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MOTION DESCRIPTION LANGUAGE-BASED TOPOLOGICAL

MAPS FOR ROBOT NAVIGATION∗

P. MARTIN†
AND M. EGERSTEDT†

Abstract. Robot navigation over large areas inevitably has to rely on maps of the environment.

The standard manner in which such maps are defined is through geometry, e.g. through traversability

grid maps or through a division of the environment into free-space and obstacle-space. In this paper,

we combine certain aspects of the geometric maps, through the notion of distinctive places, with a

topological description of how these places are related. What is novel is the idea that the adjacency

relation is defined by the existence of a control law that drives the robot between topologically

connected places. Moreover, these maps can be automatically constructed based on the premise that

the nodes correspond to places associated with a hightened control activity.

1. Introduction. The production of maps for navigation purposes only becomes

meaningful if the maps are somehow coupled to their expected use. For example, a

pedestrian map may contain many small roads, while an automotive map covering

the same area only contains roads big enough for cars to drive on. Similarly, air-

planes employ a completely different set of maps than land-based vehicles. What

this somewhat informal discussion immediately tells us is that when maps are to be

produced for robotics applications, they only become useful when they respect the

constraints (may they be dynamic or geometric) imposed by the actual vehicle. This

issue is highlighted clearly when constructing configuration spaces for mobile robots

that take the spatial dimensions of the robots into account [12, 13].

In this paper we make this observation concrete by explictly taking the capabilities

of the robot into account through a collection of predetermined control modes (or

behaviors). This navigation system structure, i.e. decomposing a task into building

blocks, has proven to be useful in that it allows the designer to produce controllers

that are dedicated to performing specialized tasks, such as avoiding obstacles, clearing

steep gradients, approaching landmarks, and so on. (See for example [2, 7].) Rather

than constructing a single controller, the high-level mission is executed by a supervisor

that determines what mode of operation to use in a particular situation. The selection

of a set of modes has implications for what the robot can actually do, which we intend

to make explicit in this paper.

As the mission scenarios for mobile robots become more elaborate, the trade-

off between complexity and expressiveness of the map becomes an issue that must

be taken into account [13, 18]. In other words, a highly detailed map may not be

particularly useful in that planning over this map might take too long as compared to
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the benefits associated with actually incorporating high-fidelity features into the map.

As such, in this paper we will produce maps that contain only the information actually

needed to navigate the environment, and the resulting maps will be topological in

nature rather than geometric. This topological approach to planning can be traced

back to the semantic hierarchy introduced in [11]. The semantic hierarchy generates

so-called distinctive places by examining the local maximum of a “distinctiveness

measure,” based on sensor input.

Alternatively, our approach uses the robot’s controller activity, itself, to generate a

control-driven topological discretization of the environment. We utilize the framework

of Motion Description Languages (MDL), as pioneered by Roger Brockett in 1988 [5]

for generating distinctive places and their topological connections. The novelty of

this approach lies in the practical application of Brockett’s work to the field of mobile

robot path planning.

The outline of this paper is as follows: In Section 2, hybrid control programs for

robot control are discussed within the contexts of Hybrid Automata (e.g. [10, 15])

and MDL. In Section 3 we discuss how to automatically generate topological maps

from executions of the hybrid control programs. The main idea is that individual

executions (or runs) will correspond to strings of control laws as well as interrupts,

i.e. conditions for the termination of the individual control laws. By replacing the

interrupts with a description of the corresponding distinctive place that triggered

the interrupt, strings of distinctive places and control laws are obtained. Finally, by

identifying the same distinctive place in multiple locations in the string, a finite state

machine is obtained, with places as the nodes, and control laws as edges. This finite

state machine is in fact the desired topological map. Following this, in Section 4,

some experimental results are given as this work is motivated by a scenario in which

robots are to navigate unknown, unstructured, outdoor environments repeatedly, and

learn the terrain as well as how the robot should interact with the environment, across

multiple runs [19].

2. Controllers and Interrupts. This paper does not deal explicitly with the

issue of low-level control design for mobile robots. Instead, we assume that a set of

relevant control laws (or behaviors) have already been designed, dedicated to per-

forming certain tasks such as avoiding obstacles or approaching landmarks. To make

this concrete, assume that the robot dynamics can be described by

ẋ = f(x, u), y = h(x),

where x(t) ∈ X ⊆ R
n is the state of the robot at time t, u(t) ∈ U ⊆ R

m is the control

signal, and y(t) ∈ Y ⊆ R
p is the output value. We moreover assume that the output

equation encodes the interactions with the environment. Now, given a collection of

control laws K = {κ1, . . . , κN}, with κi : Y → U, i = 1, . . . , N , each control law gives
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rise to the dynamics

ẋ = f(x, κi(y)), i = 1, . . . , N.

Similarly, we also assume that we are given a set of so-called interrupt conditions

(guard conditions), Ξ = {ξ1, . . . , ξM}, with ξi : Y → {0, 1}, i = 1, . . . , M . The

interpretation here is that an interrupt condition triggers when it changes values from

0 to 1. Using these two types of building blocks, we can produce a hybrid automaton

without resets (e.g. [10]), where the dynamics in each discrete location of the hybrid

automaton is defined by one of the control laws in K and each transition between

discrete states is triggered by an interrupt condition in Ξ.

ẋ = f (x, κ1(h(x)))

ẋ = f (x, κ2(h(x)))

ẋ = f (x, κ3(h(x)))

x := x0
ξ1(h(x)) → 1

ξ2(h(x)) → 1

ξ3(h(x)) → 1

ξ2(h(x)) → 1

Fig. 1. A hybrid automaton is shown with three modes, corresponding to each of the three

controllers in K = {κ1, κ2, κ3}, while the transition conditions, denoted ξi(h(x)) → 1, are driven by

the interrupts in Ξ = {ξ1, ξ2, ξ3}.

An example of this is shown in Figure 1. The interpretation here is that the

system starts at x(0) = x0 and then evolves according to ẋ = f(x, κ1(y)) until ξ1(y)

triggers, i.e. it changes value from 0 to 1, and the system switches to use control law

κ2. The system thus evolves as ẋ = f(x, κ2(y)) until either ξ2 = 1 or ξ3 = 1, if ξ2 = 1

the system returns to using control law κ1, while ξ3 = 1 results in control law κ3 and

so on.

3. Producing Topological Maps. One reason why robot navigation is a chal-

lenging problem is its inherent complexity. This complexity stems from at least three

different sources, namely the complexity of the robot dynamics, the complexity of

the environment in which the robot is deployed, and the complexity of the task it-

self. As pointed out in [3], in order to manage these complexities, various forms of

discretizations are common. These discretizations can either be spatial, e.g. through

cell-decompositions of the free space or occupancy grids, or control-driven, as pro-

posed in [3, 1, 4]. Control driven discretizations can arise when, as in the previous

section, a finite number of control actions are available to the high-level supervisor.

In this paper, we take the point of view that an interesting and potentially useful dis-
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x(t2)x(t1)x(t0)
x(t3)

x(t4)
x(t5)

Fig. 2. A robot executes a hybrid control program that switches between a go-to-goal behavior

and an avoid-obstacle behavior.

cretization lies somewhere between these two views of geometric and control-driven

discretizations.

Given that a robot is executing a control strategy corresponding to a hybrid

control program specified through the hybrid automaton A, with initial condition

x(t0) = x0, this robot will interact with the environment E through an execution

of A. In fact, the interaction with E gives rise to particular sequences of control-

interrupt pairs, e.g. (κ1, ξ1), . . . , (κK , ξK). We will call this string a run through the

environment, and we denote this by R(A, E , x0).

As an example, consider a robot with two behaviors, κ1 and κ2, corresponding to a

go-to-goal behavior and a clockwise avoid-obstacle behavior, as shown in Figure 2. The

interrupts used in that simulation were ξ1, ξ2, and ξ3, where ξ1 → 1 when the robot is

too close to an obstacle, ξ2 → 1 when the robot is clear of an obstacle, and ξ3 → 1 when

the robot has arrived at a predetermined goal position. The corresponding hybrid

automaton A is shown in Figure 3, where κǫ is the ”empty” control law corresponding

to doing nothing.

Now, one can note, that the run that was being executed in Figure 2 is in fact

the string

R(A, E , x0) = (κ1, ξ1), (κ2, ξ2), (κ1, ξ1), (κ2, ξ2), (κ1, ξ3).

Such strings, obtained through the interaction of a hybrid automaton with the envi-

ronment, make up words in Motion Description Languages [5, 8, 16]. The main idea

behind the work in this paper is that such strings provide the means for coupling

the controllers with the environment in a topological manner, as will be shown in the

following paragraphs.
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κ1 κ2

κǫ

ξ1
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Fig. 3. A hybrid automaton that generates the motion shown in Figure 2.

3.1. Distinctive Places. As mentioned before, we utilize the idea of distinctive

places proposed in [11]; however, what is novel with our approach, compared to [11]

and [1], is that our distinctive places are produced by changes in control modes rather

than the positive output of a “distinctiveness” measure. In general, as the robot is

deployed in the environment during a run, the hybrid control program starts with a

particular control law κi ∈ K. This control law will dictate the evolution of the system

as ẋ = f(x, κi(h(x))) until an interrupt triggers. Associated with the triggering of

this interrupt are the particular environmental conditions behind the triggering, and

even though it may trigger explicitly because the robot was within a certain distance

of an obstacle, this interrupt does not contain any additional information about which

obstacle it was, or how big it was, or where it was located.

In contrast to this, we will associate another interrupt condition ζi : Y → {0, 1}
with this situation, defined in such a way that it triggers based on additional infor-

mation in the environment. This information will be selected in such a way that it

that uniquely identifies the distinctive place in the environment where the interrupt

triggered. For the experimental purpose of this paper, this information will simply be

given by the GPS coordinate of the location where the interrupt triggered. However,

one can easily imagine a situation where much more rich environmental descriptions

are used, such as visually based submaps, as proposed in [1, 9], or semantic SLAM

[17].

Since our work uses GPS as its primary localization sensor, we focus on spatial

data for determining the location of the robot and distinctive places. Hence, we

associate a location with each distinctive place, and let pos(y) ∈ R
p (where p = 2 in

the case of a planar world (as in Figure 2) denote the spatial position of the robot

when it is in state x ∈ X with output y ∈ Y , then the new interrupt condition would

be

ζi(y) = 1 ⇔ pos(y) ∈ Bδ(pos(y(ti))).

Here Bδ(z) ⊂ R
p = {z′ ∈ R

p | ‖z′ − z‖ ≤ δ} is the closed ball around z with
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radius δ > 0. Moreover, ti is the time at which interrupt ξi triggered during the

run. Returning to the example in Figure 2, we have shown the state associated with

the robot at the interrupt times t1, . . . , t5 as circles, together with the initial state

x0 = x(t0) at the initial time t0.

Throughout the remainder of this paper, we will assume that no two distinctive

places are allowed to coincide. And, given a distinctive place ζi, if another interrupt

ξj triggers at time tj during the run in such a way that ζi(y(tj)) = 1 for some i 6= j,

then the triggering of these two interrupts are assumed to correspond to the same

distinctive place, which is a mechanism that will be used to produce topological maps

with cycles.

3.2. Graph-Based Models. Based on the terminology established so far, given

a run

R(A, E , x0) = (κ1, ξ1), . . . , (κp, ξp)

and the corresponding distinctive places ζi, i = 1, · · · , p associated with the locations

where the interrupts triggered, the resulting topological map is given by a directed,

weighted graph G = V × E × L × W . If we let the set of distinctive places be given

by Z, we have that V = Z is the set of vertices associated with each distinctive place,

and E ⊂ V × V is the set of edges associated with the control law that takes the

robot between adjacent distinctive places. Furthermore, L : E → K associates a label

with each edge. This label is defined through the control law used to take the robot

between adjacent distinctive places. The final object, W , is the edge-based weight

function W : E → R
+ that associates a weight to each edge. This function could for

instance be given by the distance travelled along the edge, or the time that it took

for the robot to traverse the edge.

κ1

κ2κ1

κ1 κ2

ζ0 ζ1 ζ2

ζ3ζ4ζ5

Fig. 4. A graphical depiction of a run corresponding to the control execution in Figure 2.

Returning to the example in Figure 2, with the understanding that ζi denotes the

distinctive place corresponding to the closed, planar ball around the location x(ti),

we get the corresponding graphical model of the run as shown in Figure 4. It should

be pointed out that the graph in Figure 4 is a line graph, but with runs that return to
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the same distinctive place multiple times, loops will be formed, as shown in the next

section. Through this construction, a topological map of the environment is produced

that combines the geometric information encoded in the distinctive places, with the

control laws needed to take the system between such places. Moreover, multiple runs

with varying initial conditions as well as varying hybrid control programs can easily

be combined in a straightforward manner. Note that the generation of distinctive

places necessarily ties the generated map to the environment. However, this result is

natural since, as we described previously, each run through the environment is unique

to that environment’s features.

3.3. Planning over Graphs. Consider a mobile robot that repeatedly enters

an environment from the same initial location, using different control programs at

each run. Assume now that these runs generate the following strings of distinctive

places/control modes corresponding to the different hybrid control programs:

ζ0, κ1, ζ1, κ2, ζ2, κ3, ζ1, κ4, ζ3

ζ0, κ2, ζ2, κ1, ζ4, κ2, ζ5

ζ0, κ3, ζ3, κ1, ζ0.

The corresponding topological map is shown in Figure 5. (Note that in this case, the

robot was initialized at the same distinctive place, ζ0; however, in general the robot

is not required to have the same initial position.)

ζ0

ζ1

ζ2

ζ3 ζ4

ζ5
κ1

κ2

κ3

κ4

κ3

κ1

κ2

κ1

κ2

Fig. 5. A topological map generated by repeated executions of a hybrid control program.

Now, assume that the task under consideration in the fourth run is to get as

quickly as possible to the distinctive place ζ5 from the initial distinctive place ζ0.

Since our approach uses a graph based structure, this path planning problem can be

solved using standard search algorithms such as Djikstra’s algorithm or A⋆ [6, 13].

The primary difference in interpretation of the search algorithm output is that, in our

case, the output is actually a string of desired motion programs. If we assume in this

example that all edges take the same amount of time to traverse, the optimal control

string is thus given by the MDL string (κ2, ζ2), (κ1, ζ4), (κ2, ζ5), which takes the robot

to ζ5 in three steps.
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Fig. 6. The LAGR robot in a test environment.

4. Experimental Results. The automatic generation of topological maps was

implemented and tested on the robot platform (the LAGR Robot) shown in Figure

6, equipped with four color cameras, a front bump switch, a Garmin GPS receiver,

and an internal inertial measurement unit. The cameras are paired together so that

each pair can provide stereo depth maps with a range of approximately 6 meters. The

robot’s turning axis is centered on the front axle, with the back two unpowered wheels

turning on casters.

The implementation is based on a message framework that allows multiple pro-

cesses to run concurrently and pass data without worrying about data corruption or

racing conditions. In our architecture we have developed two processes for the man-

agement and generation of MDL graphs. The Behavior Monitor process inspects the

incoming sensor data and determines whether a new behavior should be chosen in

order to overcome new obstacles, pursue goals or complete other tasks. The second

process necessary for constructing these graphs is the MDL Graph Monitor. This pro-

cess listens for behavior state information from the Behavior Monitor and modifies

the graph accordingly.

Figure 7 shows the interaction of our two implemented processes. While a robot

is performing a run in the test environment, sensor data is continually sent to the

Behavior Monitor. The process will send this data via an update message to the MDL

Graph Monitor. The MDL Graph Monitor will check to see if the current graph has

a node near the incoming GPS coordinates. If that is the case then a looped node

message is sent back to the Behavior Monitor so that it can change its behavior to

take advantage of the information.

Once the robot wakes up, the planning phase is initiated and the MDL Graph
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Sensor Data
update

LAGR

Robot

Behavior

Monitor

MDL Graph

Monitor

MDL
Graph

looped node
Update

Robot Node
New Run

isLooped()

hasGraph()
Plan Over

Graph
intermediate goal

Sensor Data
update

Fig. 7. The message sequence diagram for the MDL Graph Building system is shown. The

LAGR Robot, Behavior Monitor and MDL Graph Monitor are processes; The MDL Graph is an

object owned by the MDL Graph Monitor.

Monitor checks if a previous run in the environment was recorded with an MDL graph.

If a graph is found a shortest path algorithm generates a list of goals and behaviors

which are sent to the Behavior Monitor with an intermediate goal message. From

this point the system returns to its initial operation, refining the MDL Graph while

following intermediate goals.

Fig. 8. Depicted is the outcome of a run in a simple simulated environment that causes the

robot to generate a looped MDL graph. The goal is seen in the top right corner. The robot is

represented by the last node in the graph connected to the goal

Figure 8 shows a simulated run using the so-called HugBug algorithm, which is

a variant of Lumelsky’s bug algorithm [14], where the robot (or “bug”) moves in



180 P. MARTIN AND M. EGERSTEDT

a straight line toward a goal, until it encounters an obstacle. When an obstacle

is detected, the robot avoids it, hugging the perimeter of the obstacle, until it can

return to the previous straight line toward the goal. Our approach is similar, with

the modification that we allow the robot to immediately head toward the goal again,

once it is clear of the obstacle. Furthermore, we introduce a timeout factor to prevent

exploration too far in any given direction, as described in [13].

In Figure 8, the robot starts in the bottom left and runs the GoToGoal behavior

until an obstacle is detected, causing the HugLeft behavior to be selected. At a

junction shortly after the first switch, the robot chooses to follow another obstacle

southeast until encountering another obstacle. The robot maneuvers around this

obstacle and finally reaches a previously visited node. At this point, the MDL Graph

Monitor informs the Behavior Monitor that it has visited this node before. The robot

then uses HugRight to move through the junction opening that it missed before and

resumes navigating towards the goal. Note, that the robot associates its forward

edge to the goal with its current control mode. After this run, the planner applies

Djikstra’s algorithm to generate the string of places and behaviors that would avoid

the loop. When a new run is started, the robot reaches the goal more quickly since

the cycle in the MDL graph was cut out by choosing the shortest path.

We have moreover performed experiments using this approach in test environ-

ments that contain a navigable terrain, with walls of obstacles, built using hay bales.

We set up one particular environment such that an approximately 30 meter wall

blocked the direct path to the robot’s goal. The ends of the wall had perpendicular

hay bales, making a U-shape. This U-shaped obstacle was chosen to test the robot’s

ability to navigate out of a “cul-de-sac”. At the start of each run, the robot was

placed about 75 meters from the goal, with the wall of obstacles in between.

As the robot negotiates the test environment, we are able to monitor its progress

on the dashboard, shown in Figure 9. The dashboard shows a view of the cost map (top

four images), vision sensor input (side images), and the output MDL graph (center

image). The cost map is simply a grid based representation of the environment with a

score given to each cell in the grid, representing the cost for the robot to traverse that

cell. Higher costs are represented with darker colors, with lower cost (better terrain)

represented with lighter colors.

As shown in the experiment performed in Figures 9 and 10, the robot starts

in the GoToGoal behavior and heads toward the goal until it reaches the wall of

obstacles which force the robot to turn to the left. At this point, the robot enters the

HugRight behavior and a node is created in the MDL graph. The robot continues to

navigate along the wall, until it reaches the edge of hay bales extending out from the

wall. At this point of the obstacle wall, the robot experienced “phantom” obstacles

generated by faulty vision input. These phantom obstacles caused the LAGR robot

to alternate between several HugRight and HugLeft behaviors. We simplify the cycle
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Fig. 9. The robot’s MDL graph associated with a particular experiment is shown.

GoToGoal

HugRight

GoToGoal

Repeated switching...
HugLeft

1

2

3

4

5

n

Fig. 10. This illustration shows a closer view of the initial cycle in Figure 9, where the LAGR

robot executed numerous behavior switches in order to overcome an obstacle.

in Figure 10 by showing a bi-directional edge between nodes 4 and 5. Eventually, the

robot managed to get sensor information showing that a GoToGoal behavior should

be executed.

With each experiment in this environment, the MDL graph is created due to the

changes in the robot’s behavior state. At each behavior state change, we are able

to see the change on the dashboard and monitor the addition of new nodes in the

MDL graph, corresponding to the behavior events. Follow up experiments in this

same environment use the previously generated MDL graphs for planning. If the

robot is not close enough to any distinctive place, it starts a new graph from its

starting position, possibly connecting to the current graph if its navigation through

the environment leads to a previous distinctive node.
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5. Conclusion. In this paper, we combine the capabilities of the robot, as de-

fined by a collection of control laws, with geometric information of the environment

in which the robot is deployed. The way these seemingly disparate entities are com-

bined is in a topological map, where the nodes correspond to distinctive places found

in the environment, i.e. to geometric objects. At the same time, edges between nodes

correspond to control laws that take the robot between adjacent nodes. The result is

thus a sparse representation of the environment that encodes how the robot should

move around in the environment, in contrast to purely geometric descriptions of the

environment, which are decoupled from the actual capabilities of the robot.

We moreover present an automatic way of obtaining the topological maps from

example runs, when the robot is executing a given, hybrid control program. Ex-

perimental results in unstructured, outdoor environments testify to the viability of

the proposed approach, and some future directions involving how to plan over the

resulting graphs are outlined.
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