Communications in Mathematical Analysis

Special Volume in Honor of Prof. Peter D. Lax
Volume 8, Number 1, pp. 41-69 (2010) www.commun-math-anal.org
ISSN 1938-9787

LP-WEIGHTED THEORY FOR NAVIER-STOKES
EQUATIONS IN EXTERIOR DOMAINS

AMROUCHE CHERIF*
Laboratoire de Mathématiques Appliquées, CNRS UMR 5142
Université de Pau et des Pays de I’ Adour
64013 Pau, FRANCE,

NGUYEN H. HOANG'
Laboratoire de Mathématiques Appliquées, CNRS UMR 5142
Université de Pau et des Pays de I’ Adour
64013 Pau, FRANCE,
and
Departamento de Matematica, IMECC
Universidade Estadual de Campinas - UNICAMP
Caixa Postal 6065, Campinas, SP 13083-970, BRAZIL

(Communicated by Toka Diagana)

Abstract

This paper is devoted to some mathematical questions related to the stationary Navier-
Stokes problem in three-dimensional exterior domains. Our approach is based on a
combination of properties of Oseen problems in R? and in exterior domains of R3.
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1 Introduction and preliminary results
This paper continues our previous studies in [AN] related to the three-dimensional sta-

tionary Navier-Stokes equations. Let Q' be a bounded open region of R3, not necessarily
connected, with a Lipschitz-continuous boundary and let € be the complement of Q/. We
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suppose that ' has a finite number of connected components and each connected compo-
nent has a connected boundary, so that € is connected. In this paper, we study the following
exterior Navier-Stokes problem:

—VAu+uVu+Vn=f inQ,

divu =0 in Q

5 )

(75) u=20 onl
U— U at infinity,

where v > 0, f and u.. € R? are respectively the viscosity of the fluid, the external force
field acting on the fluid and a given constant vector of R>. The problem consists in look-
ing for the velocity field u = (uy,us,u3) of the fluid and the pressure function . We shall
assume that the origin of the coordinate frame is attached to Q'. The third equation of the
system states that the fluid adheres at the surface of the body, which is the common no-slip
condition. Since the domain € is unbounded, the last equation is really necessary. In this
equation, we have two different cases concerning the behavior of u at infinity. If u.. =0,
the flow is at rest at infinity and in the remaining case, if #.. # 0, the flow is past at infinity.

In this paper, we are interested in considering the case Q being an exterior domain in R3
and u.. # 0. We note that the case Q = R? was considered in our previous paper [AN]. Our
purpose is to study some regularity properties of the weak solutions to the problem (ALS).

To our knowledge, in the three-dimensional situation, following Farwig [FA] and Galdi
[GA], they consider the problem (A’S) in the case #. = 0 or u., # 0. In the case u.. # 0,
they consider the external force field f belonging to the classical spaces L”(Q), and in
[FA] with the weight (14 |x |)* for some p and a €]0, 1[. The solutions are obtained in the
homogeneous Sobolev spaces with or without the weight. In this paper, we are interested
in the case in which the external force field belongs to the weighted Sobolev spaces W, e,
that permits us to obtain generalized solutions in the weighted Sobolev spaces W(l)"p . We

consider also the case in which the external force field belongs to L¢ or LYW, P and
some regularity properties. Our main interest is directed at L”-regularity of weak solutions,
under suitable assumptions on the right-hand side f. This point is improved in this paper.
We assume different levels of regularity of f, and then describe the corresponding level of
smoothness of the weak solutions associated to f. We refine a regularity theory which may
be found in [GA]. Galdi assumes that f € L?(Q) for all p € (1, po], with some py > 3 (see
Section IX.7 [GA]). More precisely, in Theorem 31, we recover Galdi’s regularity results.

This paper is organised as follows: In this section, the problem will be introduced and
we recall well-known results about weighted Sobolev spaces. In Section 2, a result about
existence of weak solutions for the problem (A’S) will be presented. In next sections, we
shall obtain some regularity properties of the weak solution # and the associated pressure
7. In Section 4, the exterior Oseen problem is considered. The identity energy will be given
in the last section.
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In this paper, we use bold type characters to denote vector distributions or spaces of
vector distributions with 3 components and C > 0 usually denotes a generic constant the
value of which may change from line to line. We shall also denote by By the open ball of
radius R > 0 centered at the origin and B® = R® — Bg. In particular, since Q' is bounded,
we can find some R such that Q' C Bg, and we introduce, for any R > Ry, the set

Qr=QNBg and QF = Q — Q.

We now recall the main notations and results , concerning the weighted Sobolev spaces,
which we shall use later on.

We define D(Q) to be the linear space of infinite differentiable functions with compact
support on Q. Now, let 2'(Q) denote the dual space of D(Q), often called the space of dis-
tributions on Q. We denote by (.,.) the duality pairing between D(Q)" and D(Q). Remark
that when f is a locally integrable function, then f can be identified with a distribution by

(f,(P>=/Qf(x).(p(x)dx.

Given a Banach space B, with dual space B’ and a closed subspace X of B, we denote by
B’ 1 X (or more simply X, if there is no ambiguity as to the duality product) the subspace
of B’ orthogonal to X, i.e.

B1X=X"={feBVveX,<fv>=0}=(B/X).

The space X is also called the polar space of X in B’. A typical point in R? is denoted
1

by x = (x1,x2,x3) and its norm is given by r = |x| = (x? +x3 +x3)2. We define the weight

function p(x) = 1+r. For each p € R and 1 < p < oo, the conjugate exponent p’ is given

1 1
by the relation — + — = 1. We now define the weighted Sobolev space
p P

Wy?(Q) = {ue D'(Q), - € 1(Q), Vue LM (@)},

where

(147r)In(2+r) if p=3.

This space is a reflexive Banach space when endowed with the norm:

- {(1+r) if p#3,

u
oy = U1 gy + 1V )

We also introduce the space
2,]7 o / u p VM D 2 D
WO (Q) - {l/t S (Q)a; €L ('Q)vwi €L (Q)vD ueclL (Q)}v
2 1
where 3
(10 ifp¢ {53},

wy =
(14+7r)?In(2+7), otherwise,
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which is a Banach space equipped with its natural norm given by

u Vu
ullyzo @ = (Ul + 1 sy + 107 )

We note that the logarithmic weight only appears if p =3 or p = % and all the local

properties of WO1 P(Q) (respectively, WO2 ?(Q)) coincide with those of the corresponding
classical Sobolev space W' (Q) (respectively, WP (Q)). For m = 1 or m = 2, we set

o - _wmP o /
Wol(Q) = Q)(Q)WO ®) and we denote the dual space of W7 (Q) by W, ™" (Q), which

is the space of distributions. When Q = R3, we have W,/ (R?) = V{)/g”’(]l@). IfQisa
Lipschitz exterior domain, then

vf./(l)’p(Q) = {VEWOI’p(Q); v=0onT}.
If Qis a C"! exterior domain, then
VE)/(Z)”’(Q) ={ve Woz’p(Q); v=0d,v=0o0nT},

where 9,,v is the normal derivative of v. For all A € N* where 0 < [A| < 2m with m = 1 or
m = 2, the mapping
ue Wy (Q) — Puewy P Q)

is continuous. Also recall the following Sobolev embeddings (see [AD]):

* 3
Wol’p(Q) — [P (Q) where p* = 3_p and 1 < p <3. (1)
Consequently, by duality, we have
—1,p 317, /
L1(Q) — W, " () where g = 34 and p' >3/2. )
p

Note also that if Vu € LP(Q) with p > 3 (respectively, p = 3) and u € L"(Q) for some r > 1,
then we have u € L(Q) (respectively, u € L1(Q) for any real ¢ > r). Moreover,

e Forallu e WO]’3(Q) NL" (), we have

lullze <C(|[Vulles +[uller) forallg>r; 3)
e Forall u € Wy”(Q)NL (Q) with p > 3, we have
[|ulle <C(||VullLe +||u||r) forall g € [r,oo]. 4)

We introduce the space

X7 (Q) = {u €Wy (Q); ;;‘l S WOL”(Q)}
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which is a Banach space equipped with the following norm

u
lellpro) =115 Mer@) +ZH Hu +H HW Ly
We also introduce the space
)?(l)’p(Q) = {ueX,”(Q); u=00nT},

and we know that D(Q) is dense in X (])’p (Q) (cf. [AR2]). Now we introduce the following
Lemma.

Lemma 1. Let Q C R3 be a Lipschitz exterior domain. Assume that u € VE)/(I)’p (Q) such
d

that a—;‘l € L1(Q) with 1 < %—l— é. Then u € L' (Q) with 1 = %(% + % — 1) and we have the

estimate as follows

ou
lullr @) < C(HMHWOI*I’(Q) + HBTC]HL‘I(Q))- )

Proof. We extend u by zero outside Q and denote u the extended function. Then u €

ou
Wo1 P(R?) and =— 3 € LI(R?). We set
X1

v
X,,(RY) = {ve W, ”(R%); —

5o LR},

It is easy to prove that D(R?) is dense in X, ,(R?), i.e, there exists @; € D(R?) such that
@ — 1 in X, ,(R?). Thanks to Babenko [BA], we have the following inequality

0P 13 9Pk 13 | 9Pk 1/3
HLp R?) H HLP(R3 5 HLq(R3

a(Pk

19ullr@s) = Cll5 >

<C(||Vq>k|

L (R3) +H HLqR*)

with 1 = %(% + % —1). Since (@) is bounded in L’ (R?), then & € L"(R?) and we obtain
(5). O
We introduce the

Lemma 2. Let Q C R? be a Lipschitz exterior domain and u € )?(l)’p(Q).
4 3
)If 1 <p<3 thenue Lo (Q) AL (Q) and the following estimate holds

lell g, o+ lel] g < Cllullgogg: ©
ii) If p =73, then there exists a unique constant k(u) such that u+k(u ﬂ L"(Q) and the
r>12

following estimate holds

lu+k(u)[|r@) < Cllullyirq) forany r=>12. M
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iii) If 3 < p < 4, then there exists a unique constant k(u) such that u+k(u) € L*»/(4=P)(Q)n
L= (Q) and the following estimate holds

Hu+k(u)|\m%(g)+|!u+k( ) |l=(@) < Cllullyr(q)- ®)

Proof. Let u € X (1)’” () with 1 < p < 4. Extend u by zero outside Q and denote u by
the extended function. It is clear that u belongs to WO1 P(R3). Tt remains to prove that

ou _
a—u ew, Lp (R3) Let Ry > 0 be a real and sufficient large such that Q' is contained in
X1

Bg, and Ry, Ry be reals such that Ry > R; > Ry. Choose now some functions W, and
satisfying
v € C7(R?), yi(x) =0if x| <Ry, wi(x)=1if [x| >Ry,

vx e Ry (x) +ya(x) = 1.

ou; o
We then can write u = u\y| +uy, = uj +up. It is easy to prove that — and —~ belong

axl oxq
_ i

to Wy "(R?), then € W, '"?(R?) and we can deduce & € X, (R3). Moreover,
X1

12l @) < Cllullygriay
i 7 aﬁ _17p 3
Since —Au+ e €W, 7(R’) and
aN .
<—Au+—,1> 0 if p<3/2,

oxy’ T Wy PR x W (R3) T

we know from Theorem 4.4 [AR1] there exists a unique v € X(; P (R3) N LA/ (4=P)(R3) such
that

v ou
—Av+— = —Au
v ox| “t ox;
and satisfying the following estimate
9
||VHX(;-P(R3) + HVHL“P/(“*P)(]R3) < C|l —Au—l— HW L (R3) 9)
< CHMHX(;-"

The functionz =u—v € XO1 P(R3) verifying the equation

0z
—Az+——0 in R3
oxy

then z is a polynomial that belongs to Wol’p (R3). Therefore, there exists a constant k such
that z =k, with k =0 if 1 < p < 3. It means that u —k = v in Q. The estimate (6) is
immediately deduced from (9). The estimates (7) and (8) are consequences of (3) and
). O
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Remark 3. The above result is available for all u € XO1 7 (Q) because we know that u can
be extended by Pu € XO1 P(R?).

Defining now

2, 2, . ov
X;P(Q) = {veWw,?(Q); ™ eLP(Q)}.

Note that
3p

W()va(Q) — LP*(Q) where px = 3 and 1< p<3/2.

By duality, we have

L7~ WO_Z’p/(Q) where g = and p’ > 3.

2p'+3

Note also that if v € WOZ"”(Q) with 3 < p <3 and Vv € L"(Q) for some r, then Vv € LY(Q)
forallg>rif p=3/2and Vv e L"(Q)NL*(Q) if 3/2 < p < 3.
We now introduce a lemma concerning the extension of Xg ?(Q)in R3.

Lemma 4. Assume v € X§=P(Q)_ Then there exists v € Xé’p(R3) such that v=v in Q and
HVHXS-P(Ra) < CHVHX(?.I)(Q). (10)

Proof. We know that there exists an linear and continuous extended operator P of WO2 P(Q)
in WO2 P(R3). Setting v = Pv and using again the partition of unity

V=9 + Wy,
then it is easy to prove that v € WO2 7(R3) and v satisfies the estimate (10). O

Proposition 5. Let Q C R? be a Lipschitz exterior domain and u € Xg Q).

iD)If 1< p<3/2, thenu e L*/C-P)(Q)NL3P/C-20)(Q).

ii) If 3/2 < p <2, then there exists a unique constant k such that u+k € L1(Q) for all
q=2p/(2—p).

Proof. The proof is similar as in the one of Lemma 2 by using once again the partition of
unity and Proposition 4.3 [AR1]. O

Proposition 6. Let Q C R? be a Lipschitz exterior domain and u € XO2 P(Q).

i)If 1< p<3, then Vu € L¥/4=0)(Q)NL>/G-)(Q).

ii) If p =3, then there exists a unique k € ‘P|, independent on xi, such that V(u+k) €
ﬂ L' (Q), where ‘P is the space of polynomials of degree < 1.

r>12

iii) If 3 < p <4, then there exists a unique k € Py, independent on xy, such that V(u+k) €
L4/4=P)(Q) NL>(Q).

Proof. This proposition is a consequence of Lemma 2 and Remark 3. 0
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2 Existence of weak solutions in weighted Sobolev spaces

First of all, we shall study the existence of weak solutions of Navier-Stokes problem in
weighted Sobolev spaces in this chapter. Without loss of generality, we can set u.. = Ae;
with e; = (1,0,0) and A > 0. From now on, we consider the case of a fixed A > 0.

In 1933, Jean Leray [LE] who introduced the concept of the weak solution: A weak
solution to the problem (ALS) is a field u € H! (Q) vanishing on dQ, with Vu € L?(Q),

loc

dive =0in Q and lim / lu(o]x|) — te|do = 0 where S, is the unit sphere of R? such
S

[ | —o0

that for all ¢ € V(Q) = {v € D(Q),divv =0}:
V/ Vu : V(pdx+/(u.Vu).(pdx: f.0).
Q Q

As in [AA], it is easy to prove the following theorem.

Theorem 7. Let Q C R3 be a Lipschitz exterior domain. Given a force f € W, 1’Z(Q),

the problem (NS) has a weak solution u satisfying u — .. € Wé’Z(Q) and there exists a
function T € L7, (Q), unique up to a constant, such that (u,) solves the problem (N.S) in
the sense of distributions and we have the following estimation

C
=tz ) < 11 g2+ CO) (1 ) an

In Theorem 7, we see that a pressure T locally belongs to L?(2). At the beginning, we
shall establish, without additional assumption, of the properties of integrability at infinity
of the pressure.

Proposition 8. Let Q C R? be an exterior domain and let f € W, 172(9). The pressure T
obtained in Theorem T has a representative such that

n=1'+1? witht' € L*(Q) and t* € W0173/2(Q).

Proof. Let R| and R, be reals such that R, > R; > Ry and choose some functions y; and
> such that

Y € C*(RY), yi(x) =0if [x| <Ry, yi(x) = 1if [x| > Ry,

vx € R,y (x) +ya(x) = 1.

Letv = u — u.. where u is a solution given by Theorem 7 and let & € L? () be the associ-
ated pressure. We define (v!,xt!) as follows

(vl,ﬂ:l) = (vy1,my) in Q, (v1,7t1) =(0,0) in &/,

and set (v2,72) = (vy,my2) in Q. It is easy to check that (v!, 1) € Wi (R3) x L2 (R3)
and (v?,7?) € H'(Qy) x L?(€3). Moreover, we can establish the equalities in the sense of

distributions (respectively in 2'(R?) if i = 1 and in D'(Q,) if i = 2):

. W . . . .
—vAv’+ka—;+Vn’ —f and divyi = g/, (12)
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where

fi= Vi — Ay, —2vVyVy, + V] + pwgllfi iy
X1

gi = —V.V\Vi.

V.VV)\|I,‘] =ki+h;, (13)

Since y; is C* on R? with supp y; C Q, we have naturally denoted by fy; the distributions
on R? given by:
Vo € DRY), <fy1,0 > = <f,oy1 >q.

This notation also applies to each other term in the definition (13) with i = 1. Considering
now with i = 2, the regularity of v and & near the boundary depends on the regularity of
(f2,4°) and on the properties of the Oseen problem in the bounded domain ;. Similarly,
the regularity of v and 7 near the infinity depends on the regularity of (f !,g') and on the
properties of the Oseen problem in the bounded domain R?. We have & = n! +r? and from
Theorem 7, we obtain T2 € L?(Q). Thus, the main of the proof deals with the properties of
nt! and therefore of (f!,g'). We consider

oa!
—vAd! +xai+Vb‘ —k; and diva' = —vVy; in R3. (14)
X1
Since y; is bounded and has bounded derivatives with compact support, it is easy to check
that the term fy;, vAy, VyVy; and ©Vy; belong to W 1:2(R3) and because W(l)’z(]R3) C
i

LS(R?) then we have v.o € L(R?) for all ¢ € [1,6]. Even simple is to prove that g' =
X1

_ og! -
—v.Vy; € L2(R?) NW, "*(R3) and therefore ai € W, *(R%) satisfying the following
X1

1
< ai) 1 > — 0.
0x W, 22 (R3) x W2 (R3)

Applying Theorem 1.10 [AN], there exists a unique solution (a',b') € (X(l)’z(R3) x L2(R%))
of (14) such thata! € L" (R3) where 4 < r; < 6. Thanks to Holder inequality, we deduce

compatibility condition

0
that (v.V¥)y; € L*2(R?) and, in particular, we have v.% e L*/2(R?). Therefore, from
X1
Theorem 1.9 (see [AN]), the system as follows
>, ,0d° 2 ) ™3
—VAa +7La—+Vb =hy; and diva® =0inR”, (15)
X1

has a unique solution (a?,b*) € L*'(R3) x W01’3/2(R3) such that Va? € L?(R?), V2a? €
da?
L3/2(R3) and ai € L¥2(R®) for all 5, € [6,c0) and r; € [12/5,3].
X1
Wesetz=v! —a' —a? and 8 = nt! —p' — b2, Subtracting (12) to (14) and (15), we get

5)
—vAz+xa—z+V9:0 and divz=0inR°. (16)
X1
Therefore, we have 5
1
—vAcurl z + A (curl 2) =0 inR’,

ox;
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and we get ¥ = curl z, then for i = 1,2, 3,

—VAY; +xaﬂ =0 inR,
8x1
where W; € L?(R3) + L (R?) — §'(R?). Then, from Lemma 4.1 [AR1], ¥ is a polyno-
mial which belongs to L?(R?) +L"(R3). Consequently, ¥ = 0 = curl z and div z = 0.
Therefore,
~Az=curlcurlz+V divz=0 inR>

Similarly, it is easy to prove that z is a constant, then we can deduce from (16) that V6 =0
and by the way the existence of a constant ¢ such that ©! = b' 4+ b> + ¢. Therefore, the
proposition is proved setting t! = w2 4 b!, 1> = b°. O

3 Regularity of weak solutions

Let v = u — u., where u is the weak solution of the Navier-Stokes problem (A.S) given by
Theorem 7. Then we rewrite the Navier-Stokes problem (A(S) as follows:

0
VA AL L vn =f—v.Vv inQ,

ox;
(9\[5) divv=0 inQ, (17)
V= —lUe onl,
v —0 if |x| — oo.

We start our studies by adding assumptions on the force field f. First, we assume addition-
ally that f€ W, 1,3 (€2), and then, we will consider the case more generally f € W, 1’Z(Q) N

W, L7 (Q) with p > 3. Following this idea, we state and prove the
Theorem 9. Let Q C R3 be an exterior domain with a CY' boundary. Given p > 3 and
fe WE]’Z(Q) ﬂW&l’p(Q). Then, each weak solution u to the problem (N.S) satisfies

v e W2 (Q)NWyP(Q)NL(Q) and aa: eW, " "(Q) (18)
1

for any ri > 6 and any r, > 3. Besides, the associated pressure has a representative
te L} (Q)NLP(Q), (19)
and if p >3, then we have v € L*(Q).

Proof. We use once again the partition of unit introduced in Proposition 8. We first prove
the case p = 3 and then consider the case p > 3.

a) The case p =3: f€ W, "2(Q)NW, "7 (Q). Let u be a weak solution of (A(S) given
by Theorem 7 and v = u — u... Since v € L%(Q) and v.Vv = div (v ®v), we have that
vy

v.Vy € W, P (Q), Vo€ L¥2(R%) — W, "?(R?) and fy; — (n.Vv)y; € W, 2 (R3).
1
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1

Moreover, since v € H; .

theorem that

(Q) and &t € L*(Q;,), we deduce easily from Sobolev imbedding

—2VVyVy, — WAy, + VY € W, P (R?), —».Vy, € L3(RY).
Hence, the pair (f !,g') belongs to W, 13 (R3) x [3(R3). Otherwise, we can easily see

_ og! _
that g' € L¥2(R3) c W, ' (R3) and therefore % € W, **(R?) satisfying the following
1

1
<ag’ 1> ~0.
aXI WO*Z} (R3) ><W02"3/2 (]R3)

Then, applying Theorem 1.10 [AN], the following Oseen system

compatibility condition

d
VAW + xa—w +Vg=f" and divw=g'inR> (20)
X1

has a unique solution (w,q) € (X, (R?) x L3(R?)) such that w € L"(R3) for any r > 12.
Wesetz=v! —wand 0 =n! —g. Subtracting (12) to (20), we get
aZ . . 3
—vAz+7»a—+V9 =0 and divz=0inR’.
X
Proceeding analogously as in the proof of Proposition 8, we can deduce that Vz = 0 in R3.
Since z belongs to W(l)’z(R3 )+ W(l)’3 (R3), then z must be a constant ¢ and Vv! = Vw. As
z € LO(R3) +L'2(R?), then ¢ = 0, i.e. v! =w and v! € W(l)’z(R3) ﬂW(l)"3 (R3). Moreover,
oyl
we have v' € L' (R?) and BL
X1
we deduce that VO = 0, then 0 must be a constant, i.e, there exists a constant a such that
nt! = g +a with ¢ € L3(R?). Let us now come to the regularity near the boundary. Recall
that (v?,7?) € H'(Q,) x L?(Q;) satisfies (12) with i = 2. Moreover, we can prove-like we
proved- that (f2,g%) € W13(Q,) x L3(Q;). Thanks to Green’s formula and div v = 0, we
have

€ W, '"*(R?) for any ry > 6 and any r, > 3. Since z =0,

/ g (x)dx = — / Yolloo.NdG. (21)
Q r

With such data, and since Q, has C!! boundary, we can deduce from Proposition 4.2 [AR2]
that (2, %) € W'3(Q,) x L3(Q,) which immediately imply that (v?, %) € W(l)’3(Q) X
L3(Q). This ends the proof of the case p = 3.

b) The case p > 3: Let f € Wal’z(Q) DW(;LP(Q). It is clear that f € Wam(Q) and since
we have proved the theorem for p = 3, we know that v € W(l)’z(Q) N W(l)’3(Q) NL"(Q) for
any r; > 6 and € L3(Q). Then

(F'.8") € Wy P (R) x LP(R?) and (f2,8%) € W17 (Qa) x LF ().

As in the case a), we prove that (v!,xt!) € W(l)’p(R3) x LP(R?) and (v?,7%) € W(l)’p(Q) X
LP(Q),ie,v e W(l)’p(Q) and © € LP(Q). Moreover v € L*(Q). The proof is complete. []
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From Sobolev embedding theorem and the properties of the duality, we know that
L3/2(Q) — W, 173(9). If we now reinforce the assumptions of Theorem 9, f belongs

to L3/2(Q) instead of W, 13(Q), we can prove the following.

Theorem 10. Let Q C R3 be an exterior domain with CY' boundary.
i) Assume that f € Wal’z(Q) NL*2(Q). Then each weak solution u to the problem (N.S)
satisfies
v e Wy (Q)NW,° (Q)NL" (Q), (22)
oy

5 € L3Y2(Q)NL*(Q)NW, "*(Q) and Vv € L¥*(Q) (23)
X1

forany ry > %, ry > 3. Besides, the associated pressure T belongs to WO1 3/2 (Q).

3 _
ii) Let 7 <P< 3. Assume that f € W, Y2(Q)NLP(Q). Then each solution u to the problem
(NS) satisfies

el

v e Wy (Q)NWy " (Q)NL"(Q) and o
1

eW, " (Q) (24)

or any ry € [3p,o| if 3 < p <2, forany r| € [6,0] if 2 < p <3 and for any r, > 3.
2
Besides, the associated pressure satisfies

nel’(Q)NL*(Q) (25)
3p
where px = F Moreover, we have
—D

VZy e LP(Q), aaxv eLP(Q) and w e W, " (Q). (26)
1

Proof. i) Letu be a weak solution of (AS). Since L3/?(Q) — Wal‘s (Q), from Theorem 9,
we know that u and 7 satisfy (18) and (19)with p = 3. Now it remains to prove that v belongs

0
to L%2(Q) and a—v, V2, Vr belong to L3/2(Q). It is then clear that f ! € L3/?(R3)and
X1

gl e X(}’3/ 2 (R3). Then, by applying Theorem 1.9 [AN], the following Oseen system

d
v AP V= and divw=g'in R @7
X1
d
has a unique solution (w,u) such that w € L*(R?), Vw € L"(R?), V2w € L3/2(R?), aw <
X1

L*/%(R3) and the pressure u € W01’3/2(R3) for all s € [6,00) and r € [12/5,3]. We setz =

! —wand 6 =n! — u. Subtracting (17) to (27), we get

P
—vAz+ka—z+V9:0 and divz=0in R3.
X1

By the analogous techniques as in the proof of Theorem 9, we conclude v! = w, nt! =
1
v

0
uewyA(m3), 3 € L32(R?) and V?»! € L¥2(R3). Thanks to Lemma 1.4 [AN] with
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3
q= . wecan deduce v' € L?(R?). Let us now come to the regularity near the bound-

ary. First, we verify easily that (f 2,g%) € L3/2(Q,) x W'3/2(Q,). With such data, and
since Q, has Cl! boundary, we can deduce from Proposition 4.3 [AR2] that (v2,7t2) S
W23/2(Qy) x W 3/2(92) which 1mmed1ately imply that (v?,7?) € W2 3/2( Q) xWh3/2(Q).
Finally, since v = v! +v? and © = nt! + 72, we obtain (22) and (23).

3
ii) Thanks to the Sobolev embedding theorem, since f € L”(Q) where 3 < p <3, we

can deduce that f € W_1 PHQ) with px = 33_—”17 and px > 3. From Theorem 9, we have
(18) and (19) but p=x plays arole as p in Theorem 9. From Holder’s inequality, we obtain

3
v.Vv € L1(Q) for all 3 < g2 < 3 and then f—v.Vv € L”(Q). Proceeding similarly as in the

previous case, we prove (26). By applying Lemma 1, we have v € L37(Q) and we deduce
(24). Finally, we obtain © € LP*(Q) from &t € WO1 ?(Q). The theorem is completely proved.
O

In Theorem 10 (i), we proved v € L" (Q) for any r; > 9/2. To obtain v € L' (Q) with
r1 < 9/2, we have to assume additionally a condition for f. We can state the

Theorem 11. Let Q C R? be an exterior domain with C'' boundary. Assume that f €
W, 1.2 (Q) NL32(Q)NLA3(Q). Then each weak solution u and the associate pressure T to
the problem (N.S) satisfy the results in Theorem 10 i). Moreover,

0

2 e L4/3(Q), aiv

eLY3(Q), me Wy (Q) and v e L(Q) (28)
x|

forany ry > 4.

Proof. From Theorem 10 and Theorem 5.26 [AR2], we have the following estimate

M| HL3/2 <C(|[f—v.Vy HL3/2(Q) + H“wHW4/3,3/2(r))
<C(\|f\lm/2 119 sl 1V9 2@y + teel lwarssra ry) (29)
<C(|If s +\|v||Ls ) lIf [y 12y + It sy )-

Applying Lemma 1.4 [AN] with ¢ = 3/2, we can deduce

v
HVHL"/Z(Q)+)“H87MHL3/2(Q)SC(HfHL3/2 o)tV s +1)-

We define the sequence {gy } as follows

2q+1

=3qr, keN (30)
2 — Gt

with go = 2. Clearly, the sequence {gy} is strictly decreasing and converges to 4/3. By
induction, we can deduce for 4/3 < g; < 2 with k € N that

HVHL3‘ik+1 +7\'H HquH(Q) < C(HfHL‘1k+1 (Q) + ” 4 ”L2’1k+1/(2*qk+1)(g) + 1) (1)
< CUf Mo @) + [ v gy +1)-
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Thanks to Babenko [BA] and (31), we have the following estimate

1/3 1/3
([ scuafulfw ua [H Ha
1/3
scua (I
< COH ¥l lsaa)

Then we deduce

IN

CA+ Yl

1+ Hv||L3‘1k+l(Q)
Cl+%+"'+#(

IN

H1/3

1
L[] a0 () ¥ -

(32)

When k — oo, then g — 4/3 and we can deduce v € L*(Q) with the following estimate

L+[v[les) < COA+|v]lLs) < C.

Since v € L*(Q) and Vv € L2(Q), we obtain f —».Vv € L*3(Q) and we deduce (28). The

Theorem is completely proved.

4 The exterior Oseen problem
For our studies, we shall introduce the following problem. Let

a fixed z € L}(Q) such that divz = 0 in Q,
we search a solution (w, 0) to the following Oseen problem

ow
—VAw—i—?»——i—z Vw+VO=f inQ,

ox
divw=0 inQ,
w=u, onl.

We introduce the space
VI(Q) = {v e WP (Q), divy = 0}.

As in [AA], we can prove the following lemma

O]

(33)

(34)

Lemma 12. Ler Q C R3 bea Lipschitz exterior domain. Assume that 7 satisfies (33), u, =0

and letf € Wal’z (Q). Then Problem (34) has a solution (w,0) € \;)V(l)’z( Q)

We have the following corollary.

Corollary 13. With the same hypothesis as in Lemma 12, we can deduce that © € L*(Q).

0 _
Moreover, we have w € L*(Q), % eW, 172(9)-
1
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Proof. We use once again the partition of unit with the role of w (0, respectively) as v
(m, respectively) introduced in Proposition 8. Proceeding analogously as in the proof of

Theorem 9, we can deduce that 8 belongs to L2(Q). Moreover, we have a—w cW, 12(Q)
X1

because Aw, z.Vw, VO and f belong to W, 1’Z(Q). Thanks to Lemma 2, we deduce w €
LY(Q). O

Lemma 14. Let Q C R? be a Lipschitz exterior domain. Assume that z satisfies (33), u, =0

and let f € Wal’z(ﬂ). Then Problem (34) has a unique solution (w,0) € (W (1)’2(9) N
ad -

LY(Q)) x L*(Q) with W e W, '2(Q) and w satisfies the energy equality

axl
2 _
V/Q|Vw Pdx=<fW> o0 e (35)
Moreover, we have the estimate
AV \Y:)
W [Ls@) + VW@ +|| lIIW 12(g) 1| VBlli2(e) 36)

< C(Hf ‘ |w51-2(Q) + Hz'vw ngl,z Q))'

o a B
Proof. The existence of (w,0) € (Wé’z(Q) NLA(Q)) x L2(£) such that % €W, 12(q)

is given by Lemma 12 and Corollary 13. Since the space 4/(Q) is dense in V?(Q), for any
¢ € V3(Q), we have

ow
VfQ Vw V(pdx"';& < a ,(P > (Q)X\S)V(I)Z(Q) (37)

+ <z.Vw,0 > <f,(P ZWs Q)W)

W, Q)W (Q)

Since D(Q) is dense in )0((1)’2(9) (see [AR]), for all y, ¢ 6)0((1)72(9), we obtain

<8\|! ‘p> =-— <w a(P> .
X1 Wy )W) 1OX1/ @)Wy 2@

Then, we deduce

<aw : W> =0 (38)
M1/ wy 2@ @)
and we have for any ¢ € V2(Q),
(@ 00Oy 0y iy = O
Wo (@) Wy (@) " Ox;
8
= —1 9 —Ldx = (39)
8x,

From (38) and (39) and (37), we have (35). The uniqueness of (w,0) is a immediate conse-
quence of (35). O
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We consider the following nonhomogeneous problem.

Lemma 15. Letr Q C R3 be a Lipschitz exterior domain. Assume that z satisfies (33),
u, € H/2(T') and let f € W(;l’z(Q). Then Problem (34) has a unique solution (w,0) €
(X(l)’z(Q) NL*(Q)) x L*>(Q) and we have the estimate
ow
[ s + 1IVwllz@) + 115 wg 2 +11V8llz o)
< C(Hf ‘ |W61A2(Q) + HZ.VW HW(;I'Z(Q) + Hu*HHl/z(r)).

(40)

Proof. It is easily to show Lemma 15 by applying Lemma 14 and Lemma 5.8 [AR2] with
the case p = 2. O

Our objective is to consider the Navier-Stokes equations by using the properties of the
Oseen equations. We now consider some properties of the Oseen equations. Beforehand,
we introduce

X, (Q)NLAP/A-P(Q)  if 1< p <4,

Lp
yhrQ) =
0" (&) {X(}J’(Q) if p>4,

and 5
YP(Q) = {veY,”(Q); v=0 on T'},

with the same definition when Q = R>. Now defining
2 (Q) = {(u,m) €Y7 (Q) x L (Q), T(u,m) = (0,0) in Q},

N (Q) = {(,m) €YH7(Q) x L (Q),T" (u,m) = (0,0) in Q},

with 3
T(u,n) = (—Au+ " +Vr, —div u),
ox;
and its adjoint
ad
T (u,7) = (—Au — -2 4 Vi, —div u).
axl

Moreover, if 1 < p < 4, u satisfies the properties i)-iii) of Lemma 2. We introduce the
characterization of the kernel 9\(;(&2). (see [AR2)).

Lemma 16. Let Q be an exterior domain with a CY' boundary.
1) If 1< p <4, then N, (Q) = {(0,0)}.
2)If p >4, then \;F(Q) = {(Ac —¢,u1.); ¢ € RP} where

(Aete) € () Yo" (@)% ) L(Q)

r>4/3 §>3/2

is the unique solution of the following system

oA,
—A?uc—l—ak—i—v,uczo, divA,. =0inQ, A, =conT. 41
x|
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Remark that we have the similar results for A}~ (€2). We now introduce the

Theorem 17. [AR2] Let Q be an exterior domain with a C"' boundary. Assume that
fe Wal’p(Q) and u, € W'/P'"P(T). Moreover, if 1 < p <4/3, assume that we have the
compatibility condition

V(v.n) € N, (Q), <fiv>a+<(Vv—nl).n,u,>r=0. 42)

i)If 1 < p <4, then the following problem

ou
—Au+a—+V7¢ =f, divu =0inQ, u=u,onl’ 43)
X1

has a unique solution (u,m) €'Y, ’p(Q) x LP(Q) satisfying the estimate
l# Wy @) T 17l < C U Ml o) 1 lwimary )-

ii) If p>4, then problem (43) has a solution (u,m) € Y1 P(Q) x LP(Q), unique up to an
element of 9\4;r ), satisfying the estimate

( m)g;\g(g)(”” +vHY(1)"1’(Q) + H“Jrﬂ HLP(Q)) < C(Hf“wa'ﬁ(g) + Hu* HWI/P’,P(F) )

The next Lemma characterizes the kernel A[”(Q) of the exterior Oseen system:
ANPQ) = {(.m) € [Yo(Q) + Yy (Q)] x [L(Q) + L1(Q)],
T(u,m) =(0,0)inQ,u=00nTI}
with 1 < p < g <oo.

Lemma 18. Let Q be an exterior domain with a CY' boundary and 1 < p < q < o,
i)If g <4, then NP1(Q)={(0,0)}.
ii)If g >4, then

NPI(Q) = {(Ae —€,c); € € R}

et € () Yo' (@) x () L(Q

r>4/3 §>3/2

where

is the unique solution of the system (41). Moreover, we have A, € L*(Q) NL>(Q) for all
s> 2.

Proof. Let (z,0) € N4(Q), thenz =u —v withu € Y(l)”’(Q), v e Y(l)’q(Q) and u = v on
I'. Letnow v € Yé’q(R3) be an extended function of v outside Q. Wesetu =uin Q, u =v
outside Qandz =u —v. Thenu € Y(l)’p (R3),Z = 0 outside Q and we can prove that divz =0

in ]Ri. We now extend 6 by 0 outside € and denote 0 its extended function. It is easy to see
that 8 € LP(R?) 4 L(R?). Now setting

h= —A’z+ﬁ+v€5,
ox1
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thensupph C Tand h € Wal7p(R3).

4
1) The case p > g: Thanks to Theorem 1.10 [AN], there exists w € Yé’p (R?) and o €
L?(R3) such that

—Aw+aaw+v(x:h and divw = 0 in R?.
X1

We now set thaty =w —z and k = ot — 0. Hence, we have

9
—Ay + al +Vk=0 and divy =0in R,
X1
and we deduce 5
1
—Acurly + M =0inR>.
8x1
We take ® = curly. Then, for i = 1,2, 3, we have
9P,
—AD;+— =0
ox1

where ®; € LP(R3) + L4(R3) — §'(R?). Tt is deduced that @ is a polynomial which belongs
to L”(R?) + L4(R3). Consequently, ® = 0 = curly. Therefore,

—Ay = curlcurly + Vdivy = 0.

Since y € Y(l)’p (R3) +Y(l)’q(]R3), then y must be a constant ¢ and Vw = Vz. Moreover, we
obtain Vk = 0 in R3. Then k is a constant belonging to L”(R?) 4+ L(R?), it means o = 0in
R3.

a) The case g < 4: Asy € L¥/4=P)(R3) 4 L4/(4=9)(R3), then ¢ = 0. Therefore, w =7
inR*> and w =0 on I. Since p < 4, from Theorem 17, then w =0 in Q, i.e., z =0 in
Q. Therefore, VO = 0 in Q and we can deduce that 0 is a constant which belongs to
LP(Q)+L1(Q). Hence, 8 =0 in Q.

b) The case q > 4: There exists a constant ¢ = (c1,¢2,c¢3) such thatw —z = ¢ and w = ¢ on
I'. Consider now the following problem

oA . .
—Ax,-+§+vy,~ =0,divA; =0inQ, A; =e¢;on T, 44)
1

where (e}, e;,e3) is the canonical basis of R3. We know that the system (44) has a unique

solution (A;, ;) such that A; € () Y(l)’r(Q) andg; € () L'(Q). If p <4, from Theorem
r>4/3 r>3/2

17, w is unique and then w; = c.e; = ¢.A; on I, therefore w; = ¢.A; in Q. Now we set

Ae = (€.A,¢.Ap,¢.03) and y. = ¢.u with u = (uy,u0,u3). By construction of A, and ., we

deduce that (A., ) is the unique solution of the following system

oA,
—Akc—i—a—c—i—V/.lc =0, divA, =0inQ, A, =conT,
x|
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such that A, € ﬂ Y(l)’r(Q) and u. € ﬂ L"(Q). It is easy to see that (w,o) = (w,0) =
r>4/3 r>3/2

(Ae,ue) in Q. Then we obtain (z,0) = (A, —c,u.) in Q. If p > 4, we obtain again (z,0) =

(Ae — ¢, ;) in Q by proceeding similarly as in the case p < 4.

4
2) The case 1 < p < 3 We set m = (m;); with mj =< h;,1 >, and
0

(R)x W, "' (R)
H; = h; — 80;jm; where 0 is the Dirac distribution and ;; denotes the Kronecker symbol.
From Theorem 1.10 [AN], there exists a unique solution (wg,0) € Y(l)’p (R3) x LP(R3) such

that

d
—Awo+ % 4 Vay = H, divwg =0 in R,
X1

‘We now set that
w=wog—Omand .= 0g—P.m

where (O, P) is the fundamental solution of Oseen equations. Then we have

aw

+Va=h, divw =0in R,
axl

—Aw +
Moreover, proceeding as in the case 1 of this Lemma, we obtain Vw = Vz and o = 9 in
R3. Note now that the pair (a,b) € N, (£2) satisfies the Green’s formula: for all (y,§) €

D(Q) x D(Q),

/Q{(—A\p—i- g;“ +VE)a—bdivyldx =< (Va—bl).n,y >r, (45)
1

where <, >r denotes the duality pairing between w=1/P"P () and W'/?7(I). Thanks to
the density of D(Q) in X, (Q) and D(Q) in L (L), applying (45) with (y,&) = (wo, o) €
Xo?(Q) x LP(Q) and (a,b) = (vg —B,0p) € N[, (Q) (B € R?), we obtain

< (VVB — 951).",W0 WP (D) x WP o0 (D) = 0. (46)

a) The case q < 4: Then we have w —Z = 0 in R? and w = 0 on I. Therefore, we deduce
wo = O.m on I'. From (46), we have

m < (Vvg—80gl).n,0 >r=0. (47)
By some calculs, we can obtain
0 = /{(AO+aO+V£P)v —Bgdiv O}dx
~ Ja ox B B

00
= < (Vvﬁ—eﬁl).n,0>r _BAE’

then we deduce < (Vvg —0p/l).n, O >r# 0 and from (47), m = 0. Then (wo, ) = (0,0) in
Q and we can deduce that (w,o) = (0,0) and (z,0) = (0,0) in Q.

b) The case q > 4: There exists a constant ¢ such that w —z = ¢ in R? and w = ¢ on I". Then
we have wyp =c+ O.m onI'. Applying (46), we deduce that

< (Vvg—6gl).n,c+ O.m >r=0.
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4
We set that 4 = ¢ 4+ O.m. It is easy to prove that u € Wl/"'/’(l“) for all 3 < r < 4. Thanks to
Theorem 17, the following system

y,

has a unique solution (yo, K) € Y1 "(Q) x L"(Q). Then (y, —wo, K—0) € NP"(Q) and we
deduce that (y,, k) = (wo, ). Moreover we can see that u € W'/P'P(T"). Then there exists
(s,®) € Yy?(Q) x L4(Q) such that

+VK 0, divyy=0inQ, yg=puonl,

Js
—As+a—+V0) 0,divs=0inQ,s=uonl.
X1

Then (s —wo,® —ap) € N(Q) and (wo,00) € Y(l)’q(Q) x L1(Q). Therefore, we deduce
that (w,a) € Yé’q(Q) x L1(Q). Since w = ¢ on I' and thanks to the characterization of
N?(Q), we obtain that (z,0) = (A — ¢, ).
4
Finally, in the case p = 3 let € D(R3) satisfying /g(p,‘ =1. We set U= O*@ and
R\

K = P *¢. The reasonning can be applied by replacing 86;; by ¢;, U by O and X by
P. O

Thanks to the above lemma, we immediately deduce the following corollary.

Corollary 19. Let Q be an exterior domain with a CY' boundary. Assume f € W, L.p (Q),
u, € Wl/pl’p(l") with 1 < p < 4 satisfying the compatibility condition (42) and (u,w) €
Y(l)”’7 (&) x LP(Q) be the unique solution of the system (43). If in addition, f € W, M(Q) and
u, € W/ AC)withl <g< 4 sansfying the compatibility condition (42) by remplacing p
by q, then we also have (u,) € Y 1(Q) x L1(Q).

We denote by [g] the integer part of g. For any k € N, % (respectively, EPkA) stands
for the space of polynomials (respectively, harmonic polynomials) of degree < k. If k is
strictly negative integer, we set by convention @, = {0}. We introduce the following space
of polynomials:

AN = {(Mu) € Bx P, Ax+aa7”+vy:0, divAi=0 inR*}.
X1

Observe that Aj = R x {0} and Aj = P| x R? where ] is the space of polynomials of
degree less than or equal to one not depending on x;.

We now introduce the space Z,(Q) as follows:

X7 (Q) if p>4,
2,(Q) = { x2P(Q)nwW, “4"1’(9) if 2<p<a4,
XEPQ) AW Q)L Q) if 1< p<.
Define that
aH(Q) = {(u,m) € Z,(Q) x W, " (), T(u,m) = (0,0)inQ, u=00nT}.

We can characterize the kernel ﬂl;r (Q) (see [AR2]), as follows:
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Lemma 20. Let Q be an exterior domain with a C'' boundary.
DIf 1l<p<?, thenﬂl]f(Q) = {(0,0) }.
i) If 2 < p <4, then A5 (Q) = {(Ae—c,uc); ¢ €R?}, where

Meotte) € () Yo' (@) x [ L(Q)

r>4/3 §>3/2

is the unique solution of the problem (41).
iii) If p >4, then ,‘le;"(Q) = {(Ae —c,uc—m); (e,m) € N }, where

ca/JL m er )X n LS(Q'

r>4/3 §>3/2
is the unique solution of the problem (41).

The next lemma characterizes the kernel A477(Q) of the exterior Oseen system:

AP4(Q) = {(u,m) € [Z,(Q) +Zg(Q)] x [Wy " (Q) + Wy ()],
T(u,mn) =(0,0)inQ, u=0o0nT}.

Lemma 21. Let Q be an exterior domain with a C'! boundary and 1 < p < q < oe.

)If 1< p<2 then A79(Q) = {(0,0)}.
i) If 2< p <4, then AP4(Q) = {(Ae—c,u.); ¢ € R}, where

(hestie) € [ Yo' (@) x ) (@

r>4/3 §s>3/2

is the unique solution of the problem (41).

iii) If p >4, then 2P4(Q) = {(Ac —c,uc—M); (¢,M) € NA] }, where
(hestie) € () Yo' (@) x [ L(Q)
r>4/3 §s>3/2

is the unique solution of the problem (41).

Proof. The proof can be obtained by proceeding similarly as in the one of Lemma 18.

The following corollary is immediately deduced from the previous lemma.

Corollary 22. Let Q be an exterior domain with a CV'. Let f € LP(Q), u, € W'+1/7"»(I)

O]

with 1 < p <2 and (u,m) € Z,(Q) X Wol’p(Q) be the unique solution of the system (43).

If in addition, f € L4(Q), u, € W'V/44(T) with 1 < g < 2, then we also have (u,T) €

Z,(Q) x W, 1(Q).

5 More regularity for the velocity field # and the pressure 7 of

the Navier-Stokes system

We now introduce the following result which we shall need in this part. The proof of this

lemma is similar as the one of Lemma 4.2 [AN].
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Lemma 23. Let Q C R be a Lipschitz exterior domain and z € L*(Q) such that div z = 0.
Then, for all € > 0, there exist p = p(g,z) > 0 and a sequence (zi)ren € L (Q) NLHY(Q),
such that div z; = 0, satisfying

7% — zin LY(Q). (48)

Moreover; there exist sequences (ay) and (by) in L3(Q) NL*(Q) satisfying for each k € N
2k = ar + by with [|ag||p3) < € and supp by C Qp. (49)

From now on, Q is an exterior domain with C'! boundary in R3. Note that L%/5(Q) —
W, 12(Q) and L¥2(Q) — W, 13(Q), and with the previous results in hand, we can now
prove the following theorem.

Theorem 24. Assume that f € L (Q)NL*?(Q). Then each weak solution (u,T) to the
problem (N(S), satisfies
v € LI(Q) for all g € [3,%), 1€ W, (@) n W, (@),
Vv € L'27(Q)NL3(Q), Vv € L%3(Q)NL¥2(Q), (50)

oy 6/5 3
o e L’ (Q)NL’(Q).

Proof. Let u be a weak solution of (A'S). Asf satisfies the hypothesis of Theorem 11,
d

then (v,m) verify (18), (19), (22), (23) and in particular, v € L*(Q) and a—v e LY3(Q).
X1

Let € > 0, p > 0 and vy = a; + by be a sequence as z; in Lemma 23. Since v; € L3(Q)
and div v; = 0, from Lemma 15, there exists a unique solution (wy,6y) € X(l)’z(Q) x L2(Q)
satisfying

ow

5 K v VWi + VO, =f and divw;=0in Q (51)
X1

with w; = —u. on I'. Thanks to Theorem 5.26 [AR2], we have

—VAwW, + A

Iwills@) + 1 Vwillem g+
Gl + 11 VWil + 11605 g (52)
< C(IIF Ipers@ + |[vie-Vwi|[Lors () + [ oo | [wrss/(r))
where C > 0 depends only on A, v and Q. Note now that by construction of the sequence
by, we have |by| < v almost everywhere in Q, we have

[[ve-Vwe| ‘L6/5(Q)
< aw|leaie) | Vwilleizm @)+ 11e s @) || VWi e @)
< €| Vwillpii ) + v sl Vwelle,) (53)

But there exists C; € R such that

vk e N° |[Vwillisng,) < Crlllf [luoso) + | #elwrssisr))- 54
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Contradicting (54) means that there exists a sequence (ky, )men+ such that, for all m € N,

VWi, L@, =1,

M 1 (55)
H B a m Q) + ”wkaw7/6‘5/6( I) < ot
Then we deduce from (52), (53) and (55) that
1w, L3 + 1YW, i) + 11 VWi, Lss )
awkm
15 Mesrsiy + 118, 11005 ) < C-
d
Therefore (w, ) is bounded in W5 (@) n Wy (@), ( 8w . ) is bounded in L8/5(Q),
xl m

(Wi, )m is bounded in L?(Q) and (8, ),, is bounded in W1 813 (Q). Thus, there exist subse-

quences, again denoted by (wy,, ), and (6, ), such thatwy, — w in W2 6/5( )OWl 12/7( Q),

a a m
awk P in L%5(Q), w;, — win L3(Q), and 6;, — 0 in W1 6/S(Q). Moreover, since
X1 X1

W26/3(Q,) < WI3/2(Q,) with compact imbedding, we have wy, — w in W3/2(Q,)
with

1V gy = L (56)
and -
—VAw—l-?ug +vy.Vw+VO0=0 in Q. 57
1

Since w € W(l)’z(Q) and 0 € L?(Q), then we have Aw and V@ belonging to Wal’z(Q). On
the other hand, we deduce that v.Vw = div (v@w) € W, 2(Q) because v and w belong

_ 0 _
to L*(Q). Since L9/5(Q) — W, '?(Q) we also have a—w e W, '%(Q). Moreover, w is
X1

divergence free and, because of (55), it has also zero trace at the boundary. Then, we
deduce w = 0 in  which contradicts (56). Thanks to (52), (53) and (54), we have the
following estimation

I + 11994 o

125 s+ 17w sy + 166 s
< 01 s+ 17 sy sy Nl ey

We can show that there exist a subsequence of (wy ), which converges weakly towards w

in W2 8 5( Q)N Wl 12/ 7( Q) N L3(Q) and a subsequence of (6;); which converges weakly

16/()

towards 6 in W, being a solution of the system as follows

ow
—vAw—H»a— +v.Vw+VO=f and divw=0inQ.
X1
We sety =v—w and } =7 — 6. Then we deduce that (y,y) is a solution of the following
system

—VAy +A=— %

o +v.Vy+Vx=0 and divy=0inQ.
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Since y satisfies the energy equality (35) with f = 0, we deduce that y = 0 then % = 0.
Thanks to uniqueness arguments, we show that w = v and 0 = ©. Theorem is completely
proved. O

Thanks to Theorem 10 (part ii), Theorem 24, Sobolev embedding theorem and by dual-
ity arguments, we can prove the following.

Corollary 25. i) Assume that f € L?(Q) for all p € [6/5,2). Then the Navier-Stokes prob-
lem (N.S) has a solution (u,T) satisfying

v e LI(Q), Vv e L (Q), T e W, (Q),

viverr(@), & ),
ox;

forany q € [3,)|, any s1 € [12/7,6), any s» € [6/5,2) and any s3 € [6/5,6).

(58)

ii) Assume that f € LP(Q) for all p € [6/5,3). Then we have (58) for any q € [3,o0],
s1 € [12/7,00), 52 € [6/5,3) and s3 € [6/5,).

We now prove the following Theorem.

Theorem 26. Assume that f € LP(Q) for all p € (1,3/2]. Then each weak solution (u,T)
to the problem (N.S) satisfies

veLI(Q), Vv e LY (Q), me W, (Q),
) oy s (59)
Vv eL(Q), 5- €L(Q),
X1

forany g € (2,00), any sy € (4/3,3], any so € (1,3/2] and any s3 € (1,3].

Proof. Remark that from Theorem 24, as v € L?(Q) and Vv € L'%/7(Q), we have f —v.Vv €
12

L'2/11(Q). By applying Theorem 5.26 [AR2] with p = T the following system

0
—VAw+7»a—w+V6:f—v.Vv, divw=0 inQ; w=—u, onl,
X1

has a unique solution (w,0) satisfying the following properties: w € L?”/(2=)(Q)n
0

LP/G=20)(Q), Vw € L*/G4=P)(Q) NL3»/G-1)(Q), V2w € LP(Q), sz €L”(Q) and 6 €
X

Wol’p(Q), ie, (w,0) € Zi/(Q) x Wol’lz/“(Q). On the other hand, from (50), we can

show (v, ) € Zg/5(L2) % W0176/5(Q). Thanks to Corollary 22, we have (w,0) = (v, ). Then,

d
we obtain v € L'25(Q) NL'%7(Q), Vv € LY3(Q) NL'>/7(Q), V2, and —

ox;
L2/(Q),ne W01,12/11 (Q). Combining with the results in Theorem 24, we have v € L(Q)

for all ¢ € [12/5,00) and Vv € L*3(Q) NL3(Q). Hence, it is easy to prove that f —v.Vy

belongs to L”(Q) for all p € |1,3/2] and we can deduce that v € LZ%(Q) ﬂL%p(Q),
4p 3 d
Vy e L (Q) AL (Q), Vv e LP(Q), a—v el?(Q)and e Wol’p(Q). Clearly, we have
29|
(59) by combining with (50). O

belong to
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Thanks to Corollary 25 and Theorem 26, we immediately obtain the following results.

Corollary 27. i) Assume that f € LP(Q) for all 1 < p < 2. Then each weak solution (u,T)
10 (ALS) satisfies
v e LI(Q), Vv e L (Q), T e W, (Q),
oy (60)

VZr e L2(Q), =— €L¥(Q
vEL®(Q), 5 €L2(Q),

forany q € (2,00], any 51 € [4/3,6), any s, € [1,2) and any s3 € [1,6).

ii) Assume that f € LP(Q) for all 1 < p < 3. Then we have (60) for any q € (2,0,
51 € (4/3,00), 52 € (1,3) and s3 € (1,00).

We now search weak solutions of Navier-Stokes system (AS) such that v € L9(Q) and
n € L1(Q) for small values of ¢ (¢ < 2) with similar properties for Vv. The following
theorem allow us to improve the results in Theorem 24 by taking an additional assumption
for f.

4 -
Theorem 28. Let = < p <2 and f € LY5(Q)NLA2(Q) N W, '7(Q). Then each weak
solution (u,T) to the problem (N.S) satisfies (50). Besides, we have

el

L (Q
n e L’ (Q) and o

S Wal’s(ﬂ) for any s > p. (61)

4 12
In particular, if 3 <p< - we obtain additionally

4
v € LI(Q) forany q > 1 P

and Vv € LP(Q). (62)

Proof. From Theorem 24, if u is a solution of (A’S), we have v satisfies (50). In particular,
y € L3(Q) NL4(Q) and div (v @v) € W, " (Q) nW; 12(Q).
1) The case 3/2 < p <?2: We have f—v.Vy € Wal’p(Q). As p > 4/3, then the compatibility

condition (42) is automatically satisfied. Thanks to Theorem 17, the following system

0
—vAw+xa—w+ve:f—v.Vv, divw=0inQ; w=—u. onT,
X1

has a unique solution (w, ) satisfying w € L*?/(4=P)(Q) NL3?/G-r)(Q), 0 € LP(Q), Vw €
d _
L”(Q) and a—w eWw, LP(Q). Tt is easy to see that (w,0) € Y(l)”’(Q) x LP(Q) and (v,m) €
X1
Y(l)’3/2(§2) x L*/2(Q). Applying Corollary 19, we have (w,8) = (v,T), then we obtain (61).
2) The case 4/3 < p < 3/2: Since f € LO3(Q) — Wal’z(Q), then in particular we have f €
Wal’S/z(Q). From the case 1) of this theorem, we have v € L4/4=7)(Q) nL3?/G-r)(Q).
Applying with p = 3/2, we have v € L'2/°(Q) NL?(Q). Hence, we can show that v.Vy =
div(v®v) € W61’4/3(Q) ﬂW61’3/2(Q) and f—v.Vy € Wal’p(Q). By applying Theorem
17 and Corollary 19, we have (61) and (62).

The proof is complete by combining the case 1) with the case 2). O
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Remark 29. Because of the compatibility condition (42), the above problem is open for

4
the case 1 < p < 3

In Theorem 26, we know that if f € L”(Q) for all p € (1,3/2], then v satisfies (59).
With additional assumption for f, we shall prove that the weak solutions given in Theorem
26 satisfy better properties.

4 "y
Proposition 30. Given r > -. Assume that f € LP(Q) N W, Y(Q) for all p € (1,3/2).

ad _
Then each weak solution (u,n) to (N.S) satisfies (59) and % ew, Y5(Q) for any s > r.
1

Moreover,

4
if§<r§%,ﬂ:€L’(Q)f0rallr§t§3. (63)

Proof. We know that (u,7) satisfies (59). In addition, thanks to Theorem 26, we have
v®@v € L4(R3) for all ¢ > 1. Then we deduce f —v.Vy € Wal’r(Q). Proceeding as in

r 3r ) _
Theorem 28, it is easy to prove that v € L (Q) ) = (Q), Vv e L"(Q), —vl cW, 1’r(Q)

ox
0 _
and w e L"(Q). Asv € L9(Q) for any ¢ > 2, we have a—v eW, '5(Q) for any s > r. For
X1
the pressure, we note that thanks to (59), T € L'(Q) for all 3/2 < ¢ < 3 and then, we have
(63). The Theorem is completely proved. O

We now prove the following theorem.

Theorem 31. Let 4/3 < p < e and qo > 3. Assume that f € L4(Q) N Wal’p(Q)for all g €
(1,q0]. Then the problem (N.S) has a solution (u,T) satisfying the properties of Corollary
27 part ii). Moreover, we have T € WOI’SZ(Q) and V*v € L2(Q) for all s, € (1,q0]. In
particular; if 4/3 < p < 3/2, we have additionally & € L*' (Q) for any k; > p.

Proof. In particular, we have f € LI(Q) for all 1 < ¢ < 3. From Corollary 27 part ii), we
have
v e LO(Q), Vv e L (Q), T e W, (Q),
9 64
Vi e L2 (Q), 22 e L (Q), (©4)
8x1
for any sg € (2,00, any s1 € (4/3,0), any s, € (1,3) and any s3 € (1,00). Using the partition
of unity, we can deduce (f',g') € L9(R?) x Xol’q(R3) and (f2,g%) € L9(Qy) x Wol’q(Qz)
for all g € (1,qo]| satisfying (21). Applying Theorem 1.9 [AN], Proposition 4.3 [AR2] and
d
proceeding as in Theorem 9, we can obtain that T € W, 4(Q), Vv € L4(Q), a—v e LI(Q).
X1
Combining with the previous results, we have (64) for all s, € (1,q0], s3 € (1,00). As
v®v € L'(R?) for any r > 1, then f—v.Vy € Wal’p(]l@). We use the same technique as
in the proof of Theorem 28, we have (v,m) € (X(])’p(Q) x LP(Q)) such that w € L*(Q) for

all % <s< i—pp. Note that © € L*1(Q) for any k; > p if 4/3 < p < 3/2. The Theorem is
completely proved. O
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Now we introduce the stress tensor T and the related stretching tensor D, T (u,7t) =
—nl+2vD(u), where I is the identity matrix and D(u) = {D;; }(u) with

1 Bui ou;
Dii(u) = = (=—+ =2).
U(u) Z(E)xj+8x,-)

We now consider the energy identity. The key idea to find the conditions to obtain the
energy identity (65), is to test the Navier-Stokes problem with v.

Theorem 32. Let f € L3 (Q)NLY%(Q) and (u,n) be a weak solution of (N.S). Then we
have the energy identity

V/ |Vv|2dx—7»/T.n dG:/f.v dx. (65)
Q r Q

Proof. Let (u, ) be a weak solution of (A(S). From Theorem 24, we know that (50) takes
place. Let ag € H'(Q,r) where R > Ry such that ag = 0 on 0L, @y = u.. on 9By, divag = 0
in Qog. We set that @ = u., in B2R and a = ag in Qyg. Then, we have a — u., € W(l)"z(Q)
with compact support and diva = 0. As 9(Q) is dense in V>(Q) (cf. [AA]), there exists
a sequence (y;) € V(Q) with (y;) = v —a +u.. in V?(Q) with compact support. Since
v € L3(Q) then we deduce v —a +u.. € L*(Q). Testing (17) with (,), we obtain

ov

ot 7w, @ e

=<fi¥i >y
0

Vo Vv.Vydx+A <

+ < V.VV,\lfi >

W, 2 (@) x Wi (Q) @xwy(@)

When i — o, we deduce that

ov
3 12812
axl W, " xXW,

_ o, =<fv—a-+tu.>_ 015 -
01’2><W(1J'2 f7 WOLZXW(I),Z

Vo Vv |2dx —V [ Vv.Va dx + ) <

+ <v.Vyvt+u.,—a >w

V+Uo.—a>
(66)

0
From (50), —- and v.V¥ are in LY/ 2(Q). Then, we can rewrite (66) as follows

ax 1

d
V [o|Vy [2dx —V [ Vv.Va dx+kf9£.(v+um—a) dx
1
+ [ov.Vv.(v + U —a) dx = [of.(v —a+u..) dx.

(67)

Next, we multiply (17) with u.. —a € W(l)’z(Q) having compact support. Integrating on £
and using integration by parts, we get

—V [oVv:Vadx—A [ Trndo+A [, E;)v.(um—a) dx
X1
+ Jov. V. (e —a) dx = [of (4o —a) dx.

(68)

0

It is easy to see that [v.Vv.y =0 and [, a—v.v =0 ( cf. [FA]). From (67) and (68), we
X1

have (65). ]
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