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COMPUTING FENCHEL-NIELSEN COORDINATES IN

TEICHMÜLLER SHAPE SPACE

MIAO JIN∗, WEI ZENG† , NING DING∗, XIANFENG GU†, AND SHING-TUNG YAU‡

Abstract. Teichmüller shape space is a finite dimensional Riemannian manifold, where each

point represents a class of surfaces, which are conformally equivalent, and a path represents a defor-

mation process from one shape to the other. Two surfaces in the real world correspond to the same

point in the Teichmüller space, only if they can be conformally mapped to each other. Teichmüller

shape space can be used for surface classification purpose in shape modeling.

This work focuses on the computation of the coordinates of high genus surfaces in the Teichmüller

space. The coordinates are called as Fenchel-Nielsen coordinates. The main idea is to deform the

surface conformally using surface Ricci flow, such that the Gaussian curvature is −1 everywhere.

The surface is decomposed to several pairs of hyperbolic pants. Each pair of pants is a genus zero

surface with three boundaries, equipped with hyperbolic metric. Furthermore, all the boundaries are

geodesics. Each pair of hyperbolic pants can be uniquely described by the lengths of its boundaries.

The way of gluing different pairs of pants can be represented by the twisting angles between two

adjacent pairs of pants which share a common boundary.

The algorithms are based on Teichmüller space theory in conformal geometry, and they utilize

the discrete surface Ricci flow. Most computations are carried out using hyperbolic geometry. The

method is automatic, rigorous and efficient. The Teichmüller shape space coordinates can be used

for surface classification and indexing. Experimental results on surfaces acquired from real world

showed the practical value of the method for geometric database indexing, shape comparison and

classification.

Keywords: conformal geometry, Teichmüller space, shape space, shape analysis, shape classifi-

cation.

1. Introduction. Surfaces in real life have multiple geometric structures, such

as topology, conformal structure, Riemannian metric etc. They can be classified

according to different geometric structures. This work focuses on the classification

which is based on conformal geometric structures.

A conformal mapping between two surfaces preserves angles. Two surfaces are

conformally equivalent, if there exists a conformal mapping between them. All con-

formal equivalent classes for fixed topology form a finite dimensional Riemannian

manifold, the so-called Teichmüller space. In this shape space, each point represents

a class of surfaces, and a curve is a deformation process from one shape to the other.

Teichmüller theory plays an important role in Riemann surface theory, differential

geometry and theoretic physics. With the advancement of computational conformal
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geometry, the coordinates of shapes in Teichmüller space can be computed efficiently

today, which is the major focus of the current work.

The main idea for Teichmüller space coordinates is as follows. First, each closed

surface of genus g > 1 in R
3 has an induced Euclidean metric. By using curvature

flow method, one can conformally deform the metric to a canonical Riemannian metric

with constant −1 Gaussian curvature, which is called hyperbolic metric. Then under

the hyperbolic metric, one can decompose the surface to 2g − 2 pairs of pants, ( a

pair of pants are a genus zero surface with three boundaries), by cutting the surface

along 3g − 3 geodesic loops. Two adjacent pairs of pants are glued together along a

cutting geodesic loop with an angle, called twisting angle. The lengths of the cutting

loops and the twisting angles give the coordinates of the surface in the Teichmüller

space, which are the so-called Fenchel-Nielsen coordinates.

The Fenchel-Nielsen coordinates uniquely determine the conformal structure of

the surface. They can be treated as the fingerprint of the surfaces and can be applied

for shape comparison and classification. Two surfaces with the same Fenchel-Nielsen

coordinates can be further compared by their Riemannian metrics and the embedding

in R
3.

Contributions. The major contributions of the current work are:

1. A framework of using Teichmüller shape space for surface classification and

comparison.

2. A set of rigorous and practical algorithms for computing Fenchel-Nielsen co-

ordinates for high genus surfaces, including hyperbolic pants decomposition,

computing the closed geodesic, shortest paths on hyperbolic pants etc.

The computational algorithms are based on hyperbolic surface Ricci flow. Most com-

putations are carried out using hyperbolic geometric methods. We tested our algo-

rithms using surfaces from real life. Potential applications are illustrated as well.

The paper is organized in the following way: Section 2 will briefly introduce

the previous works in the literature; Section 3 will introduce the major theoretic

concepts from differential geometry, Riemann surface theory; Details of algorithms

are explained in Section 4; experimental results are reported in Section 5; and the

work is concluded in Section 6.

2. Previous Works. Our work proposes to compute Teichmüller space coordi-

nates as shape descriptors based on surface hyperbolic uniformization metric, which

classifies surfaces according to their conformal structures. Surfaces which have the

same descriptors share the same conformal structure, invariant to conformal deforma-

tions.

The research literature on shape descriptors is vast. A thorough review of shape

descriptors is beyond the scope of current work. We will focus here only on recent

shape descriptors which are most relevant to our work using conformal geometry, and
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methods for designing metrics by prescribed curvatures.

2.1. Shape Descriptors. For the application of 3D shape classification and

matching, shape descriptors are to extract meaningful and simplified representations

from the 3D model based on the geometric and topological characteristics of the

object. As the name suggests, shape descriptors should be descriptive enough to be

able to distinguish similar and dissimilar shapes. The interested reader is referred to

[1], [2] and [3] for comprehensive surveys of different shape descriptors and evaluations

of their performance.

Shape descriptors can be classified by the corresponding transformation groups,

to which they are invariant. The following transformation groups are considered: rigid

motion, isometric transformation and conformal deformation. The former groups are

the subgroups of the latter ones. In the discussion, we focus on shape descriptors

based on conformal geometry. There are many other shape descriptors invariant to

the above transformation groups based on other methods. We only brief some of

them.

2.1.1. Shape Descriptors Invariant to Conformal Deformations. Con-

formal structure is invariant to conformal deformations, which include isometric de-

formations and rigid motions. To the best of our knowledge, the first work proposed

to use conformal structure for shape classification is [4], where the conformal struc-

ture is represented as period matrices. Later, geodesic spectrum of surfaces under

their uniformization metrics are applied as the conformal structure descriptors in [5],

which can be computed symbolically. A general framework for 3D surface match-

ing is proposed in [6] and [7]. By conformally parameterizing the 3D surfaces to

canonical 2D domains, the matching problem is greatly simplified. If the surfaces are

conformally equivalent, then 2D mapping is an identity with appropriate boundary

conditions. Recently, Luo coordinates [8], which define surface conformal structure

in Teichmüller space using the lengths of a special group of geodesics on surfaces, are

used for shape descriptors in [9].

Previous methods using geodesic lengths as coordinates have more than 6g − 6

numbers, which is the dimension of Teichmüller space. Therefore there are redun-

dancy. For Fenchel-Nielsen coordinates, each coordinate component is independent

of others, so the representation is more compact. The correlations among the com-

ponents of Luo’s coordinates are complicated and unclear, while the F-N coordinates

have strong intuition behind. Basically, each pair of hyperbolic pants are determined

by their boundary lengths; the twisting angle determine the gluing pattern of pants.

So it is trivial to construct a Riemann surface purely from its F-N coordinates. Fur-

thermore, Our method based on consistent hyperbolic pants decomposition has less

ambiguity when used for surfaces comparison purpose.
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2.1.2. Shape Descriptors Invariant to Isometric Transformations. Pose

changes are a quasi-isometric transformation of the 3D mesh, in the sense that edge

lengths do not change much as a result of the transformation. Pose-invariant Shape

Descriptors are invariant under non-rigid isometric transformations, and tolerant

quasi-isometric transformations. Pose-invariant shape descriptors based on conformal

geometry is introduced in [10], where the histogram of the conformal factor computed

from surface uniformization metric is applied as shape descriptor. This descriptor is

intrinsic and pose-invariant.

Laplace-Beltrami operator is determined by the Riemannian metric. Therefore,

most descriptors related to discrete laplace-Beltrami operators are also invariant to

isometric deformations, and tolerant quasi-isometric deformations. For examples,

Reuter et al. in [11] use the eigenvalues of Laplace-Beltrami operator; Rustamov in

[12] uses the eigenvectors; Xiang et al. in [13] use the histogram of the solution to the

volumetric Poisson equation which involves the Laplace-Beltrami operator.

2.1.3. Shape Descriptors Invariant to Rigid Motions. Shape descriptors

which are invariant to rigid motions and based on conformal geometry are used in [14]

and [15] for medical application purpose, where both conformal factor and mean cur-

vature are considered. Conformal factor itself fully determines the Riemannian metric

of surfaces. After adding mean curvature, they two can determine the embedding of

surfaces unique up to rigid motions with appropriate boundary conditions.

2.1.4. Other Shape Descriptors. There are many other shape descriptors

invariant to isometric deformations based on Riemannian geometry. For example,

those methods in [16, 17, 18] compute from surface geodesic distances. The method

in [19] computes the diameter of the 3D shape at each point, and the average geodesic

distance from each point to all other points. The histograms of the two functions are

applied as the shape descriptors.

Many global or local features based, or graph based shape descriptors are invariant

to rigid motions, while extra algorithms for feature and graph matching are necessary.

We refer readers to [3] for more details.

3. Theoretic Background. This section briefly introduces the background

knowledge of conformal geometry, which is necessary for the discussion in the work.

The basic concepts of algebraic topology and hyperbolic geometry are briefly in-

troduced in the Appendix also. For more details, we refer readers to the classical

textbooks [20], [21] and [22].

3.1. Conformal Structure. Let S be a topological surface, we consider all

the possible Riemannian metrics on S, G = {g}. Two metrics g1,g2 are said to

be conformally equivalent, g1 ∼ g2, if there exists a function u : S → R, such that

g1 = e2ug2.
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(a) A pair of hyperbolic pants (b) Hyperbolic pants decomposition

Fig. 1. (a) A pair of hyperbolic pants with three geodesic boundaries. (b) A genus g surface with

hyperbolic metric is decomposed to 2g − 2 pairs of hyperbolic pants by 3g − 3 geodesic cutting loops.

The twisting angles and lengths of cutting loops give the Fenchel-Nielsen coordinates in the shape

space. Here we visualize the twisting angle on w2, which equals to the ratio between the hyperbolic

distance of |p1, P2| and the geodesic length of w2.

Intuitively, the angle values measured by conformally equivalent metrics are the

same. Hence, conformal means angle preserving. Then each conformal equivalent

class of the Riemannian metrics in G/ ∼ is a conformal structure.

A mapping between two Riemann surfaces f : S1 → S2 is conformal, if it preserves

angles. Conformal mappings preserve conformal structures. Namely, if there exists

a conformal mapping between S1 and S2, the S1 and S2 have the same conformal

structure.

3.2. Uniformization Theorem. In each conformal equivalent class of Rieman-

nian metrics, there exists a special metric, that induces constant Gaussian curvature.

This is the most fundamental fact for surfaces.

Theorem 3.1 (Uniformization). Let S be a surface with a Riemannian metric

g, there exists a Riemannian metric g̃, such that g̃ is conformal to g and induces

constant Gaussian curvature, which is one of {+1, 0,−1}.

For surfaces S with negative Euler number, there exists a unique hyperbolic met-

ric conformal to the original metric. The universal covering space of S with the

hyperbolic metric can be isometrically embedded in the hyperbolic space H
2. All the

deck transformations are Möbius transformation. The deck transformation group is

called the Fuchsian group of S. According to Gauss-Bonnet theorem, each homotopy

class has a unique closed geodesic on a surface with a hyperbolic metric.

3.3. Teichmüller Space and Fenchel-Nielsen Coordinates. Let S be a

closed topological surface of genus g > 1. All the conformal structures on S form

a 6g − 6 dimensional manifold, called as Teichmüller space, denoted as Tg. Because
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each conformal structure has a unique hyperbolic metric, it is enough to consider only

surfaces with hyperbolic metrics for computing the Teichüller space.

Assume S is with a hyperbolic metric, then its coordinates in Tg can be con-

structed in the following way.

Definition 3.2 (Pants). A pair of topological pants is a genus zero surface with

three boundaries.

Given a genus g surface, it can be decomposed to 2g − 2 pairs of pants. Figure 1

illustrates one example. Assume all the cutting loops are geodesics {γ1, γ2, · · · , γ3g−3},

then each pair of pants is pair of hyperbolic pants.

Definition 3.3 (Hyperbolic Pants). A pair of pants is called a pair of hyperbolic

pants, if it is with a hyperbolic metric, and all boundaries are geodesics.

For each pair of hyperbolic pants P with three boundaries γi, γj, γk, there are

three shortest paths connecting each pair of boundaries, e.g. τi connects γj , γk, and

intersects γj and γk with right corner angles.

Suppose two pairs of hyperbolic pants P1 and P2 are glued together along γ. The

shortest path τ1 on P1 intersects γ at p1, and the shortest path τ2 on P2 intersects γ

at p2, then the twisting angle on γ is given by

θ = 2π
d(p1, p2)

|γ|

where d(p1, p2) is the geodesic distance between p1 and p2, |γ| is the length of γ.

Definition 3.4 (Fenchel-Nielsen Coordinates). Suppose S is a genus g > 1

closed surface with a hyperbolic metric. S is decomposed to pairs of pants {P1, P2, · · · ,

P2g−2} by closed geodesics {γ1, γ2, · · · , γ3g−3}. Then Fenchel-Nielsen coordinates of

S in the Teichmüller space Tg are given by

{(l1, θ1), (l2, θ2), · · · , (l3g−3, θ3g−3)},

where (lk, θk) are the length and twisting angle of γk.

3.4. Surface Ricci Curvature Flow. Let S be a surface embedded in R
3.

S has a Riemannian metric induced from the Euclidean metric of R
3, denoted by

g. Suppose u : S → R is a scalar function defined on S, then ḡ = e2ug is also a

conformal metric. The Gaussian curvatures will also be changed accordingly. The

Gaussian curvature will become

(1) K̄ = e−2u(−∆gu+K),

where ∆g is the Laplacian-Beltrami operator under the original metric g. The above

equation is called the Yamabe equation. Yamabe equation can be solved using Ricci

flow method. The Ricci flow deforms the metric g(t) according to the Gaussian

curvature K(t) (induced by itself), where t is the time parameter

(2)
dgij(t)

dt
= 2(K̄ −K(t))gij(t).
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Fig. 2. Topological pants decomposition for surface with g handles: (a) Compute surface handle

loops and tunnel loops; (b) Slice surface open along tunnel and handle loops; (c) Connect all other

boundaries except c0 to form a big boundary and get a topological cylinder; (d) Find a locally

shortest loop w0 along the path l connecting boundaries c0 and ć0, which is the waist of the handle;

(e) Repeat the process to find waists for each handle; (f) Cutting handles out along each waist, we

get a topological sphere with g holes. Repeat this process as long as the total number of boundaries is

less than 4: a locally shortest loop wij which is homotopic to wi ◦wj is computed, and surface patch

bounded by wi, wj, and wij is cut out. (g) The set of cutting loops are tunnel loops computed in

(a), waists computed in (e), and loops computed in (f). They decompose the surface to topological

pants.

Ricci flow method can be applied to compute surface hyperbolic metric.

4. Algorithms. The key of our algorithm is to compute hyperbolic pants de-

composition for a given closed high genus surface based on surface hyperbolic metric.

The geodesic lengths of cutting loops which segment the surface into pairs of hyper-

bolic pants and the angles of gluing pair of pants together are the Fenchel-Nielsen

coordinates of the surface. The pipelines of our algorithms can be listed as:

1. Compute topological pants decomposition (section 4.1);

2. Compute the hyperbolic metric using Ricci flow (section 4.2);

3. Compute hyperbolic pants decomposition (section 4.3);

4. Compute the Fenchel-Nielsen coordinates (section 4.4).

4.1. Compute Topological Pants Decomposition. To get hyperbolic pants

decomposition, we need to get topological pants decomposition first. Surface topo-

logical pants decomposition has been widely studied [23] and done with the optimal
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segmentation of a given surface into pants [24]. Since the major application of com-

puting Fenchel-Nielsen coordinates in out paper is for surface index and classification

purpose, we adopt the methods in [25] and [26] to consistently decompose surfaces

with same topology to a set of corresponding pants, which will induce consistent

hyperbolic pants decomposition and Fenchel-Nielsen coordinates. For a closed g > 1

surface, the set of cutting loops which decompose surface to topological pants is 3g−3.

The algorithm to consistently decompose surfaces to topological pants can be

illustrated in Figure 2.

1. Compute handle and tunnel loops for a given surface (Figure 2(a)): A closed

embedded surface M with genus g in R3 separates R3 into a bounded space

I and an unbounded space O. A loop bi is a handle if it spans a disk in the

bounded space I; if one cuts M along bi and fills the boundary with that

disk, one eliminates a handle. A loop ai is a tunnel if it spans a disk in

the unbounded space O, and its removal eliminates a tunnel. Tunnel loops

and handle loops can be effectively computed using the technique (and the

software) presented in [25]. Since handles of given surfaces have been indexed,

we will get a set of labeled handle and tunnel loops.

2. each surface handle hi is sliced open along its handle loop bi and tunnel loop

ai, with the boundary curve ci = aiḃiȧ
−1

i ḃ−1

i (Figure 2(b)).

3. To compute the waist wi, the shortest loop which is homotopic to ci, we con-

nect all other cjs to form a large boundary loop ći, then we get a topological

cylinder (Figure 2(c)). A shortest path l which connects the two boundaries

ci and ći is computed, then the waist wi is the shortest loop along l (Fig-

ure 2(d)). Then the handle bounded by ci and wi can be cut off, and wi

is replaced with ci (Figure 2(e)). We repeat this process until we finish the

computation of waists for all handles. Now the surface M is a topological

sphere with g holes(g is the handle number of the surface).

4. If g > 3, then for each pair of wi and wj (from the increasing number of

indexes), we compute the shortest loop ẃij which bounds wi and wj . After

removing the pant with boundaries ẃij , wi and wj , we repeat this step until

the number of boundaries is less or equal to 3 (Figure 2(f)).

All the tunnel loops computed in the first step, waists computed in the third

step, and loops computed in the forth step form the set of cutting loops which seg-

ment the given surface to topological pants (Figure 2(g)). Since we have indexed

surfaces handles, the ordered set of topological pants is consistent with surfaces of

same topology.

4.2. Compute the Hyperbolic Metric. For a negative Euler number surface,

there exists a unique hyperbolic metric conformal to its original metric. The computa-

tion of the hyperbolic metric on a triangular mesh is based on the discrete hyperbolic
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Ricci flow algorithm. We brief the outline of the algorithm, details can be found in

[27] and [28].

Let M be a simplicial complex (triangular mesh) with vertex set V , edge set E

and face set F . The outline of the algorithm can be listed as the following steps.

1. For each vertex vi, assign a circle with the initial radius ri which approximates

the original Euclidean metric of the edges associated with the vertex; For each

edge eij , its weight φij is the intersection angle of the two circles associated

with the ending vertices of the edge, vi and vj .

2. The edge length lij of eij is updated by current vertex radius and edge weight

using the hyperbolic cosine law,

cosh lij = cosh ri cosh rj + sinh ri sinh rj cosφij .

3. Update the angle θjk
i , related to each corner i∠

k
j , using current edge lengths

with the inverse hyperbolic cosine law:

θjk
i = cos−1 cosh(lij) cosh(lki) − cosh(ljk)

sinh(lij) sinh(lki)
,

4. Compute the discrete Gaussian curvature Ki of each vertex vi :

(3) Ki =

{

2π −
∑

fijk∈F θ
jk
i , interior vertex

π −
∑

fijk∈F θ
jk
i , boundary vertex

where θjk
i represents the corner angle attached to vertex vi in the face fijk.

5. Update the radius ri of each vertex vi:

ri = ri + ǫ(K̄i −Ki) sinh ri,

where K̄i is the target vertex curvature.

6. Continue the procedure from B to E, until ‖K̄i −Ki‖ of all vertices satisfy

the user-specified error tolerance.

4.3. Compute Hyperbolic Pants Decomposition. The key to decompose

surfaces to hyperbolic pants is to compute geodesics homotopic to the set of cutting

loops which decompose the given surface to topological pants (see Section 4.1) under

hyperbolic metric (see Section 4.2). Our main idea is to embed the universal cover of

the given surface to hyperbolic space, then the set of cutting loops will be mapped

to a set of paths. For each path, its two ending points will be projected to the same

point on the surface, while in the universal cover, the two ending points for each

path induce a Möbius transformation. The axis of each Möbius transformation, when

projected from universal cover to the surface, is a geodesic loop homotopic to the

original cutting loop. The details of our algorithms are introduced in the following

pipelines.
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Fig. 3. Embed the Universal Cover Isometrically onto H
2: (a) A set of canonical homology

basis is marked on surface with red; (b) surface is sliced open along homology basis to form a unit

disk, the fundamental domain; (c) one layer copies of the fundamental domain are transformed

with Möbius transformation and glued with the original one; (d) a portion of the universal cover

embedded in Poincaré disk.

4.3.1. Embed the Universal Cover Isometrically onto H
2. The major

steps to embed the universal cover of a given surface with hyperbolic metric onto

H
2 are similar with algorithms in [28]. While in this paper, we only need to con-

struct a portion of the universal cover which are needed in the next step, instead of

computing all the Fuchsian group transformations.

1. Slice M open along a set of canonical homology basis a1, b1, a
−1

1
, b−1

1
· · ·ag, bg,

a−1
g , b−1

g to form a topological disk, the fundamental domain M̄ (Figure

3(a)(b)) (see Appendix for definition of canonical homology basis).

2. Embed the seed triangle f012 (random chosen from M̄) into Poincaré disk

with positions of the three vertices:

τ(v0) = (0, 0), τ(v1) = tanh
l01
2
, τ(v2) = tanh

l02
2
eiθ12

0 .

3. Put all the neighboring faces of the seed face to a queue.

4. Suppose that fijk is a non-embedded face which is popped out from the queue.

If vi and vj have been embedded, τ(vk) can be computed as the intersection

point between two hyperbolic circles under proper orientation, with centers

(τ(vi) and (τ(vj), the positions of the two vertices, radii lki) and lkj), the

edge lengths of eki and ekj in Poincaré disk. Then we put all the neighboring

faces of fijk into queue.

5. Repeat step D until the queue is empty. Then we get the embedding of the

fundamental domain of M onto H
2, with boundary segments (Figure 3(b))

∂M̄ = a1b1a
−1

1
b−1

1
· · ·agbga

−1

g b−1

g .

6. To construct the universal cover of M , the embedding of infinite copies of M̄

in Poincaré disk, we need to compute a set of Möbius transformations, the
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Fig. 4. Cutting loops which decompose surface to consistent topological pants are lifted to

universal cover. (a) We show a set of cutting loops marked with green, and a set of canonical

homology basis marked with red on surface; (b) Surface is cut open along homology basis to form

a fundamental domain and embedded onto the Poincaré disk. To lift η1 and η2 to Poincaré disk ,

we start from the base point, p0 for each loop, and extend vertex by vertex. We have to glue other

copies of fundamental domains when we go to the boundary of the center fundamental domain. The

worst time complexity case is when we hit a corner point of the fundamental domain, like to lift η2

to η̃2, we have to glue instead of one domain but 4g − 1 domains.

so called deck transformations, which transform one copy of M̄ in Poincaré

disk and match with the original copy along the mate boundaries, ai and

a−1

i , or bi and b−1

i . Suppose we want to transform a copy of M̄ by a Möbius

transformation φ along a1 of M̄ . Let the ending points of a1 are p1, q1 on S̄,

the ending points of a−1

1
are p2, q2. To find a Möbius transformation φ which

maps p1, q1 to p2, q2, we first construct a unique Möbius transformation φ1:

ψ0(z) = e−iθ0
z − p0

1 − p̄0z
, where θ0 = arg

q0 − p0

1 − p̄0q0

,

such that p1 is mapped to the origin, and q1 to a positive real number. Simi-

larly, we construct another unique Möbius transformation φ2, which maps p2

to the origin and q2 to a positive real number. Then φ = φ−1

2
◦ φ1.

7. We can repeat this process and glue copies of the fundamental domain along

their mate boundaries. Figure 3(c) and (d) shows the process of gluing copies

of the fundamental domain of a genus two surface to form a portion of its uni-

versal cover embedded in the Poincaré disk. Different fundamental domains

are encoded by different colors.

4.3.2. Compute Hyperbolic Cutting Loops Based on Universal Cover.

We have computed a set of cutting loops which decompose the given surface to topo-

logical pants in Section 4.1. In this section, we propose the algorithms that compute
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Fig. 5. Pipeline of computing Fenchel-Nielsen coordinates: The fundamental domain of the

eight surface is embedded in hyperbolic disk as shown in (a). The three geodesics on its domain,

when lifted on to the surface as shown in (b), will decompose the eight surface to two hyperbolic

pants. One pant is shown in (e), and its boundaries, c1, c2, andc3 are geodesics in hyperbolic disk.

We compute the geodesics perpendicular to the boundaries of the two pants, and get intersection

points. One is shown in (d), and the other is shown in (f). The twisting angle can be computed

from the distance of the two intersection points along the same cut loop. For this eight model, since

it is very symmetric, all its twisting angles are close to zero. As visualized in (f), the distance

between the two intersection points is very small, almost coincide. Both the three geodesic lengths

in (a) and the twisting angles are Fenchel-Nielsen coordinates.

(a) (b) (c) (d)

Fig. 6. Compute the Fenchel-Nielsen Coordinates. (a) Hyperbolic cutting loops computed on

universal cover for cup model and 3-hole model; (b) hyperbolic cutting loops computed on universal

cover are projected back to original surfaces, and decompose cup model to 2 hyperbolic pants, 3-

hole model to 4 hyperbolic pants; (c) computing the geodesics perpendicular to the boundaries of

these pants on universal cover; (d) those perpendicular geodesics are projected back to the surface

to visualize the twisting angles: the ratio between the distance of the two intersection points (q1

and q2) along the same cutting loop and the geodesic length of that loop (marked with dark green).

Again, the 3-hole surface is very symmetric, so its twisting angle is very small, while for the cup

model, its twisting angle is around π
2
.
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a set of geodesics which are homotopic to the set of topological cutting loops and

decompose the given surface to hyperbolic pants based on universal cover.

For each cutting loop η computed in Section 4.1, we perform a ”lifting” process

which lifts the loop to the universal cover. In practice, to save space, the lifting is

only needed to perform in a finite portion of the universal cover, which contains η̃.

The portion is constructed during the lifting process ”on the fly”, which means we

glue one more copy of the fundamental domain only if we have to. The steps of the

”lifting” can be summarized as:

1. For one cutting loop η on surface M , we choose one point p ( can be arbitrary

point in η) as the base point of the loop.

2. To lift η to universal cover, We first lift the base point p to the center funda-

mental domain M̄ .

3. Then we lift next vertex connecting p through edge ep along the loop under

CCW direction. we extend the lifting vertex by vertex. Whenever the lifted

loop intersects the boundary segment of the fundamental domain, we com-

pute a Möbius transformation (with the method in Section 4.3.1) to glue a

new copy of the fundamental domain along that boundary segment, then we

continue the extension of the lifting (see η̃1 in Figure 4(b)). If the lifted path

goes through a corner point of the fundamental domain, we need to compute

4g − 1 Möbius transformations and glue 4g − 1 copies at that corner (see η̃2

in Figure 4(b)).

4. When the lifting process comes back to the edge ep, we have lifted the cutting

loop η in M to a path η̃ in universal cover, with the base point lifted to the

two points p̃0 and p̃1, and edge ep lifted to two edges ẽp0
and ẽp1

of η̃.

5. Similarly, We can construct a deck transformation τ , such that τ(ẽp0
) = ẽp1

.

6. Since τ is a Möbius transformation, its two fixed points can be computed as

s = lim
n→∞

τn(z), t = lim
n→∞

τ−n(z),

where z is an arbitrary point in the unit disk.

7. A unique geodesic γ̃ in Poincaré disk passing through s and t can be com-

puted, which is the axis of τ .

Then the projection of γ̃, γ = h(γ̃), from universal cover back to the original

surface, is the geodesic homotopic to η.

4.4. Compute the Fenchel-Nielsen Coordinates. Let the geodesic cutting

loops computed from Section 4.3.2 be {γ1, γ2, · · · , γ3g−3}, we can decompose surface

M to hyperbolic pants. For a pair of hyperbolic pants S, the three boundaries ∂S =

γi + γj + γk are geodesics in hyperbolic space. Since we have indexed each handle at

the step of topological pants decomposition, we will consistently assign a number to

each boundary of the pant.
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To compute the Fenchel-Nielsen coordinates, we first compute the length of each

geodesic cutting loop. They can be easily computed using hyperbolic geometry. Here

are the steps:

1. For each geodesic cutting loop γk on M , the same as we lift the topological

cutting loop to universal cover in Section 4.3.2, we first choose one base point

p on that loop, then lift that base point to universal. We extend the lifting

vertex by vertex along this loop until we are back to the base point.

2. Then γk is lifted to universal cover as part of a geodesic hyperbolic line, with

p lifted to p̃0 and p̃1. The geodesic hyperbolic line will intersect the unit circle

at q0 and q1, then the length of γk is given by the logarithm of the cross ratio

of {q0, p̃0, p̃1, q1}.

To compute the twisting angle associated with each geodesic cutting loop, the

algorithm is:

1. Suppose geodesic cutting loop γk glues the two pairs of pants P1 and P2

together. The lifting of γk and other boundaries of pants P1 and P2 (other

geodesic cutting loops) are geodesic hyperbolic lines in Poincaré disk.

2. The geodesic ζ1 between γ̃k and γ̃1 (let γ̃1 be one of the other two lifted

boundaries of pant P1, with the smallest assigned number) is also a hyperbolic

line in Poincaré disk, which is not only perpendicular to γ̃k and γ̃1, but

also perpendicular to the unit circle. Namely, we compute a circular arc,

orthogonal to three circles, the unit circle, γ̃k, and γ̃1. ζ1 is unique.

3. The same we compute the geodesic Υ2 between γ̃k and γ̃2 (the lifted boundary

of pant P2).

4. Suppose ζ1 intersects γk with point q1, and ζ2 intersects γk with point q2,

hyperbolic distance between q1 and q2 is |q1q2|, then the twisting angle is

given by

θk = 2π
|q1q2|

lk
,

where lk is the length of γ̃k in Poincaré disk.

Then the Fenchel-Nielsen coordinates are given by

{(l1, θ1), (l2, θ2), · · · , (l3g−3, θ3g−3)}.

Figures 5 and 6 visualizes the computation of Fenchel-Nielsen coordinates and

results on models with different topologies.

5. Experimental Results. In our experiments, most of our testing surfaces are

closed genus two surfaces. For closed genus two surfaces, the dimension of Fenchel-

Nielsen coordinates is six. Half are lengths of geodesics, and half are associated

twisting angles. Due to the page limit, Table 1 only lists the coordinates of some

genus two surfaces in our experiments.
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Table 2 gives part of our experimental results. For a pair of surfaces, the first

number is their geodesic length difference, and the second number is their angle differ-

ence. By a quick check of this table, we can easily find the most similar and the most

non-similar surfaces with the selected retrieval surface in terms of their conformal

structure. For example, Table 3 shows the neighborhoods of the selected surfaces and

also surfaces far away from them in the Teichmüller space.

We use L2 norm to measure their angle differences and geodesic length differences

to approximate their geodesic distances in Teichmüller space. So we can classify

surfaces based on their conformal structure. Figure 7 shows the clustering of those

genus two surfaces, with the x-coordinate representing the twisting angle, the y-

coordinate representing the geodesic length. Based on twisting angles, we can classify

them into three big groups. Then we can get more refined groups with marked circles

after adding geodesic lengths.

We compare our method with other existing conformal structure based methods.

The results are offered in Table 4 with a selected teapot and its distances to the other

teapots. The sorting result of our method is same with using Luo coordinates in

[9], while there is no redundancy of coordinates in our method, also, our consistent

hyperbolic pants decomposition can guarantee easily the consistent comparison of

coordinates for surfaces with same topology.

Since the time complexities of algorithms to compute consistent topological pants

decomposition and surface hyperbolic metric have been reported in [26] and [28] re-

spectively, we only analyze the time complexities of algorithms to compute hyperbolic

pants decomposition and Fenchel-Nielsen coordinates. Although the time complexity

to construct universal cover grows exponentially with surface genus number, and the

computation of both hyperbolic cutting loops and Fenchel-Nielsen coordinates are

based on universal cover, we do not need to compute all the Möbius transformations

and glue all the copies of the domain. When we lift the topological cutting loops to

universal, we start from one center domain in Poincaré disk, then glue another domain

only when the extension process hits the boundary of the center domain. The worst

case is that we hit the corner points of the domain, then we have to compute 4g − 1

Möbius transformations and glue that number of copies of domain to Poincaré disk.

Since we have 3g − 3 cutting loops for a surface with genus g, and for each cutting

loop η, suppose |η| is its word length in π1(S, p) (see Appendix), the time complexity

to construct universal cover is (3g − 3) ∗ (4g − 1) ∗ |η|. For other computations, they

are linear to the number of vertices and edges of the surface.

6. Conclusion. This paper introduces the computational algorithms for

Fenchel-Nielsen coordinates for closed high genus surfaces in the Teichmüller space.

The method is based on Teichmüller space theory, which is automatic, rigorous and

efficient. Details of the algorithm has been thoroughly explained. Computational
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Table 1

Consistent Fenchel-Nielsen coordinates of genus two surfaces: the length of each geodesic and

the twisting angle associated with that geodesic.

Distance Geodesic Length Twisting Angle

1.542 4.07 1.536 0.01 0.05 0.01

1.52 4.443 1.844 0.002 1.495 0.001

7.160 4.202 0.180 0.005 1.507 0.005

0.706 3.957 0.343 0.001 3.115 0.001

efficiency has also been reported.

Fenchel-Nielsen coordinates can be used to compare and classify surfaces based on

their conformal structures, and can also help to understand the structure of surfaces,

like their symmetry information. For example, the twisting angle gives a quantitative

way to measure how two pants are glued together, like the two pants of the cup model

in Figure 6(b) glued with a π
2

angle twisting. We will explore the direction further.

Although our current algorithms focus on closed high genus surfaces, they can

also be applied directly to surfaces with boundaries, as long as the Euler number of

the surface is negative. We will include these cases in our future research.

In this paper, we use Euclidean distances between consistent Fenchel-Nielsen co-

ordinates of surfaces to approximate their distance in Teichmüller space. We will

explore feasible algorithms to compute the real geodesics in Teichmüller space.

In the future, we plan to further test our algorithm for large scale geometric

database indexing and many other real applications in engineering fields.

Appendix. In the appendix, we briefly introduce the concepts from algebraic

topology and hyperbolic geometry, which are essential for understanding and imple-

menting the algorithm described in the current work.
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Table 2

Difference of Fenchel-Nielsen coordinates on surfaces: the first number is the geodesic length

difference; the second number is the twisting angle difference; both of them contribute to the distance

between surfaces in Teichmüller Space.

6.1. Fundamental Group and Representation of Homotopy Class. Let

S be a topological surface, and let p be a point of S. We are interested in the set of

continuous functions f : [0, 1] → S with the property that f(0) = p = f(1). These

functions are called loops with base point p. Any two such loops, say f and g, are
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Table 3

The sorted distances based on Fenchel-Nielsen coordinates between selected models and other

models in Techmüller space by checking table I. Here we only show models with maximum and

minimum distances. Again, the first number indicates the geodesic length difference, and the second

number indicates the twisting angle difference.

Distance

0.32 0.33 4.68 6.55

0.07 0.15 0.00 1.50

Distance

0.42 1.71 4.50 7.47

0.03 0.08 3.10 1.47

Fig. 7. Clustering of surfaces based on their Fenchel-Nielsen coordinates. The x-coordinate

indicates the twisting angle, and the y-coordinate indicates the geodesic length. Surfaces are clustered

based on both their twisting angle and geodesic lengths, with different groups marked with circles.

considered equivalent if there is a continuous function h : [0, 1] × [0, 1] → S with the

property that, for all 0 ≤ t ≤ 1, h(t, 0) = f(t), h(t, 1) = g(t) and h(0, t) = p = h(1, t).

Such a h is called a homotopy from f to g, and the corresponding equivalence classes
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Table 4

Comparison: sorted distances between selected teapot model and other teapot models using

different conformal invariant based methods. Since the dimension of both geodesic spectrum and

conformal factors on surfaces are infinite, we choose the lengths of the first 14 sorted geodesics as

shape descriptors for geodesic spectrum based method, and for conformal factors based method, their

histgrams in finite range are used to do comparison.

are called homotopy classes.

The product f · g of two loops f and g is defined by setting (f · g)(t) := f(2t), if

0 ≤ t ≤ 1/2 and (f · g)(t) := g(2t − 1) if 1

2
≤ t ≤ 1. The product of two homotopy

classes of loops [f ] and [g] is then defined as [f · g], and it can be shown that this

product does not depend on the choice of representatives.

With the above product, the set of all homotopy classes of loops with base point p

forms the fundamental group of S at the point p and is denoted π1(S, p). The identity

element is the constant map at the base point, and the inverse of a loop f is the loop

g defined by g(t) = f(1 − t).

Suppose S is a genus g closed surface. A canonical set of generators of π(S, p)

consists of {a1, b1, a2, b2, · · · , ag, bg}, such that the pair ai and bi has one intersection

point, the pairs {ai, aj}, {bi, bj} and {ai, bj}, have no intersections, where i 6= j. See

figure 3(a) for an example of canonical basis on a genus two surface.

6.2. Universal Cover and Uniformization Metric. A covering space of S

is a space S̃ together with a continuous surjective map h : S̃ → S, such that for

every h ∈ S there exists an open neighborhood U of p such that h−1(U) (the inverse

image of U under h) is a disjoint union of open sets in S̃, each of which is mapped

homeomorphically onto U by h. The map h is called the covering map. A connected

covering space is a universal cover if it is simply connected. Suppose γ ⊂ S is a

loop through the base point p on S. Let p̃0 ∈ S̃ be a pre-image of the base point

p̃0 ∈ h−1(p), then there exists a unique path γ̃ ⊂ S̃ lying over γ (i.e. h(γ̃) = γ) and

γ̃(0) = p̃0. γ̃ is a lift of γ.

A deck transformation of a cover h : S̃ → S is a homeomorphism f : S̃ → S̃

such that h ◦ f = h. All deck transformations form a group, the so-called deck

transformation group. A fundamental domain of S is a simply connected domain,
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which intersects each orbit of the deck transformation group only once. A fundamental

domain can be obtained by slicing a surface S open along a canonical fundamental

group generators as shown in figure 3(b), where a finite portion of the universal

cover of a genus two surface is shown, different fundamental domains are encoded

by different colors in (b) and (c). Deck transformations map fundamental domains

to fundamental domains. The deck transformation group Deck(S) is isomorphic to

the fundamental group π1(S, p). Let p̃0 ∈ h−1(p), φ ∈ Deck(S), γ̃ is a path in the

universal cover connecting p̃0 and φ(p̃0), then the projection of γ̃ is a loop on S, φ

corresponds to the homotopy class of the loop φ→ [h(γ̃)]. This gives the isomorphism

between Deck(S) and π1(S, p).

6.3. Poincaré Disk Model. In this work, we use Poincaré disk to model the

hyperbolic space H
2, which is the unit disk |z| < 1 on the complex plane with the

metric

ds2 =
4dzdz̄

(1 − zz̄)2
.

The rigid motion is the Möbius transformation

z → eiθ z − z0
1 − z̄0z

,

where θ and z0 are parameters. A hyperbolic circle with center c and radius r (c, r)

is also a Euclidean circle (C, R) with

C =
2 − 2µ2

1 − µ2cc̄
c, R2 = CC̄−

cc̄ − µ2

1 − µ2cc̄
,

where µ = tanh r
2
.

Given two points p and q on H
2, the unique geodesic (hyperbolic line) through

them is a circular arc and is perpendicular to the unit circle.
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