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BAYESIAN MODELS AND GIBBS SAMPLING STRATEGIES FOR

LOCAL GRAPH ALIGNMENT AND MOTIF IDENTIFICATION IN

STOCHASTIC BIOLOGICAL NETWORKS∗

RUI JIANG† , TING CHEN‡ , AND FENGZHU SUN§

Abstract. With increasing amounts of interaction data collected by high-throughput techniques,

understanding the structure and dynamics of biological networks becomes one of the central tasks in

post-genomic molecular biology. Recent studies have shown that many biological networks contain

a small set of “network motifs,” which are suggested to be the basic cellular information-processing

units in these networks. Nevertheless, most biological networks have stochastic nature, due to the

intrinsic uncertainties of biological interactions and/or experimental noises accompanying the high-

throughput data. The building blocks in these networks thus also have stochastic properties. In this

paper, we study the problem of identifying stochastic network motifs that are derived from families

of mutually similar but not necessarily identical patterns of interactions. Motivated by existing

methods for detecting sequence motifs in biopolymer sequences, we establish Bayesian models for

stochastic biological networks and develop a group of Gibbs sampling strategies for finding stochastic

network motifs. The methods are applied to several available transcriptional regulatory networks and

protein-protein interaction networks, and several stochastic network motifs are successfully identified.

1. Introduction. With the development of modern molecular biology, it has
been now widely recognized that biological functions are derived from complicated
dynamic interactions of several genes and their products instead of isolated indi-
vidual genes [Roberts(1998), Prill et al.(2005)]. Various biological molecules, includ-
ing DNA, RNA, and protein, interact with each other to form biological networks
that govern the transfer and exchange of materials, energy, and information in liv-
ing cells. For example, the expression of a gene depends on the binding of tran-
scription factors to binding sites that are located in the regulatory region of the
gene [Berg et al.(2004)]. Such cooperative actions between genes and their corre-
sponding transcription factors are encoded in transcriptional regulatory networks
[Lee et al.(2002), Harbison et al.(2004)]. Molecular functions in most cases depend
on protein complexes that are composed of several proteins [Berg et al.(2004)]. Such
physical connections between proteins are governed by protein-protein interaction
networks [Uetz et al.(2000), Ito et al.(2001)].

Many biological networks have been shown to share global statistical features,
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such as the “hub” property that a few nodes have many more connections than most
nodes in the network have [Newman(2003), Barabasi and Oltvai(2004)] and the “scale-
free” property in which the fraction of nodes having k connections decays as a power
law (kγ , 2 ≤ γ ≤ 3) [Barabasi and Oltvai(2004), Barabasi and Albert(1999)]. The
modular nature of biological networks has also been recognized and utilized in the
identification of protein complexes and functional modules [Spirin and Mirny(2003)].
Recently, “network motifs” have been found in a wide variety of biological networks,
ranging from the regulatory network of E.coli to the neural network of C.elegans
[Milo et al.(2002)]. These network motifs are patterns of interconnections occurring in
networks at numbers that are significantly higher than those in randomized networks
[Milo et al.(2002), Milo et al.(2004)]. In these network motifs, biological molecules
collaborate with each other to form control flows that mediate the transportation of
materials, the transfer of energy, and the exchange of information between molecules
[Mangan et al.(2003), Shen-Orr et al.(2002)]. The research on network motifs is there-
fore promising in uncovering the basic information processing units in biological net-
works and further revealing the structural design principles of living cells.

Most contemporary studies on biological networks regard such networks as de-
terministic ones, in which interactions between nodes (biological molecules) are rep-
resented by the binary presence/absence status of corresponding edges between the
nodes [Yeger-Lotem et al.(2004), Vazauez et al.(2004)]. Although such simplified rep-
resentation of complex biological networks has demonstrated remarkable successes in
the analysis of design principles of biological systems [Shen-Orr et al.(2002), Milo
et al.(2002), Mangan et al.(2003), Milo et al. (2004)], the neglect of the stochas-
tic nature of biological interactions might impair the power of such analysis and miss
some meaningful results. In addition, incomplete and/or incorrect observations due to
experimental resolutions, systematic errors, and random noises also introduce consid-
erable uncertainties into the observed interactions. This situation prevails in biologi-
cal networks such as protein-protein interaction networks constructed using the yeast
two-hybrid (Y2H) assays [Uetz et al.(2000), Ito et al.(2001)] and transcriptional regu-
latory networks constructed using the chromatin immunoprecipitation (ChIP) method
with microarray experiments (ChIP-chip) [Lee et al.(2002), Harbison et al.(2004)].

To take such intrinsic dynamic and experimental uncertainties into consideration,
researchers have proposed to model biological networks as “stochastic networks,”
in which connections between biological molecules are represented by probabilities
[Jiang et al.(2006), Berg and Lassig(2004), Berg and Lassig(2006)]. We have also pro-
posed to model network motifs as “stochastic network motifs” in our previous studies
[Jiang et al.(2006)], because functionally related motifs are not necessarily topologi-
cally identical, and variants in network motifs may also arise due to incomplete and/or
incorrect observations [Berg and Lassig(2004)]. With this consideration, a stochastic
biological network is regarded as a mixture of a family of mutually similar intercon-
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nection patterns (stochastic network motifs) and a background random ensemble, and
the problem of identifying the stochastic network motifs is then transferred into the
estimation of statistical significant network motif patterns [Jiang et al.(2006)]. In our
previous study, we have proposed an expectation maximization (EM) algorithm to
estimate the stochastic network motif patterns and used a likelihood ratio test to
access the statistical significance of the identified patterns [Jiang et al.(2006)].

In this paper, we formulate the network motifs identification problem from an-
other point of view, which is analogous to the detection of sequence motifs in biopoly-
mer (DNA or protein) sequences [Lawrence et al.(1993), Liu et al.(1995), Bailey and
Elkan(1995)]. A biopolymer sequence can be regarded as (one or more) families of
mutually similar subsequences embedded in a background sequence. To retrieve the
subsequences from a set of biopolymer sequences, one aligns the sequences with the
starting points of the subsequences. Sequence motifs can then be represented by the
probabilistic patterns derived from the aligned subsequences. Similarly, a stochastic
network can be thought of as coming into being by embedding families of mutu-
ally similar but not necessarily identical interconnection patterns (subgraphs) in a
background random ensemble [Jiang et al.(2006)]. These subgraphs define stochas-
tic network motifs and have different statistical properties from the random ensem-
ble. To recover the motifs embedded in an observed network, we sample subgraphs
from the network and “align” them according to their internal connection properties
[Berg and Lassig(2004)]. Network motifs can then be identified and described by the
stochastic patterns derived from the aligned subgraphs. Here we establish Bayesian
models and develop a group of Gibbs sampling strategies to address this problem.

2. Methods.

2.1. Biological interaction networks. In this paper, we study two typical
types of biological interaction networks, i.e., transcriptional regulatory networks and
protein-protein interaction networks. Without considering uncertainties, a biologi-
cal interaction network (also interchangeably referred to as a graph) is a collection
of nodes and connections (edges) between the nodes. In transcriptional regulatory
networks, nodes are genes or corresponding proteins and directed edges are the reg-
ulatory interactions between the proteins (transcription factors) and the genes. In
protein-protein interaction networks, nodes are proteins and undirected edges are
physical interactions between the proteins. In our study, nodes are arbitrarily labeled
by numbers starting from 1. A graph G with N nodes is described using an adjacency
matrix A = (aij)N×N , where aij = 1 if there is a directed edge pointing from node
i to node j in a transcriptional regulatory network or an undirected edge connecting
these two nodes in a protein-protein interaction network, and aij = 0, otherwise. For
a certain node k, we define the in degree Ik as the number of directed edges linking to
it (Ik =

∑N
i=1 aik), the out degree Ok as the number of directed edges starting from
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it (Ok =
∑N

j=1 akj), and the mutual degree Mk as the number of undirected edges
connecting it (Mk =

∑N
i=1 aik =

∑N
j=1 akj). For a graph, the in (out, mutual) degree

distribution is the distribution of the in (out, mutual) degrees for all the nodes. De-
gree distributions can be more specifically represented as degree sequences ({Ik}N

k=1,
{Ok}N

k=1, and {Mk}N
k=1).

A subgraph consists of a subset of nodes and corresponding edges between the
nodes in a graph. Intuitively, we can relabel nodes in the subgraph by numbers
starting from 1, while keeping the order of the labels as in the original graph. With this
“canonical” relabeling, a subgraph S with n nodes can be described using an adjacency
matrix B = (bij)n×n, where bij is either 0 or 1 and is equal to the corresponding
element in the adjacency matrix of the graph. Relabeling methods other than the
canonical one may result in isomorphic structures for the same subgraph. These
isomorphic structures have identical connectivity, describe the same subgraph using
different adjacency matrices, and can be mapped to each other by permuting their
node labels. Given the adjacency matrix corresponding to the canonical labeling and
a permutation of the canonical labels represented by an n-tuple π = (π1, . . . , πn), a
new adjacency matrix Xπ = (xij)n×n corresponding to a certain isomorphic structure
can be obtained by setting xij = bπiπj for i, j = 1, . . . , n. Adjacency matrices for
isomorphic structures of a subgraph can then be obtained by applying the above
method on all permutations of the canonical labels (enumerating the permutations is
possible when n is small). For an n-node subgraph, there are a total of n! different
permutations of the canonical labels and correspondingly n! isomorphic structures.
Note that some of the isomorphic structures may be identical. The relationship of a
subgraph and its isomorphic structures is illustrated in Figure 1 (A).

A set of subgraph isomorphic structures with identical adjacency matrices defines
a class of subgraph isomorphic structures. Supposing that in a certain graph G, the
number of occurrence of a specific class of subgraph isomorphic structures, l, is Nl,
the probability of observing this class of subgraph isomorphic structures in the graph
is then calculated as

Pr(Xl|G) =
Nl∑
k Nk

where Xl is the adjacency matrix corresponds to the class of subgraph isomorphic
structures and the summation in the denominator is taken over all possible classes of
subgraph isomorphic structures. This probability is also referred to as the concentra-
tion of the class of subgraph isomorphic structures [Kashtan et al.(2004)].

The intrinsic and experimental uncertainties associated with biological interac-
tions can be represented by probabilities of having the corresponding connections in
the networks. Consequently, a biological network with uncertainties can be described
by a probability matrix P = (πij)N×N , 0 ≤ πij ≤ 1. πij is the probability that two
nodes i and j have a connection. In this paper, we would refer to biological networks in
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which connections are described by probabilities as stochastic networks. In contrast,
networks in which connections are described by the presence/absence of interactions
would be referred to as deterministic networks. A stochastic network can be thought
of as a family of mutually similar deterministic networks, in each of which edges exist
independently with probabilities Pr(aij = 1) = πij and Pr(aij = 0) = 1 − πij . For
this reason, when talking about subgraphs in a stochastic network, we actually refer
to subgraphs in the family of deterministic networks.

2.2. Stochastic network motifs and local graph alignments. A set of sub-
graphs with similar connectivity defines a stochastic network motif pattern M, which
is described using a probability matrix Θ = (θij)n×n, 0 ≤ θij ≤ 1. θij means the
probability that a directed edge pointing from node i to node j in a transcriptional
regulatory network or an undirected edge connecting them in a protein-protein in-
teraction network. Given an n-node isomorphic structure I (of a certain subgraph),
represented by adjacency matrix XI = (xij)n×n. The probability that this isomorphic
structure matches the motif pattern is calculated by

Pr(I|M) = Pr(XI |Θ) =
n∏

i=1

n∏

j=1

(θij)xij (1− θij)1−xij ,

with the assumption that edges exist independently [Jiang et al.(2006)]. The prob-
ability that a subgraph matches the motif pattern is obtained by summing up the
probabilities for different isomorphic structures of the subgraph.

Given a set of n-node similar subgraphs {Sw}W
w=1 with Sw having Pw different

isomorphic structures, we assign for each subgraph a specific isomorphic structure and
obtain an alignment for this set of subgraphs. With an alignment available, the motif
pattern which can maximize the probability of observing the set of subgraphs is Θ =
1
W

∑W
w=1 Xw, where Xw is the adjacency matrix for the isomorphic structure assigned

to subgraph Sw. In the general case in which only a subset of the given subgraphs
are similar and the alignment is unknown, we need to decide which subgraphs are
similar (and thus should be included in the alignment), align the determined similar
subgraphs, and then derive the motif pattern from the aligned subgraphs. We refer
to this general problem as local graph alignment in the sense that we only intend to
align a subset of the given subgraphs [Berg and Lassig(2004)]. As a demonstration,
Figure 1 (B) shows the process of the local graph alignment.

2.3. The single motif model and the Bernoulli sampling strategy. A
stochastic network can be thought of as coming into being by embedding (one or
more) families of mutually similar subgraphs in a background random ensemble, where
the families of subgraphs define motif patterns. In such a (mixture) network, each
subgraph can be regarded as either coming from one of the motif patterns or from
the background. To recover the embedded motif patterns, we can sample a set of
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subgraphs from the network, and search for over-abundant motif patterns within the
subgraphs. From the point of view of local graph alignment, the motif finding process
includes two folds: (i) determine which of the subgraphs belong to the foreground
motif patterns, and (ii) for each of the subgraphs classified to the foreground, de-
termine a proper isomorphic structure so that the subgraphs can be aligned and the
motif patterns can be derived. Here we assume that a stochastic network contains
only one motif pattern and show how the pattern can be recovered with a Bayesian
model and a Gibbs sampling strategy.

Given a network, we sample from it to obtain a set of subgraphs and permute the
canonical node labels for each of them to enumerate different isomorphic structures.
Let {Il}L

l=1 be all the L isomorphic structures obtained in this way, Xl = (xl
ij)n×n

the adjacency matrices corresponding to Il, and X = {Xl}L
l=1 the collection of all

adjacency matrices. For each isomorphic structure Il, we introduce an indicator δl,
where δl = 1 if the subgraph corresponding to Il comes from the foreground motif
pattern (i.e., included in the alignment) and Il is the isomorphic structure assigned in
the alignment, and 0 otherwise. Let δ = {δl}L

l=1 be all the indicators. We assume that
Pr(δl = 1) = ε, independently and identically distributed (iid) for l = 1, . . . , L. The
motif can then be recovered by determining δ, and at the same time estimating ε and
the parameters associated with the motif pattern. Because for every subgraph only
one of the isomorphic structures can be its alignment, there is some slight discrepancy
among the δ’s. However, the probability ε is in general very small; hence ignoring
the discrepancy, as in the iid assumption, has little effect (the same situation exists
in sequence alignment [Liu et al.(1995)]). We assume that the prior distribution for
ε follows a beta distribution Beta(µ), where µ = (µ0, µ1)T are hyper-parameters. In
other words, Pr(ε) ∝ εµ1−1(1− ε)µ0−1.

The foreground motif pattern is described by a probability matrix Θ1 = (θij)n×n,
0 ≤ θij ≤ 1. We assume that the prior distribution for θij follows a beta distri-
bution Beta(αij), where αij = (αij0, αij1)T are hyper-parameters. In other words,
Pr(θij) ∝ θ

αij1−1
ij (1− θij)αij0−1 for i, j = 1, . . . , n. The background random ensemble

represents a family of randomized networks, and each of which has the same degree
distributions as the given network. Let I, O, and M be the in, out, and mutual
degree distribution of the given network, respectively. The background ensemble can
then be characterized by Θ0 = {I,O,M}. Given Θ0, we can simulate a number of
networks with the degree distributions of Θ0. Statistical properties related to the
background can then be calculated by averaging over the ensemble of the generated
networks [Newman et al.(2001)].

We further introduce the following counting functions. Let h1(δ) =
∑L

l=1 δl

and h0(δ) =
∑L

l=1(1 − δl) be the number of isomorphic structures classified to the
foreground and background, respectively. Let hij0(X, δ) =

∑L
l=1 δl(1− xl

ij) and
hij1(X, δ) =

∑L
l=1 δlx

l
ij be the number of 0’s and 1’s for element (i, j) in adja-
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cency matrices corresponding to isomorphic structures classified to the foreground,
respectively. Let h(δ) = (h0(δ), h1(δ))T and hij(X, δ) = (hij0(X, δ), hij1(X, δ))T .
Treating δ as the missing data, the likelihood for the complete data {X, δ} given the
parameters {ε,Θ0,Θ1} is

Pr(X, δ|ε,Θ1,Θ0) =
[ L∏

l=1

Pr(Xl|Θ0)1−δl

]
×

[
εh1(δ)(1− ε)h0(δ)

]
×

[ n∏

i=1

n∏

j=1

(θij)hij1(X,δ)(1− θij)hij0(X,δ)
]
,

and

Pr(δ,Θ1, ε|X,Θ0) ∝ Pr(X, δ,Θ0,Θ1, ε)

∝ Pr(X, δ|Θ0,Θ1, ε) Pr(Θ1) Pr(ε).

Integrating out Θ1 and ε in Pr(δ,Θ1, ε|X,Θ0), we obtain

Pr(δ|X,Θ0) ∝
[ L∏

l=1

Pr(Xl|Θ0)1−δl

]
×

[Γ(|µ|)
Γ(µ)

Γ(h(δ) + µ)
Γ(|h(δ)|+ |µ|)

]
×

[ n∏

i=1

n∏

j=1

Γ(|αij |)
Γ(αij)

Γ(hij(X, δ) + αij)
Γ(|hij(X, δ)|+ |αij |)

]
,

where Pr(Xl|Θ0) is the probability of observing a class of isomorphic structures with
the adjacency matrix Xl in the background ensemble and can be estimated in advance
using the method presented in section 2.6. Γ(x) is the Gamma function. For a vector
x = (x1, . . . , xK)T , |x| = ∑K

k=1 |xk|, Γ(x) =
∏K

k=1 Γ(xk), and Γ(|x|) = Γ(
∑K

k=1 |xk|).
Noticing that Γ(x) = (x− 1)Γ(x− 1), the odds that the l-th isomorphic structure

is classified to the motif pattern given the rest of the classifications can then be
calculated as

ol =
Pr(δl = 1|δ[−l],X,Θ0)
Pr(δl = 0|δ[−l],X,Θ0)

=
1

Pr(Xl|Θ0)

[ ε̂

1− ε̂

][ n∏

i=1

n∏

j=1

(θ̂ij)xl
ij (1− θ̂ij)1−xl

ij

]
,

where

ε̂ =
h1(δ[−l]) + µ1

[h0(δ[−l]) + µ0] + [h1(δ[−l]) + µ1]
,

and

θ̂ij =
hij1(X[−l], δ[−l]) + αij1

[hij0(X[−l], δ[−l]) + αij0] + [hij1(X[−l], δ[−l]) + αij1]

are the posterior means of ε and θij conditional on the observed data and the current
determination of the missing data. X[−l] is obtained by removing Xl from X, and δ[−l]

is obtained by removing δl from δ. The conditional probability Pr(δl = 1|δ[−l],X,Θ0)
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can then be calculated as ol/(1 + ol). This Gibbs sampler immediately suggests the
following Gibbs sampling strategy, which is referred to as the Bernoulli sampling
strategy in this paper.

1. Initialization. Set missing data δ = 0. Calculate initial value h(δ), and
hij(X, δ).

2. Sampling. Uniformly choose l ∈ [1, . . . , L]. Sample a new δl according to
Pr(δl = 1|δ[−l],X,Θ0).

3. Repeat 2 until convergence (ε̂ and Θ̂1 are stable). ¤
The counting functions should be updated in a computationally economy way.

For this purpose, h(δ) and hij(X, δ) are cached while performing the sampling. In
the t-th iteration, before calculating Pr(δl = 1|δ[−l],X,Θ0), we perform the following
updates

h0(δ[−l])(t) = h0(δ)(t) − (1− δ
(t)
l ),

h1(δ[−l])(t) = h1(δ)(t) − δ
(t)
l ,

hij0(X[−l], δ[−l])(t) = hij0(X, δ)(t) − δ
(t)
l (1− xl

ij),

hij1(X[−l], δ[−l])(t) = hij1(X, δ)(t) − δ
(t)
l xl

ij .

while after the new δ
(t+1)
l is sampled, we perform the following updates

h0(δ)(t+1) = h0(δ[−l])(t) + (1− δ
(t+1)
l ),

h1(δ)(t+1) = h1(δ[−l])(t) + δ
(t+1)
l ,

hij0(X, δ)(t+1) = hij0(X[−l], δ[−l])(t) + δ
(t+1)
l (1− xl

ij),

hij1(X, δ)(t+1) = hij1(X[−l], δ[−l])(t) + δ
(t+1)
l xl

ij .

With the above caching and updating technique, we only need to calculate 8 summa-
tions in each sampling step (multiplications can be substituted by logical operations
since both δl and xl

ij are either 0 or 1). Consequently, the Bernoulli sampling strategy
can be done with high efficiency.

Hyper-parameters µ is determined as follows. Given what is known about a
network, a crude guess ñ1 for the number of isomorphic structures belonging to the
motif pattern is usually possible. Let ñ0 = L − ñ1. We determine the initial values
of µ by setting µm = ñmL̃/L for m = 0, 1, where L0 reflects the “weight” to be
put on the prior knowledge and is referred to as a “pseudo-count” (e.g. L̃ = L/50).
Similarly, within the isomorphic structures supposed to be classified to the motif
pattern (ñ1 of them), let ñij1 be a crude guess for the number of connections from
node i to node j and ñij0 = ñ1 − ñij1. We determine the initial values of α by
setting αijk = ñijkL̃/L for k = 0, 1. Generally, self-connections are rare in biological
networks, we thus set ñij1 = (1− τ)ñ1 for all i = j, where τ is a fraction greater than
0.5 (e.g. τ = 0.8). Additionally, motifs in biological networks should have enhanced
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numbers of internal connections [Berg and Lassig(2004)], therefore for protein-protein
interaction networks, we set ñij1 = τ ñ1 for all i 6= j. For regulatory networks, double-
connections (aij = aji = 1 in adjacency matrices) are also rare, thus for each pair
(ñij1, ñji1), i 6= j, we randomly set one to be τ ñ1 and the other to be (1− τ)ñ1.

To enable the Gibbs sampler to freely maneuver in the searching space and more
accurately estimate the parameters, we further apply the prior-annealing technique
[Niu et al.(2002)]: in the beginning of the iteration, a set of high pseudo-counts,
{µ0,α0}, that conform to the Dirichlet distribution, are used as the initial prior. As
the iteration proceeds, the pseudo-counts are dwindled in a fixed rate. For example,
supposing that the pseudo-counts µ for all motif patterns are µ0 = {µ0

0, . . . , µ
0
m} and

µT = {µT
0 , . . . , µT

m} for the start and the end of the T -th iteration, the pseudo-counts
at the t-th iteration, µt = {µt

0, . . . , µ
t
m}, are given as

µt
m = µ0

m +
t

T
(µT

m − µ0
m).

Similar formula holds for the pseudo-counts α.

2.4. The multiple motif model and the motif sampling strategy. We can
extend the idea of the single motif model one step further to derive the multiple motif
model which is capable of detecting more than one network motif simultaneously.
Consider M different motif patterns, each occurring an unknown number of times, in
a set of L sampled isomorphic structures. Similar to the single motif model, let the m-
th motif pattern be described by parameters Θm = (θm

ij )n×n, 0 ≤ θm
ij ≤ 1, and assume

a conjugate prior Beta(αm
ij ) for θm

ij , where αm
ij = (αm

ij0, α
m
ij1)

T . We also introduce the
indicators δ = (δ1, . . . , δL)T , where δl = m if the l-th isomorphic structure belongs to
the m-th motif pattern and 0 if background. Let Pr(δl = m) = εm with

∑M
m=0 εm = 1

and assume a conjugate Dirichlet prior Dir(µ) on εm (m = 0, . . . , M), where µ =
(µ0, . . . , µM )T . The Gibbs sampler for the motif sampling strategy can then be derived
as

om
l =

Pr(δl = m|δ[−l],X,Θ0)
Pr(δl = 0|δ[−l],X,Θ0)

=
1

Pr(Xl|Θ0)

[ ε̂m

ε̂0

][ n∏

i=1

n∏

j=1

(θ̂m
ij )xl

ij (1− θ̂m
ij )1−xl

ij

]
,

and

pm
l = Pr(δl = m|δ[−l],X,Θ0) =

om
l∑M

m′=0 om′
l

,

where om
l and pm

l are the conditional odds and probability that the l-th isomorphic
structure is classified to the m-th motif pattern given the rest of the classifications
respectively, and ε̂m and θ̂m

ij are the posterior means that can be calculated by the
similar formula as in the previous Bernoulli sampling strategy. The calculation of
the Gibbs sampler pm

l immediately suggests the following sampling strategy, which is
referred to as the motif sampling strategy in this paper.
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1. Initialization. Set missing data δ = 0.
2. Sampling. Uniformly choose l ∈ [1, . . . , L]. Sample a new δl according to pm

l .
3. Repeat 2 until convergence. ¤

2.5. The group sampling strategy. The total number of sampled isomorphic
structures is huge, but the types of isomorphic structures (different adjacency matri-
ces) in real networks are quite limited. Meanwhile, in each iteration, the chance that
a certain isomorphic structure is sampled and classified to (one of) the motif pat-
tern(s) is very small because the number of isomorphic structures is large and most of
them belong to the background. These two facts motivate us to develop the following
special designed Gibbs sampling strategy, which is referred to as the group sampling
strategy in this paper.

Without loss of generality, suppose that each isomorphic structure can be classi-
fied to either the background or one of the M motif patterns, and at the same time
it can be classified to one of the R isomorphic structure classes according to its ad-
jacency matrix. Thus, there are a total of R × (M + 1) combinations (groups) of
isomorphic structure classes and motif patterns. Each isomorphic structure belongs
to one of the groups. Let G = {Gr

u}R
r=1

M
u=0 be the set of these groups and ψru the

number of isomorphic structures classified to group Gr
u. Let Ψ = (ψru)R×(M+1) be

all the numbers. In each iteration, the probability that one of the isomorphic struc-
tures in group Gr

u is sampled is pr
u = ψru/

∑R
r′=1

∑M
u′=0 ψr′u′ . Let Yr = (yr

ij)n×n

be the adjacency matrix for groups Gr
u (u = 0, . . . , M) and Y = {Yr}R

r=1. Define
hu(Ψ) =

∑R
r=1 ψru, hu

ij1(Y,Ψ) =
∑R

r=1 ψruyr
ij , and hu

ij0(Y,Ψ) =
∑R

r=1 ψru(1− yr
ij).

The conditional odds that the sampled isomorphic structures in group Gr
u is classified

to a certain group Gr
v is

or
uv =

Pr(δr
u = v|Ψ[−(ru)],Y,Θ0)

Pr(δr
u = 0|Ψ[−(ru)],Y,Θ0)

=
1

Pr(Yr|Θ0)

[ ε̂v

ε̂0

][ n∏

i=1

n∏

j=1

(θ̂v
ij)

yr
ij (1− θ̂v

ij)
1−yr

ij

]
,

and

qr
uv = Pr(δr

u = v|Ψ[−(ru)],Y,Θ0) =
or

uv∑M
v′=0 or

uv′
.

δr
u is an indicator representing to which group the sampled isomorphic structure is

classified. Ψ[−(ru)] is a matrix which is equal to Ψ expect for Ψ[−(ru)](r, u) = Ψ(r, u)−
1. ε̂v and θ̂v

ijk are posterior means calculated as

ε̂v =
hv(Ψ[−(ru)]) + µv∑M

v′=0(hv′(Ψ[−(ru)]) + µv′)

and

θ̂v
ij =

hv
ij1(Y,Ψ[−(ru)]) + αv

ij1

[hv
ij0(Y,Ψ[−(ru)]) + αv

ij0] + [hv
ij1(Y,Ψ[−(ru)]) + αv

ij1]
.



BAYESIAN MODELS AND GIBBS SAMPLING STRATEGIES 357

The probability that one of the isomorphic structures in Gr
u is sampled and classified

to Gr
v is then given as ρr

uv = pr
uqr

uv, which can be thought of as the probability that
an isomorphic structure in group Gr

u transits to group Gr
v.

Particularly, we can exclude self-transitions because they have no effect on the
estimation of parameters. Let πr

uv = ρr
uv/(1 − ∑R

r′=1

∑M
u′=0 ρr′

u′u′) for u 6= v and
πr

uu = 0 be the conditional probability that an isomorphic structure in group Gr
u

is sampled and classified to a group Gr
v other than Gr

u. The iteration can then be
performed with high efficiency by sampling a certain triple (r, u, v) according to πr

uv

and update Ψ by setting ψru ← ψru − 1 and ψrv ← ψrv + 1.

2.6. Subgraph sampling and background probability estimation. Given
an N -node stochastic network represented by a probability matrix P = (πuv)N×N , we
can generate a number of J adjacency matrices {Aj}J

j=1 with Pr(aj
uv = 1) = πuv and

Pr(aj
uv = 0) = 1−πuv. Each of these adjacency matrices then corresponds to a deter-

ministic network. When n is small (< 5), n-node subgraphs (with canonical labeling)
can be obtained from these adjacency matrices by enumerating n × n sub-matrices
in each of them. After subgraphs are enumerated, isomorphic structures correspond-
ing to subgraphs can be enumerated by permuting the canonical node labels of the
subgraphs, and the enumerated isomorphic structures can be used with the Bernoulli
sampling or the motif sampling strategy for motif identification. When n is large
(>= 5), enumerating subgraphs is prohibited in most cases. We therefore use a sub-
graph sampling strategy as presented in [Kashtan et al.(2004)] to estimate subgraph
concentrations and multiply them by the total number of sampled subgraphs to obtain
the expected number for each type of subgraph. After subgraphs are sampled, isomor-
phic structures corresponding to subgraphs are obtained by permuting the canonical
node labels of the subgraphs, and the expected numbers of occurrences of subgraph
isomorphic structures can be estimated and be used with the group sampling strategy.

Pr(Xl|Θ0) is the probability of observing a class of isomorphic structure with
the adjacency matrix Xl in the background ensemble and is estimated as follows.
When the given network is small (e.g., containing several hundred nodes), we can
randomly shuffle each generated matrix Aj many times while fixing the summation of
each row and each column to obtain adjacency matrices corresponding to randomized
networks which is uniformly drawn from the background ensemble. When the given
network is large (e.g., containing several thousand nodes), the shuffling procedure
is inefficient. We can apply some sampling strategy such as the Sequential Impor-
tance Sampling strategy (SIS) described in [Chen et al.(2005)] to generate adjacency
matrices which correspond to randomized networks uniformly drawn from the back-
ground ensemble. Repeating the shuffling procedure or the sequential importance
sampling for each matrix Aj many times, we obtain a number of K adjacency ma-
trices {Aj

k}K
k=1 from Aj , with each of them corresponding to a randomized network
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which has the same degree distributions as the stochastic network. When n is small
(< 5), the probability of observing a specific class of subgraph isomorphic structure
with the adjacency matrix Xl in the background ensemble can be precisely calcu-
lated by enumerating subgraphs and their isomorphic structures from the ensemble
of {Aj

k} (j = 1, . . . , J ; k = 1, . . . , K), counting the number of occurrence of the class
of isomorphic structure having the adjacency matrix Xl, and dividing the number by
the total number of isomorphic structures being enumerated. When n is large (≥ 5),
enumerating subgraphs is not computationally feasible for most randomized networks.
Hence, we adopt the subgraph sampling strategy [Kashtan et al.(2004)] to estimate
concentrations for subgraph isomorphic structures in the randomized networks and
average over the concentrations to obtain the expected concentrations for subgraph
isomorphic structures in the background ensemble.

2.7. The signed rank test of significance. We use a modified Wilcoxon
signed rank test as described in [Liu et al.(1995)] to assess the statistical significance
of identified network motifs. Suppose that we have obtained an estimation of ε̂ and
Θ̂1 by running one of the sampling strategy on a set of isomorphic structures sampled
from the given network (positive data set D+). We then

1. Sample from randomized (control) networks (each of which has the same
degree distributions as the given network) to obtain a negative data set D−,
which contains the same number of isomorphic structures as D+.

2. Sample from the combined data set D = {D+,D−} (according to Θ̂1 and
Eq.1) to obtain a set of isomorphic structures which are most probably to be
classified to the motif pattern.

3. Suppose that N0 isomorphic structures have been identified in step (2), rank
them by decreasing probabilities (i.e., the isomorphic structure with i-th
largest probability is ranked as N0 − i + 1), while assigning positive signs
to ranks coming from D+ and negative signs to those from D−.

4. Run a Wilcoxon signed rank test (treating the signed ranks in the above step
as being obtained from two paired samples) and obtain a reference p-value.
¤

The null hypothesis in the above test is that isomorphic structures sampled from
the original and the control networks are equally likely to be classified to the motif pat-
tern, while the alternative hypothesis is that isomorphic structures from the original
network are more likely to be classified to the motif pattern. The circumstance of our
test is slight different from the classical Wilcoxon test in that our test is conditional
on the total number of isomorphic structures classified to the motif pattern.

3. Results.

3.1. Data sources. We studied a wide range of available transcriptional regula-
tory networks and protein-protein interaction networks. We downloaded the data sets
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for E.coli and S.cerevisiae regulatory networks from Uri Alon’s laboratory [Milo et
al.(2002), Milo et al.(2004)] and the ChIP-chip data sets for the S.cerevisiae regulatory
network from Young’s laboratory [Lee et al.(2002), Harbison et al.(2004)]. We also
downloaded the data sets of protein-protein interaction networks for 7 species (E.coli,
C.elegans, S.cerevisiae(core), H.pylori, M.musculus, D.melanogaster, and H.sapiens)
from DIP (Database of Interacting Proteins) [Xenarios et al.(2002), Salwinski et
al.(2004)]. The details of those data sets are presented in Table 1.

3.2. Results on simulated networks. We first verify that the Gibbs sampling
strategies can accurately recover the network motifs. Given a stochastic network G(o),
we use the following procedure to simulate a pseudo-network G̃(o) with an n-node motif
Θ embedded with probability λ. Suppose that G is the total number of sampled n-
node subgraphs in the network and L is the corresponding number of isomorphic
structures, the relation between λ and ε is simply λG = εL under the iid assumption
(see section 2.3).

1. Starting from the given network G(o), generate a network G(r), which has the
same degree distributions as G(o);

2. For the given λ, randomly choose n1 = [λG] subgraphs from G(r) and replace
them with subgraphs generated according to the motif pattern Θ to obtain
a pseudo-network G̃(o), where G is the total number of n-node subgraphs in
the given network G(o). ¤

Node degrees in G(r) should be fixed while subgraphs being replaced. For this purpose,
we first compare the differences between the two adjacency matrices corresponding to
the subgraphs before and after replacement to determine which elements should be
changed from 1 to 0 and which from 0 to 1. Then we make modifications to these
elements. Suppose that we want to change an element ast in A (the adjacency matrix
of the given graph) from 0 to 1. We scan the s-th row and the t-th column in A to
find two element asv and aut equal to 1 while making sure that auv is equal to 0.
Then, we modify by letting ast = 1, asv = 0, aut = 0, and auv = 1. A similar method
holds for changing an element from 1 to 0. When scanning elements, we should also
exclude elements which have been previously modified.

We apply this method (n = 3) to the E.coli regulatory network (423 nodes, 519
edges) [Milo et al.(2002)]. Considering that G =

(
423
3

) ≈ 1.25 × 107, we test five λ

values (1.0, 1.5, 2.0, 2.5, 3.0 (×10−6)), which are chosen based on our initial analysis
of the data sets yielding estimated λ to be around 10−6. For each λ, we generate 100
pseudo-networks, each of which is embedded with a randomly generated 3-node motif
pattern (created by randomly assigning values in range [0.7, 1.0] to elements θij , i < j

and 0 to others). For each pseudo-network, we run the group sampling strategy (with
M = 1) for 1000 iterations and average over the last 100 iterations to obtain the
estimation of ε̂ and Θ̂1. The pseudo-count ñ1 is roughly set to 100, independent of
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n1 and without a bias. L̃ is set to L/50 so that the standard deviation of ε1 is about
2/3 of its mean. τ is chosen as 0.8 so that the standard deviation of αijk is about
1/5 of its mean. The signed rank test is then applied to each estimated Θ̂1 and a
reference p-value is obtained. The quality of estimations with p-values < 10−6 are
further measured in terms of two relative error quantities

eλ =
|ε̂L/G− λ|

λ
, and eΘ =

√√√√ 2
n(n− 1)

n∑

i=1

n∑

j=i+1

(
θij − θ̂ij

θij
)2,

and the results are shown in Figure 2. First, the figure shows that the sampling
method can accurately estimate the parameters. For identified motifs with reference
p-values < 10−6, most relative errors are less than 10−2. In other words, the embedded
motif patterns are correctly recovered. Second, although the guess for ñ1 is very
crude, the relative errors do not change remarkably for different λ, suggesting that
the sampling method is robust with ñ1. We further test different pseudo-counts and
find no remarkable difference for L/25 ≤ L̃ ≤ L/100 and 0.7 ≤ τ < 1.

3.3. Results on transcriptional regulatory networks. We apply both the
Bernoulli and the group sampling (M = 1) strategies to identify 3- and 4-node net-
work motifs in the regulatory networks of E.coli and S.cerevisiae [Milo et al.(2002),
Milo et al.(2004)]. Because these networks are highly reliable, we assign πij = 1 for
any interaction pair (i, j) in the data set and πij = 0, otherwise.

In the 3-node case, the pseudo-counts are set as ñ1 = 100, L̃ = L/50, and τ = 0.8.
These pseudo-counts are also used for other calculations. As an example, Figure 3
shows a typical run of the Bernoulli and the group sampling (M = 1) strategies while
identifying 3-node motifs in the E.coli regulatory network. Both strategies estimate
Θ1 = [0.0, 1.0, 1.0; 0.0, 0.0, 1.0; 0.0, 0.0, 0.0], which defines a feed forward loop motif
(a transcription factor regulates another while both of them regulate a third gene)
[Milo et al.(2002)]. More detailed results are presented in Table 2 (left part of the
E.coli∗ row). ε is estimated as 2.54 × 10−6, and the p-value obtained using the
signed rank test (2.26 × 10−6) supports the statistical significance of the motif. For
S.cerevisiae, both strategies identify a similar feed forward loop motif (left part of
the S.cere∗ row), which exists with ε = 9.94× 10−7 and a reference p-value < 10−8.
Recent studies have shown that the feed forward loop serves as a sensitive delay
element in regulatory networks [Milo et al.(2002), Mangan et al.(2003)]. It can speed
up the response time of the target gene’s expression following stimulus steps in one
direction (e.g., off to on) but not in the other direction (on to off).

In the 4-node case, we identify stochastic bi-fan motifs for both species (Table 2,
right). For E.coli, the motif exists with ε = 9.52 × 10−8, and is significant with a
p-value < 10−8; for S.cerevisiae, the motif exists with ε = 1.40× 10−7, and is signifi-
cant with a p-value < 10−8. We also run the group sampling strategy with different
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number of motif patterns (M = 1, . . . , 10) and find the similar over-abundant motif
pattern (data not shown). The deterministic bi-fan motifs (two transcription factors
regulate two target genes in parallel, no interaction between the two transcription
factors) have been identified previously [Milo et al.(2002), Milo et al.(2004)]. The
stochastic bi-fan motifs have a novel feature (one transcription factor could also regu-
late the other), and reveal the existence of combinatorial transcriptional regulation in
living cells [Martijn et al.(1999), Oliveira et al.(2003), Martinez-Pastor et al.(1996),
Jiang et al.(2006)].

We also apply our method to the regulatory network of S.cerevisiae constructed
using the ChIP-chip data [Lee et al.(2002), Harbison et al.(2004)]. The data set con-
tains genome-wide protein-DNA interaction analysis of 113 transcription factors and
6, 270 target genes. Each probed interaction is assigned a p-value, indicating the
confidence of the interaction. At the recommended p-value threshold of 0.001, the
observed network contains 2, 416 nodes and 4, 344 edges with a false positive rate
of 10% and a false negative rate of 18% [Lee et al.(2002)]. We therefore infer that
about 434 (4, 344 × 0.1) observed interactions are false positives, while about 858
(4, 344× 0.9× 0.18/0.82) interactions are actually missing.

We use two method to assign interaction probabilities for protein-DNA pairs. Let
πij be the probability that a transcription factor (node i) and a target gene (node j)
have interaction, and pij the corresponding p-value provided by the data set. In the
first method, we assume equal probabilities (πij = 0.9) to all the observed interactions
(pij < 0.001) and equal probabilities (πij = 858/(6, 270 × 113 − 4, 344 × 0.9) ≈
1.2 × 10−3) to all other protein-DNA pairs (pij ≥ 0.001). In the second method, we
assume that πij and pij have the following relationship

log
πij

1− πij
= α + β log pij .

Thus protein-DNA pairs with low p-values would have higher interaction probabilities.
An intuitive way to determine α and β is logistic regression. Because the known true
interactions and known true no-interactions are limited, we determine α and β as
follow.

The expected number of protein-DNA interactions in the “true” regulatory net-
work (unknown), M̂ , can then be calculated as M̂ =

∑N
i=1

∑N
j=1 πij . Let δij be the

indicator which is equal to 1 if pij < 0.001 and 0, otherwise. We can calculate
M̂1 =

∑N
i=1

∑N
j=1 πijδij , and M̂0 =

∑N
i=1

∑N
j=1 πij(1 − δij), where M̂1 and M̂0 are

the expected numbers of true interactions for positive observations (pij < 0.001) and
negative observations (pij ≥ 0.001), respectively. Let M̃1 = 4344 × 0.9 ≈ 3910 and
M̃0 = 858 be the estimated numbers of true interactions for positive and negative ob-
servations, respectively. We determine α and β by solving the following minimization
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problem

(α?, β?) = arg min
α,β

( |M̂0 − M̃0|
M̂0 + M̃0

+
|M̂1 − M̃1|
M̂1 + M̃1

)
,

where optimum value of 0 can only be obtained when M̂0 = M̃0 and M̂1 = M̃1. We
treat this problem using a simulated annealing approach [Kirkpatrick et al.(1983)]
and obtain α? = −13.58, β? = −4.51.

The motifs identified in the stochastic network constructed using the second
method are shown in Table 2. In the 3-node case, we applied the Bernoulli sampling
strategy and identified a motif similar to the feed forward loop with ε = 7.34× 10−8

is identified, and is significant with a reference p-value < 10−8. In the 4-node
case, a stochastic bi-fan motif is identified by the group sampling strategy with
ε = 1.06 × 10−8, and is significant with a p-value < 10−8. In the 5-node case,
we applied the group sampling strategy to the network composed of the transcrip-
tion factors only and identified two stochastic network motifs with references p-value
< 10−8. Similar motifs are found on the network constructed using the first method
for probability assignment (data not shown). We notice that the identified motifs in
the S.cere regulatory network constructed using the ChIP-chip data show more un-
certainties than those constructed using human curated data, in that the estimated
non-zero probabilities (see Θ1) in the former is less close to either 1 (always having
interaction) or 0 (never having interaction). On the one hand, the identification of
similar motifs in both the highly reliable and noisy networks further validates that
our approach can overcome the effects of experimental noises to identify the intrinsic
building blocks of the networks. On the other hand, the observation of more uncer-
tainties involved in the motifs in the less reliable network reveals that building blocks
in stochastic networks do share stochastic properties of the networks.

3.4. Results on protein-protein interaction networks. We also apply our
method to protein-protein interaction networks for 7 species. These data sets are
supposed to be reliable and thus for every interaction pair in these networks, we
assign either 1 (interaction) or 0 (no-interaction) to the corresponding probability.

The motifs found by both the group sampling strategy are shown in Table 4. In
the 3-node case (left part), the motifs identified for all species are the full connected
triangle. These motifs exist with ε ranging from 10−8 to 10−6, and are statistically
significant with the reference p-values < 10−8. As for the 4-node case (right part), we
apply our method on the E.coli, S.cerevisiae, M.musc, and H.sapiens networks. For
all the four species, the motifs identified are like full connected rectangles with both
diagonals (one of them having low probability). These motifs exist in the networks
with ε ranging from 1.39 × 10−8 to 4.98 × 10−8. The reference p-values (< 10−8)
support the statistical significance of the motifs.
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3.5. Comparison with existing methods. For comparison, we implement the
widely used method for finding deterministic network motifs in deterministic networks
[Milo et al.(2002), Milo et al.(2004)]. Briefly, the method counts the occurrence num-
ber of subgraphs in the observed network, estimates the corresponding mean and stan-
dard deviation in the background ensemble, and calculates statistics to indicate the
significance of the subgraphs. The statistics are Z = (Nreal − 〈Nrand〉)/std(Nrand) for
regulatory networks and ∆ = (Nreal−〈Nrand〉)/(Nreal+〈Nrand〉+ε) for protein-protein
interaction networks, where Nreal is the occurrence number of a certain subgraph in the
observed network; 〈Nrand〉 and std(Nrand) are the corresponding mean and standard
deviation in the random ensemble; ε is a small positive number [Milo et al.(2004)].

According to their method, the feed forward loop and the deterministic bi-fan
motifs are over-abundant in the deterministic regulatory networks for E.coli and
S.cerevisiae, while the triangle and the rectangle with one or two diagonals are over-
abundant in the protein-protein interaction networks for 7 species. By comparison,
the feed forward loop and the stochastic bi-fan motifs are also identified by our method
in the regulatory networks (see Table 1, 2) but both show uncertainties to some ex-
tent. Similarly, the triangle and the rectangle with both diagonals are identified in the
protein-protein interaction networks (see Table 4) and both show some uncertainties.
Furthermore, our method is also capable of finding network motifs in the stochastic
regulatory network of S.cerevisiae and the identified motifs show more uncertainties
than those in the deterministic networks (see Table 1, 2).

A closely related method for identifying network motifs in stochastic networks is
introduced in [Jiang et al.(2006)], where a mixture model is used to describe stochastic
networks and an expectation-maximization (EM) algorithm are utilized to determine
the optimal parameters for the stochastic motif model. The experimental results
presented in this paper show that the stochastic network motifs identified by our
Gibbs sampling strategies are similar to what identified by the EM algorithm.

4. Conclusions and Discussion. We proposed two Bayesian models and three
novelly designed Gibbs sampling strategies for identifying network motifs in stochastic
biological networks and identified several stochastic network motifs in a wide range
of biological interaction networks. Our approach has several advantages.

First, our approach is based on a probabilistic network motif model, which takes
the intrinsic uncertainties of the network building blocks into consideration. Conse-
quently, our approach can capture the stochastic properties of the network motifs (e.g.
the stochastic bi-fan motif). Second, we model the networks using probability matri-
ces. Therefore, the intrinsic uncertainties and/or experimental noises can be quanti-
fied by the probabilities of connections in the networks. As a result, our approach is
capable of finding stochastic network motifs in stochastic networks (e.g., the stochas-
tic network motifs in the yeast regulatory network constructed using the ChIP-chip
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data). Third, we use a unified probabilistic model and a single statistic (ε) for different
types of networks and network motifs (directed and undirected). Unlike other meth-
ods which use different statistics for different types of networks [Milo et al.(2004)],
in our approach, different types of networks share the same model, which enable us
to estimate and test the same statistic. Finally, with the newly designed caching
technique, both the Bernoulli sampling and the group sampling strategy can run with
high efficiency. These Gibbs sampling strategies with prior-annealing technique are
not sensitive to the choice of pseudo-counts, which alleviates the requirement of the
prior knowledge regarding the given network.

Besides the above advantages, the Bayesian model and the Gibbs sampling strate-
gies proposed in this paper also have several advantages when compared with the
mixture model and the EM algorithm proposed in [Jiang et al.(2006)]. First, the
Gibbs sampling strategies simulates the posterior distribution of the parameters and
estimates the parameter using the posterior mean. As a result, the method proposed
in this paper is more robust than the EM algorithm, which targets in estimating
the maximum likelihood parameters. Since systematic errors and experimental noises
accompanying biological data are the main source for uncertainties in biological in-
teraction networks, a more robust method is conceptually and practically preferred.
Second, the Bayesian model proposed in this paper is able to deal with multiple motifs
in a stochastic network, while the previous mixture model can only deal with single
motif. For small motifs (i.e., 3 or 4 node), this is not a problem because the motif is
simple. But when the motif is large and complicated, the advantage of multiple motif
model is obvious. Third, the method proposed in this paper can deal with large scale
networks by using the subgraph sampling method described in [Kashtan et al.(2004)].
With the development of high throughput techniques, existing biological interaction
networks are getting complete and networks for more species will become available.
Consequently, the ability of dealing with large scale networks would become crucial
for future applications.

Our stochastic network notion assumes that the presence and absence of connec-
tions are independent events. Although this assumption works well in our current
research with the Bayesian framework, theoretical studies regarding the application
scope of this assumption is necessary in our future study. Our stochastic motif model
assumes that edges exist in subgraphs independently. Although the presence/absence
of an edge does not affect the existence of other edges in the same subgraph, it does
affect those in other subgraphs. Therefore, our approach determines the likelihood
of observing a subgraph without a bias, but there are correlations between the likeli-
hoods of observing a set of subgraphs. How to make corrections to this correlation is
another consideration in our future research. Currently, stochastic network motifs in
our approach have fixed number of nodes. How to generalize our model to deal with
motifs with variable number of nodes would be one of our future research focus.



BAYESIAN MODELS AND GIBBS SAMPLING STRATEGIES 365

Acknowledgments. This work was partly supported by National Institutes
of Health/National Science Foundation Joint Mathematical Biology Initiative DMS-
0241102, National Institutes of Health P50 HG 002790, National Institutes of Health
R01 LM008991-01, an Alfred Sloan Research Fellowship, National Science Foundation
of China grant 60805010, Tsinghua National Laboratory for Information Science and
Technology (TNLIST) Cross-discipline Foundation, Research Fund for the Doctoral
Program of Higher Education of China, Scientific Research Foundation for Returned
Overseas Chinese Scholars, and a starting up supporting plan at Tsinghua University.

REFERENCES

[Bailey and Elkan(1995)] T. L. Bailey and C. Elkan. Unsupervised learning of multiple motifs in

biopolymers using expectation maximization. Machine Learning, 21(1995), pp. 51–80.

[Barabasi and Albert(1999)] A. L. Barabasi and R. Albert. Emergence of scaling in random

networks. Science, 286(1999), pp. 509–512.

[Barabasi and Oltvai(2004)] A. L. Barabasi and Z. N. Oltvai. Network biology: Understanding

the cell’s functional organization. Nature Reviews Genetics, 5:1(2004), pp. 101–113.

[Berg and Lassig(2004)] J. Berg and M. Lassig. Local graph alignment and motif search in bio-

logical networks. Proc. Nat’l. Acad. Sci., 101:41(2004), pp. 14689–14694.

[Berg and Lassig(2006)] J. Berg and M. Lassig. Cross-species analysis of biological networks by

Bayesian alignment. Proc. Nat’l. Acad. Sci., 103:29(2006), pp. 10967–10972.

[Berg et al.(2004)] J. Berg, S. Willmann, and M. Lassig. Adaptive evolution of transcription

factor binding sites. BMC Evolutionary Biology, 4:1(2004), pp. 42.

[Chen et al.(2005)] Y. Chen, P. Diaconis, S. Holmes, and J. S. Liu. Sequential monte carlo

methods for statistical analysis of tables. Journal of the American Statistical Association,

100:469(2005), pp. 109–120.

[Harbison et al.(2004)] C. T. Harbison, D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac,

T. W. Danford, N. M. Hannett, J. Tagne, D. B. Reynolds, J. Yoo, E. G. Jennings,

J. Zeitlinger, D. K. Pokholok, M. Kellis, P. A. Rolfe, K. T. Takusagawa, E. S.

Lander, D. K. Gifford, E. Fraenkel, and R. A. Young. Transcriptional regulatory

code of a eukaryotic genome. Nature, 431(2004), pp. 99–104.

[Ito et al.(2001)] T. Ito, T. Chiba, R Ozawa, M Yoshida, M. Hattori, and Y Sakaki. A com-

prehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Nat’l. Acad.

Sci., 98:8(2001), pp. 4569–4574.

[Jiang et al.(2006)] R. Jiang, Z. T. Tu, T Chen, and F. Z. Sun. Network motif identification in

stochastic networks. Proc. Nat’l. Acad. Sci., 103:25(2006), pp. 9404–9409.

[Kashtan et al.(2004)] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algo-

rithm for stimating subgraph concentrations and detecting network motifs. Bioinformatics,

20:11(2004), pp. 1746–1758.

[Kirkpatrick et al.(1983)] S. Kirkpatrick, C. D. Jr. Gerlatt, and M. P. Vecchi. Optimization

by simulated annealing. Science, 220(1983), pp. 671–680.

[Lawrence et al.(1993)] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F.

Neuwald, and J. C. Wootton. Detecting subtle sequence signals: a gibbs sampling

strategy for multiple alignment. Science, 262(1993), pp. 208–214.

[Lee et al.(2002)] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K.

Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger,

E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J. B. Tagne, T. L.

Volkert, E. Fraenkel, D. K. Gifford, and R. A Young. Transcriptional regulatory



366 RUI JIANG, TING CHEN, AND FENGZHU SUN

networks in Saccharomyces cerevisiae. Science, 298(2002), pp. 799–804.

[Liu et al.(1995)] J. S. Liu, A. F. Neuwald, and C. E. Lawrence. Bayesian models for multiple

local sequence alignment and gibbs sampling strategies. Journal of the American Statistical

Association, 90:432(1995), pp. 1156–1170.

[Mangan et al.(2003)] S. Mangan, A. Zaslaver, and U. Alon. The coherent feedforward loop

serves as a sign-sensitive delay element in transcription networks. Journal of Molecular

Biology, 334:1(2003), pp. 197–204.

[Martijn et al.(1999)] R. Martijn, R. Vladimir, G. Ulrike, M. T. Johan, H. Steafan, A. Gus-

tav, and R. Helmut. Osmotic stress-induced gene expression in Sacharomyces cere-

visiae requires msn1p and the novel nuclear factor hot1p. Molecular and Cellular Biology,

19:8(1999), pp. 5474–5485.

[Martinez-Pastor et al.(1996)] M. T. Martinez-Pastor, G. Marchler, C. Schuller,

A. Marchler-Bauer, H. Ruis, and F. Estruch. The Saccharomyces cerevisiae

zinc finger proteins msn2p and msn4p are required for transcriptional induction through

the stress response element (stre). The EMBO Journal, 15:9(1996), pp. 2227–2235.

[Milo et al.(2002)] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, Chklovskii D., and

U. Alon. Network motifs: Simple building blocks of complex networks. Science,

298:1(2002), pp. 824–827.

[Milo et al.(2004)] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat,

M. Sheffer, and U. Alon. Superfamilies of evolved and designed networks. Science,

303:1(2004), pp. 1538–1542.

[Newman(2003)] M. E. J. Newman. The structure and function of complex networks. SIAM Review,

45:2(2003), pp. 167–256.

[Newman et al.(2001)] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with

arbitrary degree distributions and their applications. Physical Review E., 64:1(2001), pp.

026118(1) – 026118(17).

[Niu et al.(2002)] T. H. Niu, Z. S. Qin, X. Xu, and J. S. Liu. Bayesian haplotype inference for

multiple linked single-nucleotide polymorphisms. American Journal of Human Genetics,

70(2002), pp. 157–169.

[Oliveira et al.(2003)] E. M. M. Oliveira, A. S. Martins, E. Garvajal, and E. P. S. Bon. The role

of the gata factors gln3p, nil1p, dal80p and the ure2p on asp3 regulation in Sacharomyces

cerevisiae. Yeast, 20(2003), pp. 31–37.

[Prill et al.(2005)] R. J. Prill, P. A. Iglesias, and A. Levchenko. Dynamicd properties of network

motifs contribute to biological network organization. PLoS Biology, 3:11(2005), pp. e343.

[Roberts(1998)] P. D. Roberts. Classification of temporal patterns in dynamic biological networks.

Neural Computation, 10:7(1998), pp. 1831–1846.

[Salwinski et al.(2004)] L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and

D. Eisenberg. The database of interacting proteins: 2004 update. Nucleic Acids Res.,

32(2004), pp. D449–451.

[Shen-Orr et al.(2002)] S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the

transcriptional regulation network of Escherichia Coli. Nature Genetics, 31:1(2002), pp.

64–68.

[Spirin and Mirny(2003)] V. Spirin and L. A. Mirny. Protein complexes and functional modules

in molecular networks. Proc. Nat’l. Acad. Sci., 100:21(2003), pp. 12123–12128.

[Uetz et al.(2000)] P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight,

D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li,

B. Godwin, D. Gonover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston,

S. Fields, and J. M. Rothberg. A comprehensive analysis of protein-protein interactions

in saccharomyces cerevisiae. Nature, 403:10(2000), pp. 623–627.

[Vazauez et al.(2004)] A. Vazauez, R. Dobrin, D. Sergi, J. P. Eckmann, Z. N. Oltvai, and



BAYESIAN MODELS AND GIBBS SAMPLING STRATEGIES 367

A. L. Barabasi. The topological relationship between the large-scale attributes and local

interaction patterns of complex networks. Proc. Nat’l. Acad. Sci., 101:52(2004), pp. 17940–

17945.

[Xenarios et al.(2002)] I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S. M. Kim, and

D. Eisenberg. Dip, the database of interacting proteins: a research tool for studying

cellular networks of protein interactions. Nucl. Acids Res., 30:1(2002), pp. 303–305.

[Yeger-Lotem et al.(2004)] E. Yeger-Lotem, S. Sattath, N. Kashtan, S. Itzkovitz, R. Milo,

R. Y. Pinter, U. Alon, and H. Margalit. Network motifs in integrated cellular net-

works of transcription-regulation and protein-protein interaction. Proc. Nat’l. Acad. Sci.,

101:16(2004), pp. 5934–5939.

12

16 18

25

36 48

118

128 168

200

300 400

200

100 300

...
0 1 0

0 0 0

1 1 0

 
 
  

...

1

2 3

2

3 1

2

1 3

3

1 2

3

2 1

... ...

0 1 1

0 0 1

0 0 0

 
 
  

0 1 1

0 0 1

0 0 0

 
 
  

0 1 1

0 0 1

0 0 0

 
 
  

0 1 1

0 0 0

0 0 0

 
 
  

0 1 1

0 0 1

0 0 0

 
 
  

0 1 1

0 0 1

0 0 0

 
 
  

0 0 0

1 0 1

0 0 0

 
 
  

0 0 0

1 0 1

1 0 0

 
 
  

0 0 0

1 0 0

1 1 0

 
 
  

( )1 2 3 ( )2 1 3( )2 3 1 ( )3 1 2 ( )3 2 1

0.0 1.0 1.0

0.0 0.0 0.8

0.0 0.0 0.0

 
 
  

2

3 1

200

100 300

3

1 2

3

2 1

0 0 1
1 0 1
0 0 0

 
 
 

( )1 2 3

0 1 0
0 0 0
1 1 0

 
 
 

( )1 3 2 1

2 3

0 1 1
0 0 1
0 0 0

 
 
 

( )2 1 3

0 0 0
1 0 0
1 1 0

 
 
 

( )2 3 1 1

3 2

0 1 1
0 0 0
0 1 0

 
 
 

( )3 1 2

0 0 0
1 0 1
1 0 0

 
 
 

( )3 2 1

1

2 3

L
o
c
a
l 
G
ra
p
h
 A
lig
n
m
e
n
t

Is
o
m
o
rp
h
ic
 

S
tr
u
c
tu
re
s

A

B

Fig. 1. (A) A subgraph and its isomorphic structures. Left, a subgraph with three nodes (la-

beled by (100, 200, 300) in a certain graph). The adjacency matrix is obtained by relabeling nodes

as (1, 2, 3), respectively. Right five columns, isomorphic structures of the subgraph. The isomorphic

structures (top row) have the same connectivity as the subgraph but different adjacency matrices

(middle), which can be generated by permuting the node labels (indices of the matrices), as is shown

in the top. (B) An example of local graph alignment. A set of subgraphs (the top row) are sampled

from a certain network and five of them are selected for alignment because they have similar con-

nectivity. The alignment is done by assigning for each of the similar subgraphs a proper isomorphic

structure (denoted by the permutation of node labels in the middle row). The stochastic motif pat-

tern is then obtained by averaging over the adjacency matrices corresponding to aligned isomorphic

structures (the right column).
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Fig. 2. Simulation results for finding 3-node motif patterns in pseudo regulatory networks.

Left, the relationship of the relative error eλ verses λ. Right, the relationship of the relative error

eΘ versus λ.
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Fig. 3. An example of running the Bernoulli and corresponding group sampling strategies to

identify 3-node motifs in the E.coli regulatory network. The left three columns are the process of

the Bernoulli sampling strategy (x-axes (×1000) are the iteration steps; y-axes are the posterior

means of Θ1 = (θij)3×3). The right three columns are the process of the group sampling strategy

with M = 1 (x-axes are the iteration steps; y-axes are the posterior means of Θ1).
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Table 1

Details of the data studied. 1: Transcriptional regulatory networks. 2: Protein-protein inter-

action networks. 3: Based on human curated data. 4: Based on ChIP-chip data.

 

Species #(Nodes) #(Edges) Average (in/out) degree 

E.coli
 1,3

 423 519 1.23 

S.cerevisiae
 1,3

 688 1,078 1.57 

S.cerevisiae
 1,4

 2,416 4,344 1.80 

E.coli
 2
 553 483 1.75 

S.cerevisiae
 2

 2,614 6,319 4.83 

C.elegans
 2
 2,638 3,970 3.01 

H.pylori
 2

 710 1,359 3.83 

M.musculus
 2

 329 274 1.67 

D.melanogaster
 2
 7,068 20,815 5.89 

H.sapiens
 2
 1,065 1,318 2.48 

 

Table 2

Stochastic motifs in transcriptional regulatory networks of E.coli and S.cerevisiae (based on

highly reliable data from human curated databases [Milo et al.(2002), Milo et al.(2004)])
 

Species ε Θ1 Motif 

E.coli 2.54×10-6 
0.00 1.00 1.00
0.00 0.00 1.00
0.00 0.00 0.00

 
 
  

 

 

S.cere 9.94×10-7 
0.00 1.00 1.00
0.00 0.00 1.00
0.00 0.00 0.00

 
 
  

 

 

E.coli 9.52×10-8 

0.00 0.01 0.96 0.99
0.00 0.00 0.99 0.92
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

 
 
 
  

 

 

S.cere 1.40×10-7 

0.00 0.04 1.00 1.00
0.00 0.00 1.00 1.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

 
 
 
  
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Table 3

Stochastic motifs in transcriptional regulatory networks of S.cerevisiae. 1: based on ChIP-

chip data [Lee et al.(2002)]. 2: based on the ChIP-chip data [Harbison et al.(2004)], transcription

factors only.
 

Species ε Θ1 Motif 

S.cere
1
 7.34×10-8 

0.00 0.99 0.94
0.00 0.00 0.98
0.00 0.00 0.00

 
 
  

 

 

S.cere
1
 1.06×10-8 

0.00 0.12 0.99 0.99
0.00 0.00 0.97 0.93
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

 
 
 
  

 

 

S.cere
2
 6.07×10-5 

0.00 0.00 1.00 1.00 0.00
0.00 0.00 0.13 1.00 1.00
0.00 0.00 0.00 0.09 1.00
0.00 0.00 0.00 0.00 0.03
0.00 0.00 0.00 0.00 0.00

 
 
 
 
 

 

 

S.cere
2
 5.88×10-5 

0.00 0.00 1.00 1.00 0.00
0.00 0.00 0.14 1.00 1.00
0.00 0.00 0.00 1.00 0.09
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

 
 
 
 
 

 

 

 

 

 

Table 4

Stochastic motifs in protein-protein interaction networks of seven species

[Xenarios et al.(2002), Salwinski et al.(2004)].
 

Species ε Θ1 Motif Species ε Θ1 Motif 

E.coli 4.50×10-6 
0.00 0.99 0.99
0.99 0.00 0.99
0.99 0.99 0.00

 
 
  

 

 E.coli 4.38×10-8 

0.00 0.24 1.00 1.00
0.24 0.00 1.00 1.00
1.00 1.00 0.00 1.00
1.00 1.00 1.00 0.00

 
 
 
  

 

 
S.cere 1.25×10-6 

0.00 1.00 1.00
1.00 0.00 1.00
1.00 1.00 0.00

 
 
  

 

 

S.cere 4.86×10-8 

0.00 0.17 1.00 1.00
0.17 0.00 1.00 1.00
1.00 1.00 0.00 1.00
1.00 1.00 1.00 0.00

 
 
 
  

 

 

C.eleg 1.05×10-7 
0.00 1.00 1.00
1.00 0.00 1.00
1.00 1.00 0.00

 
 
  

 

 

H.pylo 1.21×10-6 
0.00 0.99 0.99
0.99 0.00 0.99
0.99 0.99 0.00

 
 
  

 

 

M.musc 4.98×10-8 

0.00 0.19 0.99 0.99
0.19 0.00 0.99 0.99
0.99 0.99 0.00 0.99
0.99 0.99 0.99 0.00

 
 
 
  

 

 
M.musc 2.31×10-6 

0.00 0.96 0.96
0.96 0.00 0.96
0.96 0.96 0.00

 
 
  

 

 

D.mela 2.71×10-8 
0.00 1.00 1.00
1.00 0.00 1.00
1.00 1.00 0.00

 
 
  

 

 
H.sapi 1.39×10-8 

0.00 0.26 1.00 1.00
0.26 0.00 1.00 1.00
1.00 1.00 0.00 1.00
1.00 1.00 1.00 0.00

 
 
 
  

 

 H.sapi 1.49×10-6 
0.00 1.00 1.00
1.00 0.00 1.00
1.00 1.00 0.00

 
 
  

 

 

 


