N−1)2l+1

+
bk/2c

∑
l=0

(
k
2l

)∣∣∣∣∣ ∞

∑
n=0

an

n

∑
m=0

(
n
m

)
[φn−m](k−2l)(xN)∇2l

N−1[|x′|2m
N−1]

∣∣∣∣∣
2

(N−1)2l

for x ∈ BN
(1+ε)1/2−1.

Here, we decomposed the summation with respect to j into two parts consisting odd j’s and
even j’s. Note that Proposition 3.4 (ii) gives ∇

j
N−1[| · |2m

N−1](0) = 0 unless j = 2m. It follows
from Proposition 3.4 (i) that(

n
l

)
[φn−l](k−2l)(0) = χ[k/2,k−l](n)22n−k(k−2l)!

(
n

k−n

)(
k−n

l

)
.

Using these equalities, we have

|∇k
N [ f (ρN)](0)|2Nk

=
b(k−1)/2c

∑
l=0

(
k

2l +1

)∣∣∣∣∣ ∞

∑
n=0

an

n

∑
m=0

(
n
m

)
[φn−m](k−2l−1)(0)∇2l+1

N−1 [| · |2m
N−1](0)

∣∣∣∣∣
2

(N−1)2l+1

+
bk/2c

∑
l=0

(
k
2l

)∣∣∣∣∣ ∞

∑
n=0

an

n

∑
m=0

(
n
m

)
[φn−m](k−2l)(0)∇2l

N−1[| · |2m
N−1](0)

∣∣∣∣∣
2

(N−1)2l

=
bk/2c

∑
l=0

(
k
2l

)∣∣∣∣∣ ∞

∑
n=l

an

(
n
l

)
[φn−l](k−2l)(0)∇2l

N−1[| · |2l
N−1](0)

∣∣∣∣∣
2

(N−1)2l

= k!
bk/2c

∑
l=0

(k−2l)!
(2l)!

(
k−l

∑
n=dk/2e

22n−kan

(
n

k−n

)(
k−n

l

))2

γ
2l,2l
N−1.
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For s ∈ R, define

fs(t) = (1+ t)s/2, f∗(t) =
1
2

log(1+ t) for −1 < t < 1.

Then the Taylor expansion formula (see e.g. [1, p. 361]) immediately yields

fs(t) =
∞

∑
n=0

(
s/2
n

)
tn, f∗(t) =

∞

∑
n=1

(−1)n−1

2n
tn for −1 < t < 1.

We now prove Lemmas 3.1 and 3.2 by applying Proposition 3.6. First we prove Lemma
3.2.

Proof of Lemma 3.2. Since |eN |N = 1 and

|x+ eN |sN = fs(ρN(x)), log|x+ eN |N = f∗(ρN(x)) for x ∈ BN
21/2−1,

we deduce

γ
s,k
N = |∇k

N [| · |sN ](eN)|2Nk = |∇k
N [| ·+ eN |sN ](0)|2Nk = |∇k

N [ fs(ρN)](0)|2Nk ,

`k
N = |∇k

N [log| · |N ](eN)|2Nk = |∇k
N [log| ·+ eN |N ](0)|2Nk = |∇k

N [ f∗(ρN)](0)|2Nk .

Applying Proposition 3.6 (ii), we obtain both the assertions (i) and (ii).

Next we prove Lemma 3.1.

Proof of Lemma 3.1. We argue as in the proof of Lemma 3.2 with applying Proposition 3.6
(i) instead of Proposition 3.6 (ii) to obtain the assertion.

We need the following proposition to prove Lemma 3.3.

Proposition 3.7. For ν ∈ R and m ∈ Z+, it holds

m

∑
l=0

(2l)!
22ll!

(ν+m− l)m−l

(
m
l

)
=
(

ν+m+
1
2

)
m

. (3.2)

Proof. We use an induction on m. When m = 0, (3.2) trivially holds. Fix m∈N and assume
that (3.2) holds for m−1, that is,

m−1

∑
l=0

(2l)!
22ll!

(ν+m− l−1)m−l−1

(
m−1

l

)
=
(

ν+m− 1
2

)
m−1

. (3.3)

We use the following identities(
m
l

)
=
(

m−1
l

)
+
(

m−1
l−1

)
for l ∈ N,

(ν+m− l)m−l = (ν+m− l)(ν+m− l−1)m−l−1 for l ∈ Z+.
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Then we have
m

∑
l=0

(2l)!
22ll!

(ν+m− l)m−l

(
m
l

)
= (ν+m)m +

m−1

∑
l=1

(2l)!
22ll!

(ν+m− l)m−l

(
m−1

l

)
+

m−1

∑
l=1

(2l)!
22ll!

(ν+m− l)m−l

(
m−1
l−1

)
+

(2m)!
22mm!

=
m−1

∑
l=0

(2l)!
22ll!

(ν+m− l)(ν+m− l−1)m−l−1

(
m−1

l

)
+

m−1

∑
l=0

(2(l +1))!
22(l+1)(l +1)!

(ν+m− l−1)m−l−1

(
m−1

l

)
=
(

ν+m+
1
2

)m−1

∑
l=0

(2l)!
22ll!

(ν+m− l−1)m−l−1

(
m−1

l

)
.

Applying (3.3), we have
m

∑
l=0

(2l)!
22ll!

(ν+m− l)m−l

(
m
l

)
=
(

ν+m+
1
2

)
m

,

which shows that (3.2) holds also for m. The calculation above works also for m = 1; as
usual, we regard any empty sum as 0. Thus (3.2) is proved.

We now prove Lemma 3.3.

Proof of Lemma 3.3. We use an induction on N. First, (1.3) gives

γ
2m,2m
1 = ((2m)!)2 for m ∈ Z+.

Meanwhile we have

22mm!(2m)!
(

m− 1
2

)
m

= 2mm!(2m)!
m

∏
j=1

(2 j−1) = ((2m)!)2 for m ∈ Z+.

The equality above is valid also for m = 0; as usual, we regard any empty product as 1.
Thus (3.1) holds for N = 1. Fix N ∈ N\{1} and assume that (3.1) holds for N−1, that is,

γ
2m,2m
N−1 = 22mm!(2m)!

(
N−3

2
+m

)
m

for m ∈ Z+. (3.4)

It follows from Lemma 3.2 that

γ
2m,2m
N = (2m)!

m

∑
l=0

(2(m− l))!
(2l)!

(
m
l

)2

γ
2l,2l
N−1 = (2m)!

m

∑
l=0

(2l)!
(2(m− l))!

(
m
l

)2

γ
2(m−l),2(m−l)
N−1 .

Applying (3.4) and Proposition 3.7, we have

γ
2m,2m
N = (2m)!

m

∑
l=0

(2l)!
(

m
l

)2

22(m−l)(m− l)!
(

N−3
2

+m− l
)

m−l

= 22mm!(2m)!
m

∑
l=0

(2l)!
22ll!

(
N−3

2
+m− l

)
m−l

(
m
l

)
= 22mm!(2m)!

(
N
2

+m−1
)

m
for m ∈ Z+,
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which shows that (3.1) holds also for N. Thus (3.1) is proved.

Thus we have proved Theorem 1.2.

4 Proof of Theorem 1.3

We can easily prove Theorem 1.3 by applying Theorem 1.1.

Proof of Theorem 1.3. Let k ∈ N. For u ∈Ck+1(RN \{0}), a direct calculation shows

∆N [|∇k−1
N u|2Nk−1 ] = 2|∇k

Nu|2Nk +2(∇k−1
N u,∇k−1

N [∆Nu])Nk−1 on RN \{0}, (4.1)

where ∆N = D2
1 +D2

2 + · · ·+D2
N is the usual Laplacian on RN . We see that for ν ∈ R,

∆N [|x|νN ] = ν(ν+N−2)|x|ν−2
N for x ∈ RN \{0}. (4.2)

(i) It follows from (4.1) and (4.2) that

2

∣∣∣∣∣∇k
N

[
1

|x|N−2
N

]∣∣∣∣∣
2

Nk

= ∆N

∣∣∣∣∣∇k−1
N

[
1

|x|N−2
N

]∣∣∣∣∣
2

Nk−1

 for x ∈ RN \{0}.

By virtue of Theorem 1.1 and (4.2), we deduce

2γ
−(N−2),k
N

1

|x|2(N+k−2)
N

= γ
−(N−2),k−1
N ∆N

[
1

|x|2(N+k−3)
N

]

= 2(N + k−3)(N +2k−4)γ−(N−2),k−1
N

1

|x|2(N+k−2)
N

for x ∈ RN \{0},

which implies

γ
−(N−2),k
N = 2(N + k−3)

(
N
2

+ k−2
)

γ
−(N−2),k−1
N .

The desired conclusion now follows inductively since γ
−(N−2),0
N = 1.

(ii) Note that
∆2[log|x|2] = 0 for x ∈ R2 \{0}.

We argue as in (i) to deduce
`k

2 = 2(k−1)2`k−1
2 .

The desired conclusion now follows inductively since `1
2 = 1.
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