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MULTIPERSPECTIVE MODELING AND RENDERING USING

GENERAL LINEAR CAMERAS

JINGYI YU∗, YUANYUAN DING∗, AND LEONARD MCMILLAN†

Abstract. We present a General Linear Camera (GLC) model that unifies many previous

camera models into a single representation. The GLC model is capable of describing all perspective

(pinhole), orthographic, and many multiperspective (including pushbroom and two-slit) cameras, as

well as epipolar plane images. It also includes three new and previously unexplored multiperspective

linear cameras. The GLC model is both general and linear in the sense that, given any vector space

where rays are represented as points, it describes all 2D affine subspaces (planes) that can be formed

by affine combinations of 3 rays. The incident radiance seen along the rays found on subregions of

these 2D linear subspaces are a precise definition of a projected image of a 3D scene. We model the

GLC imaging process in terms of two separate stages: the mapping of 3D geometry to rays and the

sampling of these rays over an image plane. We derive a closed-form solution to projecting 3D points

in a scene to rays in a GLC and a notion of GLC collineation analogous to pinhole cameras. Finally,

we develop a GLC ray-tracer for the direct rendering of GLC images. The GLC ray-tracer is able to

create a broad class of multiperspective effects and it provides flexible collineation controls to reduce

multiperspective distortions.

1. Introduction. Camera models are fundamental to the fields of computer vi-

sion and photogrammetry. The classic pinhole and orthographic camera models have

long served as the workhorse of 3D imaging applications. However, recent develop-

ments have suggested alternative multiperspective camera models [6, 23] that provide

alternate and potentially advantageous imaging systems for understanding the struc-

ture of observed scenes. Images captured by these cameras can effectively depict,

within a single context, details of a scene that are simultaneously inaccessible from a

single view, yet easily interpretable by a viewer. Researchers have further shown that

these multiperspective cameras are amenable to stereo analysis and interpretation

[16, 13, 23].

In contrast to pinhole and orthographic cameras, which can be completely char-

acterized using a simple linear model (the classic 3 by 4 matrix [7]), multiperspective

cameras models are defined less precisely. In practice, multiperspective cameras mod-

els are often described by constructions. By this we mean that a system or process

is described for generating each specific class. While such physical models are useful

for both acquisition and imparting intuition, they are not particularly amenable to

analysis.
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Fig. 1. General Linear Camera Models. (a) In a pinhole camera, all rays pass through

a single point. (b) In an orthographic camera, all rays are parallel. (c) In a pushbroom, all

rays lie on a set of parallel planes and pass through a line. (d) In a cross slit camera, all rays

pass through two non-coplanar lines. (e) In a pencil camera, all coplanar rays originate from

a point on a line and lie on a specific plane through the line. (f) In a twisted orthographic

camera, all rays lie on parallel twisted planes and no rays intersect. (g) In an bilinear camera,

no two rays are coplanar and no two rays intersect. (h) In an EPI camera, all rays lie on a

2D plane.

In this paper, we present a General Linear Camera (GLC) model that unifies

many previous camera models into a single representation. The GLC model is capa-

ble of describing all perspective (pinhole), orthographic, and many multiperspective

(including pushbroom and two-slit) cameras, as well as epipolar plane images. The

GLC model is both general and linear in the sense that, given any vector space where

rays are represented as points, it describes all 2D linear subspaces (planes) formed by

the affine combination of 3 rays. The incident radiance seen along the rays of these

2D affine subspaces are a precise definition of a projected image of a 3D scene.

We model the GLC imaging process in terms of two separate stages: the mapping

of 3D geometry to rays and the sampling of those rays over an image plane. We

derive a closed-form solution to projecting 3D points in a scene to rays in a GLC and

a notion of GLC collineation analogous to pinhole cameras to allow flexible sampling

of the captured rays over an image plane. Finally, we develop a GLC ray-tracer for

the direct rendering of GLC images. The GLC ray-tracer is able to create a broad

class of multiperspective effects and it provides flexible collineation controls to reduce

multiperspective distortions.

2. Previous Work. The most common linear camera model is the classic 3 x

4 pinhole camera matrix [7], which combines six extrinsic and five intrinsic camera

parameters into single operator that maps homogenous 3D points to a 2D image

plane. These mappings are unique down to a scale factor, and the same infrastructure
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Fig. 2. General Linear Camera Model. a) A GLC is characterized by three rays originated

from the image plane. b) It collects all possible affine combination of three rays.

can also be used to describe orthographic cameras. Recently, several researchers

have proposed alternative camera representations known as multiperspective cameras

which capture rays from different points in space. These multiperspective cameras

include pushbroom cameras [6], which collect rays along parallel planes from points

swept along a linear trajectory (Fig.1(c)), and cross-slit cameras [12], which collect all

rays passing through two lines (Fig.1(d)). Zomet et al [23] did an extensive analysis

and modelling of two slit(XSlit) multiperspective cameras. However, they discuss

the relationship of these cameras to pinhole cameras only for the purpose of image

construction, whereas we provide a unifying model.

Multiperspective camera models have also been explored in the field of computer

graphics. Examples include multiple-center-of-projection images [14], manifold mo-

saics [13], and multiperspective panoramas [21, 1, 15]. Most multiperspective images

are generated by stitching together parts of pinhole images [21, 14], or slicing through

image sequences [13, 23]. Multiperspective rendering techniques are frequently em-

ployed by artists to depict more than can be seen from any specific point. Classic

examples include the visual paradoxes of Escher, and the Cubism of Picasso and

Braque. Multiperspective images have also been used as backdrops in cel animation

to effectively depict camera motion in a single panorama [21].

Seitz [16] has analyzed the space of multiperspective cameras to determine those

with a consistent epipolar geometry. Their work suggests that some multiperspective

images can be used to analyze three-dimensional structure, just as pinhole cameras are

commonly used. We focus our attention on a specific class of linear multiperspective

cameras, most of which can be used to synthesize stereo or near stereo pairs [3].

Our analysis is closely related to the work of Gu et al [5], which explored the

linear structures of 3D rays under a particular 4D mapping known as a two-plane
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parametrization. This model is commonly used for light field rendering. Their primary

focus was on the duality of points and planes under this mapping. They deduced that

XSlits are another planar structure within this space, but they do not characterize all

of the possible planar structures, nor discuss their analogous camera models.

We focus on identifying all possible 2D subspaces of rays and their corresponding

camera models. In particular, we show in Section 3 that, besides cross-slit, pushb-

room, and pinhole cameras, there exist several important but unexplored subsets of

multiperspective cameras that also correspond to 2D linear subspaces of rays. We

show these cameras can be uniquely characterized using a set of ray characteristic

equations. Furthermore, [5] only cares about the set of rays lie on a 2D subspace

while our work also studies the projection and sampling of these rays on the image

plane.

3. General Linear Camera Model. The General Linear Camera (GLC) is de-

fined by three rays that originate from three points p1(u1, v1), p2(u2, v2) and p3(u3, v3)

on an image plane Πimage, as is shown in Fig.2. A GLC collects radiance measure-

ments along all possible “affine combinations” of these three rays. In order to define

this affine combination of rays, we assume a specific ray parametrization.

W.o.l.g, we define Πimage to lie on z = 0 plane and its origin to coincide with

the origin of the coordinate system. From now on, we call Πimage as Πuv. In order

to parameterize rays, we place a second plane Πst at z = 1. All rays not parallel

to Πst, Πuv will intersect the two planes at (s, t, 1) and (u, v, 0) respectively. That

gives a 4D parametrization of each ray in form (s, t, u, v). This parametrization for

rays, called the two-plane parametrization (2PP), is widely used by the computer

graphics community for representing light fields and lumigraphs [9, 4]. Under this

parametrization, an affine combination of three rays ri(si, ti, ui, vi), i = 1, 2, 3, is

defined as:

(1) r = α · (s1, t1, u1, v1) + β · (s2, t2, u2, v2) + (1 − α − β) · (s3, t3, u3, v3)

The choice of Πst at z = 1, is, of course, arbitrary. One can choose any plane

parallel to Πuv to derive an equivalent parametrization. Moreover, these alternate

parameterizations will preserve affine combinations of three rays.

Lemma 1. The affine combinations of any three rays under two different 2PP

parameterizations that differ by choice of Πst (i.e., (s, t, u, v) and (s′, t′, u, v) ) are the

same.

Proof. Suppose Πs′t′ is at some arbitrary depth z0, z0 6= 0. Consider the trans-

formation of a ray between the default parametrization (z0 = 1) and this new one.

If r(s, t, u, v) and r(s′, t′, u, v) represent the same ray r in 3D, then r(s, t, u, v) must
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pass through (s′, t′, z0), and there must exist some λ such that

λ · (s, t, 1) + (1 − λ) · (u, v, 0) = (s′, t′, z0)

Solving for λ, we have

(2) s′ = s · z0 + u · (1 − z0), t′ = t · z0 + v · (1 − z0)

Since this transformation is linear, and affine combinations are preserved under linear

transformation, the affine combinations of rays under our default two-plane parametri-

zation (z0 = 1) will be consistent for parameterizations over alternative parallel planes.

Moreover, the affine weights for a particular choice of parallel Πst are general.

3.1. Linearity. We call the GLC model “linear” because it defines all 2-dimen-

sional affine subspaces in the 4-dimensional “ray space” imposed by a two-plane

parametrization. Moreover, these 2D affine subspaces of rays can be considered as

images. We refer to the three rays used in a particular GLC as the GLC’s generator

rays. Equivalently, a GLC can be described by the coordinates of two triangles with

corresponding vertices, one located on Πst, and the second on Πuv. Unless otherwise

specified, we will assume the three generator rays (in their 4D parametrization) are

linearly independent. This affine combination of generator rays also preserves linear-

ity, while other parameterizations, such as the 6D Plücker coordinates [19], do not

[5].

Lemma 2. If three rays are parallel to a plane Π in 3D, then all affine combina-

tions of them are parallel to Π as well.

Lemma 3. If three rays intersect a line l parallel to the image plane, all affine

combinations of them will intersect l as well.

Proof. By lemma 1, we can reparameterize three rays by placing Πst so that it

contains l resulting in the same set of affine combinations of the three rays. Because

the st plane intersections of the three rays will lie on l, all affine combinations of three

rays will have their st coordinates on l, i.e., they will all pass through l. The same

argument can be applied to all rays which pass through a given point.

3.2. Equivalence of Classic Camera Models. Traditional camera models

have equivalent GLC representations.

Pinhole camera: By definition, all rays of a pinhole camera pass through a single

point, C in 3D space (the center of projection). Any three linearly independent rays

from C will the intersect Πuv and Πst planes to form two triangles. These triangles will

be similar and have parallel corresponding edges, as shown in Fig.1(a). Furthermore,

any other ray, r, through C will intersect Πuv and Πst planes at points ṗuv, and q̇st.

These points will have the same affine coordinates relative to the triangle vertices on

their corresponding planes, and r has the same affine coordinates as these two points.
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Orthographic camera: By definition, all rays on an orthographic camera have

the same direction. Any three linearly independent rays from an orthographic camera

intersect parallel planes at the vertices of congruent triangles with parallel correspond-

ing edges, as shown in Fig.1(b). Rays connecting the same affine combination of these

triangle vertices, have the same direction as the 3 generator rays, and will, therefore,

originate from the same orthographic camera.

Pushbroom camera: A pushbroom camera sweeps parallel planes along a line

l collecting those rays that pass through l. We refer to this family of parallel planes

as Π∗. We choose Πuv parallel to l but not containing l, and select a non-degenerate

set of generator rays (they intersect Πuv in a triangle). By Lemma 2 and 3, all affine

combinations of the three rays must all lie on Π∗ parallel planes and must also pass

through l and, hence, must belong to the pushbroom camera. In the other direction,

for any point ṗ on Πuv, there exist one ray that passes through ṗ, intersects l and is

parallel to Π∗. Since ṗ must be some affine combination of the three vertexes of the

uv triangle, r must lie on the corresponding GLC. Furthermore, because all rays of

the pushbroom camera will intersect Πuv, the GLC must generate equivalent rays.

XSlit camera: By definition, an XSlit camera collects all rays that pass through

two non-coplanar lines. We choose Πuv to be parallel to both lines but to not contain

either of them. One can then pick a non-degenerate set of generator rays and find

their corresponding triangles on Πst and Πuv. By Lemma 3, all affine combinations

of these three rays must pass through both lines and hence must belong to the XSlit

camera. In the other direction, authors of XSlit [12, 23] have shown that each point

ṗ on the image plane Πuv, maps to a unique ray r in an XSlit camera. Since ṗ must

be some affine combination of the three vertexes of the uv triangle, r must belong to

the GLC. The GLC hence must generate equivalent rays as the XSlit camera.

Epipolar Plane Image: EPI [2] cameras collect all rays that lie on a plane in

3D space. We therefore can pick any three linearly independent rays on the plane

as generator rays. Affine combinations of these rays generate all possible rays on the

plane,so long as they are linearly independent. Therefore a GLC can also represent

Epipolar Plane Images.

3.3. GLCs under Relative Two-Plane-Parametrization. GLCs are defined

as the affine subspaces of three generator rays that are parameterized by their intersec-

tions with two parallel planes at [s, t, 1] and [u, v, 0]. The two-plane-parametrization

of the ray can be viewed as a two-endpoint-parametrization of a line. Alternatively,

each ray can be parameterized with a oritin and a direction. If we choose the origin

as [u, v, 0] and the direction as [σ, τ, 1] = [s, t, 1] − [u, v, 0], we have a point-direction-

parametrization of ray as [σ, τ, u, v]. Since [σ, τ, 1] can also be viewed as the relative

coordinate of [s, t, 1] with respect to [u, v, 0], we refer to this parametrization as the
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relative-two-plane-parametrization (R2PP).

Notice, the transformation from 2PP to R2PP is linear, and more precisely a

shearing transformation. Thus, affine subspaces are preserved under R2PP, and we

can reparameterize a GLC by representing the rays under R2PP as:

(3) GLC = α · [σ1, τ1, u1, v1] + β · [σ2, τ2, u2, v2] + (1 − α − β) · [σ3, τ3, u3, v3]

For the remaining of this paper, we will to [σ, τ, u, v] to parameterize rays and to

represent the GLCs.

3.4. Canonical GLC Representations. A GLC defined under Equation (3)

(or (1)) takes 12 variables. However, this GLC representation is not unique since one

can pick a different set of three rays to define the same GLC. To enforce uniqueness,

we can choose three generator rays in a specific form as [σ1, τ1, 0, 0], [σ2, τ2, 1, 0], and

[σ3, τ3, 0, 1], i.e., the three rays originate from [0, 0, 0], [1, 0, 0], and [0, 1, 0] from the

default image (uv) plane. We call this representation the canonical GLC. Except

for those GLCs that have a slit lie on the uv plane, all other GLCs can be uniquely

represented using this 6-parameter canonical representation.

Since the uv plane corresponds to the default image plane, using the canonical

GLC representation is similar to specifying the texture coordinate of a triangle, where

the texture coordinate here represents the direction [σ, τ ] of the ray. We will use the

canonical representation of the GLC to study the GLC projection model in Section

6.

4. Characteristic Equation of GLC. We have shown that the GLC model

can describe classical all pinhole, orthographic, pushbroom, and cross-slit cameras,

as well as the EPIs. In this section we develop a criterion to classify a GLC. One

discriminating characteristic of affine ray combinations is whether or not all rays pass

through a line in 3D space. This characteristic is fundamental to the definition of

many multi-perspective cameras. We will use this criteria to define the characteristic

equation of general linear cameras.

Recall that any 2D affine subspace in 4D can be defined as affine combinations of

three points. Thus, GLC models can be associated with all possible planes in the 4D

since GLCs are specified as affine combinations of three rays, whose duals in 4D are

the three points.

Lemma 4. Given a non-EPI, non-pinhole GLC, if all camera rays pass through

some line l, not at infinity, in 3D space, then l must be parallel to Πuv.

Proof. We demonstrate the contrapositive. If l is not parallel to Πuv, and all rays

on a GLC pass through l, then we show the GLC must be either an EPI or a pinhole

camera.
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Assume the three rays pass through at least two distinct points on l, otherwise,

they will be on a pinhole camera, by Lemma 3. If l is not parallel, then it must

intersect Πst, Πuv at some point (s0, t0, 1) and (u0, v0, 0). Gu et al [5] has shown all

rays passing through l must satisfy the following bilinear constraints

(4) (u − u0)(t − t0) − (v − v0)(s − s0) = 0

We show that the only GLCs that satisfy this constraint are EPIs or pinholes.

All 2D affine subspaces in (s, t, u, v) can be written as the intersection of two

linear constraints Ai · s + Bi · t + Ci · u + Di · v + Ei = 0, i = 1, 2. In general we can

solve these two equations for two variables, for instance, we can solve for u-v as

(5) u = A′
1 · s + B′

1 · t + E′
1 , v = A′

2 · s + B′
2 · t + E′

2

Substituting u and v into the bilinear constraint (4), we have

(6) (A′
1 · s + B′

1 · t + E′
1 − u0)(t − t0) = (A′

2 · s + B′
2 · t + E′

2 − v0)(s − s0)

This equation can only be satisfied for all s and t if A′
1 = B′

2 and B′
1 = A′

2 = 0,

therefore, equation (5) can be rewritten as u = A′ · s + E′
1 and v = A′ · t + E′

2. Gu et

al [5] have shown all rays in this form must pass through a 3D point P (P cannot be

at infinity, otherwise all rays have uniform directions and cannot all pass through any

line l, not at infinity). Therefore all rays must lie on a 3D plane that passes through

l and finite P . The only GLC camera in which all rays lie on a 3D plane is an EPI.

If the two linear constraints are singular in u and v, we can solve for s-t, and similar

results hold.

If the two linear constraints cannot be solved for u-v or s-t but can be solved for

u-s or v-t, then a similar analysis results in equations of two parallel lines, one on Πst,

the other on Πuv. The set of rays through two parallel lines must lie on an EPI.

Lemma 3 and 4 imply that given a GLC, we need only consider if the three

generator rays pass through some line parallel to Πst. We use this relationship to

define the characteristic equation of a GLC.

Recall the three generator rays in a GLC intersect some plane Πz=λ parallel to

Πuv at

Ti = (ui, vi, 0) + λ · (σ, τ, 1) i = 1, 2, 3

By Lemma 3, all rays on the GLC pass through some line l on Πz=λ if the three

generator rays intersect l. Therefore, we only need to test if there exist any λ so that

the three intersection points T1, T2, and T3 lie on a line. A necessary and sufficient

condition for 3 points on a constant z -plane to be co-linear is that they have form
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area on that plane. This area is computed as follows:

(7)
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We call Equation (8) the characteristic equation of a GLC. Since the characteristic

equation can be calculated from any three rays, one can also evaluate the characteristic

equation for EPI and pinhole cameras. The number of solutions of the characteristic

equation implies the number of lines that all rays on a GLC pass through. Since it is

quadratic, it may have 0, 1, 2 or infinite solutions. The number of solutions depends

on the denominator A and the quadratic discriminant ∆ = B2 − 4AC.

4.1. Characterizing Classic Camera Models. We start with showing how

to identify standard camera models using the characteristic equation of a GLC.

Lemma 5. Given a GLC, three generator rays, and its characteristic equation

A · λ2 + B · λ + C = 0, then all rays are parallel to some plane if and only if A = 0.

Proof. Notice in the matrix used to calculate A, row i is the direction ~di of ray

ri. Therefore A can be rewritten as A = (~d1 × ~d2) · ~d3. Hence A = 0 if and only if ~d1,

~d2 and ~d3 are parallel to some 3D plane. And by Lemma 2, all affine combinations of

these rays must also be parallel to that plane if A = 0.

4.2. A = 0 case. When A = 0, the characteristic equation degenerates to a

linear equation, which can have 1, 0, or an infinite number of solutions. By Lemma

5, all rays are parallel to some plane. Only three standard camera models satisfy this

condition: pushbroom, orthographic, and EPI.

All rays of a pushbroom lie on parallel planes and pass through one line, as is

shown in Fig.1(c). A GLC is a pushbroom camera if and only if A = 0 and the

characteristic equation has 1 solution.

All rays of an orthographic camera have the same direction and do not all simul-

taneously pass through any line l. Hence its characteristic equation has no solution.

The zero solution criteria alone, however, is insufficient to determine if a GLC is ortho-

graphic. We show in the following section that one can twist an orthographic camera
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into bilinear sheets by rotating rays on parallel planes, as is shown in Fig.1(f), and

still maintain that all rays do not pass through a common line. In Section 3, we have

shown that corresponding edges of the two congruent triangles of an orthographic

GLC must be parallel. This parallelism is captured by the following expression:

(σi − σj)

(τi − τj)
=

(ui − uj)

(vi − vj)
i, j = 1, 2, 3 and i 6= j(9)

We call this condition the edge-parallel condition. It is easy to verify that a GLC is

orthographic if and only if A = 0, its characteristic equation has no solution, and it

satisfies the edge-parallel condition.

Rays of an EPI camera all lie on a plane and pass through an infinite number of

lines on the plane. In order for a characteristic equation to have infinite number of

solutions when A = 0, we must also have B = 0 and C = 0. This is not surprising,

because the intersection of the epipolar plane with Πst and Πuv must be two parallel

lines and it is easy to verify A = 0, B = 0 and C = 0 if and only if the corresponding

GLC is an EPI.

4.3. A 6= 0 case. When A 6= 0, the characteristic equation becomes quadratic

and can have 0, 1, or 2 solutions, which depends on the characteristic equation’s

discriminant ∆. We show how to identify the remaining two classical cameras, pinhole

and XSlit cameras in term of A and ∆.

All rays in a pinhole camera pass through the center of projection (COP). There-

fore, any three rays from a pinhole camera, if linearly independent, cannot all be

parallel to any plane, and by Lemma 4, A 6= 0. Notice that the roots of the char-

acteristic equation correspond to the depth of the line that all rays pass through,

hence the characteristic equation of a pinhole camera can only have one solution that

corresponds to the depth of the COP, even though there exists an infinite number

of lines passing through the COP. Therefore, the characteristic equation of a pinhole

camera must satisfy A 6= 0 and ∆ = 0. However, this condition alone is insufficient to

determine if a GLC is pinhole. In the following section, we show that there exists a

camera where all rays lie on pencil of planes sharing a line, as shown in Fig.1(e), which

also satisfies these conditions. One can, however, reuse the edge-parallel condition to

verify if a GLC is pinhole. Thus a GLC is pinhole, if and only if A 6= 0, has one

solution, and it satisfies edge-parallel condition.

Rays of an XSlit camera pass through two slits and, therefore, the characteristic

equation of a GLC must have at least two distinct solutions. Furthermore, Pajdla

[12] has shown all rays of an XSlit camera cannot pass through lines other than its

two slits, therefore, the characteristic equation of an XSlit camera has exactly two

distinct solutions. Thus, a GLC is an XSlit if and only if A 6= 0 and ∆ > 0.
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Fig. 3. Bilinear Surfaces. (a) r3 is parallel to S; (b) r3 is parallel to S, but still intersects S;

(c) r3 is not parallel to S, and does not intersect S either.

5. Characterizing New Camera Models. The characteristic equation also

suggests three new multiperspective camera types that have not been previously dis-

cussed. They include 1)twisted orthographic: A = 0, the equation has no solution,

and all rays do not have uniform direction; 2)pencil camera: A 6= 0 and the equation

has one root, but all rays do not pass through a 3D point; 3)bilinear camera: A 6= 0

and the characteristic equation has no solution. In this section, we give a geometric

interpretation of these three new camera models.

5.1. Ray Geometry. Before describing these camera models, however, we will

first discuss a helpful interpretation of the spatial relationships between the three

generator rays. An affine combination of two 4D points defines a 1-dimensional affine

subspace. Under 2PP, a 1-D affine subspaces corresponds to a bilinear surface S in 3D

that contains the two rays associated with each 4D point. If these two rays intersect

or have the same direction in 3D space, S degenerates to a plane. Next, we consider

the relationship between ray r3 and S. We define r3 to be parallel to S if and only

if r3 has the same direction as some ray r ∈ S. This definition of parallelism is quite

different from conventional definitions. In particular, if r3 is parallel to S, r3 can still

intersect S. And if r3 is not parallel to S, r3 still might not intersect S, Fig.3(b) and

(c) show examples of each case.

This definition of parallelism, however, is closely related to A in the characteristic

equation. If r3 is parallel to S, by definition, the direction of r3 must be some linear

combination of the directions of r1 and r2, and, therefore, A = 0 by Lemma 5. A = 0,

however, is not sufficient to guarantee r3 is parallel to S. For instance, one can pick

two rays with uniform directions so that A = 0, yet still have the freedom to pick a

third so that it is not parallel to the plane, as is shown in Fig.3(c).

The number of solutions to the characteristic equation is also closely related to

the number of intersections of r3 with S. If r3 intersects the bilinear surface S(r1, r2)

at P , then there exists a line l, where P ∈ l, that all rays pass through. This is
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Fig. 4. Comparison between synthetic GLC images. From left to right, top row: a pinhole, an

orthographic and an EPI; middle row: a pushbroom, a pencil and an twisted orthographic; bottom

row: a bilinear and an cross-slit.

because one can place a constant-z plane that passes through P and intersects r1 and

r2 at Q and R. It is easy to verify that P , Q and R lie on a line and, therefore, all rays

must pass through line PQR. Hence r3 intersecting S(r1, r2) is a sufficient condition

to ensure that all rays pass through some line. It further implies if the characteristic

equation of a GLC has no solution, no two rays in the camera intersect. GLCs whose

characteristic equation has no solution are examples of the oblique camera from [11].

5.2. New Multiperspective Cameras. Our GLC model and its characteristic

equation suggests 3 new camera types that have not been previously described.

Twisted Orthographic Camera: The characteristic equation of the twisted

orthographic camera satisfies A = 0, has no solution, and its generators do not satisfy

the edge-parallel condition. If r1, r2 and r3 are linearly independent, no solution

implies r3 will not intersect the bilinear surface S. In fact, no two rays intersect in

3D space. In addition, A = 0 also implies that all rays are parallel to some plane Π

in 3D space, therefore the rays on each of these parallel planes must have uniform

directions as is shown in Fig.1(f). Therefore, twisted orthographic camera can be

viewed as twisting parallel planes of rays in an orthographic camera along common

bilinear sheets.
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Table 1

Characterize General Linear Cameras by Characteristic Equation

Characteristic Equation 2 Solution 1 Solution 0 Solution Inf. Solution

A 6= 0 XSlit Pencil/Pinhole† Bilinear Ø

A = 0 Ø Pushbroom Twisted/Ortho.† EPI

†: A GLC satisfying edge-parallel condition is pinhole(A 6= 0) or orthographic (A = 0).

Pencil Camera: The characteristic equation of a pencil camera satisfies A 6= 0,

has one solution and the generators do not satisfy the edge-parallel condition. In

Fig.1(e), we illustrate a sample pencil camera: rays lie on a pencil of planes that

share line l. In a pushbroom camera, all rays also pass through a single line. However,

pushbroom cameras collect rays along planes transverse to l whereas the planes of a

pencil camera contains l (i.e., lie in the pencil of planes through l), as is shown in

Fig.1(c) and 1(e).

Bilinear Camera: By definition, the characteristic equation of a bilinear camera

satisfies A 6= 0 and the equation has no solution (∆ < 0). Therefore, similar to twisted

orthographic cameras, no two rays intersect in 3D in a bilinear camera. In addition,

since A 6= 0, no two rays are parallel either. Therefore, any two rays in a bilinear

camera form a non-degenerate bilinear surface, as is shown in Fig.3(a). The complete

classification of cameras is listed in Table 1.

In Fig.4, we show the GLC images that are rendered using our GLC Ray Tracer

(Section 7.2). Different types of GLCs exhibit unique multiperspective distortions as

shown in the curved isolines on the objects. We analyze the cause of these distortions

in the next Section.

6. GLC Projection and Collineation. Next, we study the GLC imaging pro-

cess. We first consider projecting a 3D point onto a GLC. To simplify the analysis,

we use the canonical GLC representations with the three generator rays [σ1, τ1, 0, 0],

[σ2, τ2, 1, 0], and [σ3, τ3, 0, 1]. This setup describe almost all GLCs (except for a sub-

space of GLCs whose slits lie on the uv plane). Every ray r in the GLC can be written

as the following affine combination:

(10) r[σ, τ, u, v] = (1 − α − β) · [σ1, τ1, 0, 0] + α · [σ2, τ2, 1, 0] + β · [σ3, τ3, 0, 1]

where σi, τi, i = 1, 2, 3 are constant for a given GLC. It is easy to see that α = u

and β = v under this simplification. It is also worth noting that Equation (10) is also

equivalent to the following two linear constraints:

σ = (1 − u − v)σ1 + uσ2 + vσ3

τ = (1 − u − v)τ1 + uτ2 + vτ3(11)
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r1(σ1, τ1, u1, v1)

r2(σ2, τ2, u2, v2)

r3(σ3, τ3, u3, v3)

r = (1-α−β)r1+αr2 + βr3

r1(σ1, τ1, u1, v1)

r2(σ2, τ2, u2, v2)

r3(σ3, τ3, u3, v3)

P = (1-α−β)T1+αT2 + βT3

(a) (b)

Fig. 5. (a) Projecting a point P to a ray in the GLC. (b) The projection of P can be

computed using the same affine coordinate on the sweeping plane Πz.

The GLC ray that passes through a 3D point Ṗ (x, y, z) satisfies the following

linear constraints [5]:

u + z · σ = x

v + z · τ = y(12)

The ray passing through P is, thus, the solution of the four equations in (11) and (12)

and can be computed as:

u = −
(z2(σ1τ3 − σ3τ1) − z(σ1(y − 1) − σ3y − x(τ1 − τ3)) − x)

Az2 + Bz + C

v =
(z2(σ1τ2 − σ2τ1) − z(σ1y − σ2y + τ1(1 − x) + τ2x) + y)

Az2 + Bz + C
(13)

where Az2 + Bz + C = 0 corresponds to the characteristic of the GLC. We call

Equation (13) the GLC Projection Equation.

6.1. Plane Sweeping. The GLC Projection Equation (13) also has an intuitive

geometric interpretation. Consider a plane Πz parallel to the uv plane and passing

through Ṗ . The three generators will intersect Πz at Ṫ1, Ṫ2, Ṫ3, where

Ṫ1 = (0, 0, 0) + z · (σ1, τ1, 1) = (σ1z, τ1z, z)(14)

Ṫ2 = (1, 0, 0) + z · (σ2, τ2, 1) = (σ2z + 1, τ2z, z)

Ṫ3 = (0, 1, 0) + z · (σ3, τ3, 1) = (σ3z, τ3z + 1, z)

The affine combination [α, β] of the three generator rays that passes through P ,

is:

(15) Ṗ = (1 − α − β) · Ṫ1 + α · Ṫ2 + β · Ṫ3

[α, β] can be computed using the ratio of the signed areas formed by triangle

∆Ṫ1Ṗ Ṫ3, ∆Ṫ1Ṫ2Ṗ over ∆Ṫ1Ṫ2Ṫ3, as is shown in Fig.5. Notice the area formed by
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∆Ṫ1Ṫ2Ṫ3 corresponds to the characteristic equation of the GLC. Thus, the affine

coefficients (α, β) can be computed as:

u = α =
∆Ṫ1Ṗ Ṫ3

∆Ṫ1Ṫ2Ṫ3

=

∣

∣

∣

∣

∣

∣

∣

∣

zσ1 zτ1 1

x y 1

zσ3 1 + zτ3 1

∣

∣

∣

∣

∣

∣

∣

∣

Az2 + Bz + C

v = β =
∆Ṫ1Ṫ2Ṗ

∆Ṫ1Ṫ2Ṫ3

=

∣

∣

∣

∣

∣

∣

∣

∣

zσ1 zτ1 1

1 + zσ2 zτ2 1

x y 1

∣

∣

∣

∣

∣

∣

∣

∣

Az2 + Bz + C
(16)

Equation (16) and Fig.5(b) give a geometric interpretation to the GLC Projection

Equation.

6.2. Singularities. Notice Equation (16) may lead to no solution or multiple

solutions when the denominator Az2 + Bz + C = 0 (i.e., the characteristic equation

is zero). This happens when P lies at the depth of a slit. Thus, using Table 1, we can

conclude that these singularities can only happen in cross-slits, pushbroom, pencil,

and pinhole cameras.

When the points lie precisely on the slits, duplicated images will occur, because

multiple GLC rays will pass through these points. The ray passing through the point

is determined by the solution to a 4x4 system of equations given in (11) and (12).

When the point lies on the slit, the determinant of this matrix is zero, and, therefore,

the four equations become linearly dependent. For pinhole cameras, when the point

coincides with the center of projection, the 4 linear equations will degenerate to 2

linear equations as (12) and the projection of the point will cover the whole image. For

pushbroom, cross-slits, and pencils, the 4 linear constraints will degenerate to three

independent equations, and the projection of each point on the singularity covers a

1D subspace of rays, or in its image it will project to as a line. A similar case happens

with EPI cameras.

Furthermore, not all 3D points project onto a given GLC. There are two possible

un-projectable situations: 1) there is no ray in the camera that can pass through

the point, or 2) the ray that passes through the point is parallel to 2PP, and hence

cannot be represented. Points that cannot be projected can only happen when the

denominator of equation (16) is zero and the numerator is non-zero. For cross-slit

cameras, these points lie on the two planes Πz=z1
and Πz=z2

that contain the slits

but do not lie on these slits. This is representative of the first case. For pencil and

pushbroom cameras, these singularity points lie on plane Πz=z1
that contains the slit

but do not lie on the slit, and it follows the second case. Pinhole cameras are a special
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case of pencil cameras. In theory, it can image all points in 3D space. However, for

points that lie on the plane parallel to the parametrization plane and passing through

the COP, the corresponding rays are parallel to 2PP and hence cannot be imaged by

a pinhole GLC.

6.3. Projections of Lines. Now we consider the projections of lines onto vari-

ous GLCs. If l is parallel to the uv plane, we can parameterize l as a point [x0, y0, z0]

on the line and the direction [dx, dy, 0] of the line. All rays passing through l satisfy

(17) [u, v, 0] + λ1[σ, τ, 1] = [x0, y0, z0] + λ2[d
x, dy, 0]

It has been shown in [5] that equation (17) is equivalent to the linear constraint

(18) (u + z0σ − x0)d
y − (v + z0τ − y0)d

x = 0

The GLC rays passing through l is the intersection of three linear constraints: equation

(11) and (18). Thus, the rays collected by any GLC passing through l are, in general,

a 1D linear manifold. If we assume the uv plane is the default image plane, then (u, v)

gives the pixel coordinates of the projection. This implies that the image of a line l

parallel to the uv plane also a line.

If l is not parallel to the uv plane, then l will intersect uv plane at (u0, v0, 0) and

has direction (σ0, τ0, 1). All rays passing through l in this case satisfy the bilinear

constraint [5]:

(19) (u − u0)(τ − τ0) − (v − v0)(σ − σ0) = 0

The projection of l hence can be computed using equation (11) and equation (19) as

follows:

(u − u0)((1 − u − v)τ1 + uτ2 + vτ3 − τ0)

−(v − v0)((1 − u − v)σ1 + uσ2 + vσ3 − σ0) = 0(20)

which corresponds to a 1D quadratic manifold of rays. Similarly, if we take the uv

plane as the image plane, the image of l is a quadratic curve on the image plane as

shown in Fig.4.

6.4. Projections of Points at Infinity. We can use the the properties of GLC

line projection to determine the GLC projections of points lying in the plane at

infinity. An infinite point can be written as:

(21) P (x, y, z) = (u0, v0, 0) + z(σ0, τ0, 1), z → ∞

Substituting P in Equation (16), it is easy to see that the numerator and the de-

nominator of u and v are both quadratic in z. However either or both terms may

degenerate to linear or constant.
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For pinhole, pencil, bilinear, and cross-slits, the first GLC characteristic equation

(the denominator in the projection equation) is always general quadratic in z, as is

shown in Table 1. And since the numerator is at most a quadratic in z, when z → ∞,

both u and v will have finite values, i.e., points infinitely far away from the image

plane all have a projection in the camera.

Substituting [x, y, z] in the GLC Projection Equation (13), we get

u =
Auz2 + Buz + Cu

z2(s1(t2 − t3) + s2(t3 − t1) + s3(t1 − t2)) − z(s1 − s2 + t1 − t3) + 1

v =
Avz

2 + Bvz + Cv

z2(s1(t2 − t3) + s2(t3 − t1) + s3(t1 − t2)) − z(s1 − s2 + t1 − t3) + 1
(22)

where

Au =

∣

∣

∣

∣

∣

∣

∣

∣

σ1 τ1 1

σ0 τ0 1

σ3 τ3 1

∣

∣

∣

∣

∣

∣

∣

∣

, Av =

∣

∣

∣

∣

∣

∣

∣

∣

σ1 τ1 1

σ2 τ2 1

σ0 τ0 1

∣

∣

∣

∣

∣

∣

∣

∣

Thus, the coefficients of z2 in both the numerator and denominator of the projection

equation are functions of σ0, τ0, and the intrinsic parameters of the GLC, not u0

or v0. This implies the final projection is only dependent on the direction of the

infinite points. In the pinhole case, these points correspond to the vanishing points

associated with directions and such vanishing points also exist for all pencil, bilinear,

and cross-slits cameras.

For pushbroom cameras, the directions of three generator rays are parallel to some

plane Πpushbroom and its characteristic equation is linear in z. The denominator in

the Projection Equation (13) is, thus, a linear function in z. However, the numerator

can be quadratic in z as shown in equation (22). Therefore, only when

(23) Au =

∣

∣

∣

∣

∣

∣

∣

∣

σ1 τ1 1

σ0 τ0 1

σ3 τ3 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0, Av =

∣

∣

∣

∣

∣

∣

∣

∣

σ1 τ1 1

σ2 τ2 1

σ0 τ0 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0

can the point be projected into the camera. However, since the three generator rays

are parallel to some plane, we must also have

(24)

∣

∣

∣

∣

∣

∣

∣

∣

σ1 τ1 1

σ2 τ2 1

σ3 τ3 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0

From equation (23) and (24), [σ0, τ0, 1] must be a direction parallel to Πpushbroom.

Thus, the projection of the infinite points are constrained to one dimensional subspace

and causes infinite stretching at the other, as is commonly observed in pushbroom
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panoramas. Cross-slit GLCs, however, are able to project all points infinitely far away

and, therefore, are a better choice for creating panoramas. Fig.7(a) and Fig.7(b)

compares pushbroom and cross-slit panoramas. Objects far away are stretched in

pushbroom cameras, but not in cross-slit cameras.

Similarly, for orthographic and twisted orthographic cameras, whose characteristic

equations are constant, an infinite point has a projection only if [σ0, τ0, 1] is the

direction of the ray of the GLC at point [u0, v0, 0]. For instance, for orthographic

cameras, only infinite points along the view direction can be seen in the projection.

6.5. GLC Collineation. We have shown how to project 3D points and lines on

to the default uv image plane in a GLC. Next, we derive how to resample the rays

collected by a GLC over different image planes. This transformation is analogous to

planar collineation (homography) to pinhole cameras.

A GLC collineation C̃olΠ maps every ray r(u, v) to a pixel [i, j] on the image

plane Π[ṗ, ~d1, ~d2], where ṗ specifies the origin and ~d1, and ~d2 specify the two spanning

directions of Π. For every ray r[σ, τ, u, v], we can intersect r with Π to compute [i, j]:

[u, v, 0] + λ[σ, τ, 1] = ṗ + i~d1 + j ~d2(25)

Solving for i, j, and λ gives:

i =
(τdz

2 − d
y
2
)(u − px) + (dx

2 − σdz
2)(v − py) − (σd

y
2
− τdx

2 )pz

γ

j =
(dy

1
− τdz

1)(u − px) + (σdz
1 − dx

1)(v − py) − (τdx
1 − σd

y
1
)pz

γ
(26)

where

(27) γ =

∣

∣

∣

∣

∣

∣

∣

∣

dx
1 dx

2 −σ

d
y
1

d
y
2

−τ

dz
1 dz

2 −1
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∣

∣

∣

For a canonical GLC, since σ and τ are both linear functions in u and v as shown

in Equation (11), γ must be linear in u and v. Therefore, we can rewrite i and j as:

i =
a1u

2 + b1uv + c1v
2 + d1u + e1v + f1

a3u + b3v + c3

j =
a2u

2 + b2uv + c2v
2 + d2u + e2v + f2

a3u + b3v + c3

(28)

Thus, the collineation C̃olΠ of a GLC from the uv image plane to a new image

plane Π is a quadratic rational function. Fig. 6 shows the images of a GLC under

different collineations. It implies that image distortions may be reduced using a proper

collineation.

7. Rendering GLC Images. GLC images can be rendered directly by cutting

through pre-captured light fields, or by ray tracing a synthetic scene.
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Fig. 6. The image of a cross-slit GLC (d) under collineation (c) appear much less

distorted than the image (b) of the same camera under collineation (a).

7.1. Rendering GLCs From Light Fields. In Fig.9, we synthesize a cross-slit

and a pencil camera by cutting through a densely sampled 3D light field along differ-

ent directions. By appropriately organizing rays, both GLCs generate interpretable

images similar to pinhole and orthographic cameras. The pencil camera synthesized

in Fig.9 are twisted. This is because we are moving the viewing angle from left to

right while scanning the image from the top to the bottom.

In Fig.8, we illustrate GLC images from a 4D light field. Each GLC is specified

by three generator rays shown in red. By appropriately transforming the rays using

a collineation, most GLCs generate easily interpretable images. Furthermore, we can

use the light fields to navigate through the scene and to choose specific rays to form

a desirable GLC. In Fig.10, we choose three rays from different perspectives and fuse

them into a multiperspective bilinear GLC image.

In our implementation, we have used the common quadrilinear interpolations to

interpolate the GLC rays from the light field. Since collecting all rays present in a

scene is impractical or impossible for most light fields, aliasing artifacts called ”ghost-

ing” may appear in the rendered GLC images where the light field is undersampled,

as shown on the background specularity in Fig.8.

7.2. General Linear Ray Tracer. We have also implemented a GLC Ray-

Tracer (GLC-RT) based on the legacy Pov-Ray [24] framework. Our GLC-RT sup-

ports rendering both canonical GLC models and standard GLC models with arbitrary

collineations.

The canonical GLC model has format:

GLC Camera{

Generator Rays: < σ1, τ1 >, < σ2, τ2 >, < σ3, τ3 >

}
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(b) Cross-Slit

(a) Pushbroom

Fig. 7. GLC images synthesized from a 3D light field: (a) is a pushbroom panorama, (b)

is a cross-slit panorama.

Fig. 8. GLC images created from a light field. Top row: a pencil, bilinear, and pushbroom

image. Bottom row: an cross-slit, twisted orthographic, and orthographic image.

where [σ1, τ1, 0, 0], [σ2, τ2, 1, 0], and [σ3, τ3, 0, 1] represent the three generator rays.

We use the uv plane as the default image plane. For each pixel [i, j], we compute the

corresponding ray in the GLC as r = [i, j, 0] + λ[σ1 + iσ2 + jσ3, τ1 + iτ2 + jτ3, 1]. We

then trace r using the PovRay ray-tracing engine.

Our GLC-RT also supports more complicated GLC descriptions with an arbitrary

collineation as:

camera { glc camera
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Generator Rays

< ox
1 , o

y
1
, oz

1 > < ox
2 , o

y
2
, oz

2 > < ox
3 , o

y
3
, oz

3 >

< dx
1 , d

y
1
, dz

1 > < dx
2 , d

y
2
, dz

2 > < dx
3 , d

y
3
, dz

3 >

Location < Lx, Ly, Lz >

Up < Ux, Uy, Uz >

Right < Rx, Ry, Rz >

}

where each generator ray ri is represented by its origin oi and direction di, for

i = 1, 2, 3. The image plane (collineation) is specified by the center of the plane L̇,

the up vector ~U , and the right vector ~R.

In our implementation, we first warp each generator ray ri to its default 2PP

coordinate ri[ui, vi, si, ti] by intersecting it with the z = 0 and z = 1 plane as:

ui = ox
i −

oz
i

dz
i

dx
i , vi = o

y
i −

oz
i

dz
i

d
y
i ,

si = ox
i +

1 − oz
i

dz
i

dx
i , ti = o

y
i +

1 − oz
i

dz
i

d
y
i , i = 1, 2, 3(29)

We then compute the GLC’s canonical representation. Recall that the three

canonical generator rays are also affine combinations of r1, r2, and r3. Therefore, we

can solve for the affine coefficients αi and βi that satisfy

[ũi, ṽi, s̃i, t̃i] = αi[u1, v1, s1, t1] + βi[u2, v2, s2, t2]

+ (1 − αi − βi)[u3, v3, s3, t3], i = 1, 2, 3(30)

where [ũ1, ṽ1] = [0, 0], [ũ2, ṽ2] = [1, 0], [ũ3, ṽ3] = [0, 1] as

αi = −
−u2ṽi + u3ṽi + ũiv2 − ũiv3 + u2v3

u2v1 − u3v1 − u1v2 + u3v2 + u1v3 − u2v3

(31)

βi = −
u1ṽi − u3ṽi − ũiv1 + ũiv3 − u1v3

u2v1 − u3v1 − u1v2 + u3v2 + u1v3 − u2v3

(32)

By substituting αi and βi into Equation (30), we can compute the relative ray coor-

dinate [σ̃i, τ̃i, ũi, ṽi] as

σ̃i = s̃i − ũi, τ̃i = t̃i − ṽi, i = 1, 2, 3.(33)

Assume the desired image resolution is [w, h], to trace out a ray from each pixel

[i, j], we compute the actually 3D point Ṗ that corresponds to pixel [i, j] as

Ṗ = L̇ + kx
~R + ky

~U(34)

where

(35) kx =
i

w
− 0.5, ky = 0.5 −

j

h
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We then use the GLC Projection Equation (16) to find the ray that passes through

Ṗ . Finally, we trace the ray using the PovRay ray-tracing engine.

Notice that our implementation minimizes the modifications to the PovRay frame-

work by changing the camera model engine and the ray-generator engine of PovRay,

not the ray-tracing engine. Furthermore, antialiasing is generically implemented in

our GLC-RT. This is because PovRay uses supersampling to reduce the aliasing ar-

tifacts. In our implementation, we simply compute the corresponding 3D points for

subpixels using Equation (34) and determine the GLC projection of these points using

Equation (16).

In Fig.4, we compare different GLC images ray-traced from a synthetic scene. The

distortions of the curved isolines on the objects illustrate various multi-perspective

effects of GLC cameras. For instance, all lines in 3D space are preserved as lines on

the 2D image for orthographic and pinhole camera while they are curved in most other

GLCs. In particular, lines are strongly twisted in the images of twisted orthographic

and pencil camera. This is mainly because the rays collected by both cameras are

twisting in 3D space in nature. Similar to pinhole cameras, many GLCs have ”van-

ishing” points of parallel lines. Furthermore, in pushbroom camera, objects far away

from the camera are stretched while their size is preserved under pinhole camera,

orthographic, and cross-slit cameras, as has been analyzed in Section 4.

Fig. 9. Synthesizing GLCs by cutting through a 3D horizontal light fields. Left: we cut through

the light field vertical diagonally to generate a cross-slit GLC. Right: we cut through the light field

vertical diagonally to generate a pencil GLC.

In Fig.11, we render different GLC cameras in a complex kitchen scene. De-

spite their incongruity of view, these multiperspective images are still able to preserve

spatial coherence while exhibiting unique distortions. In Fig.12, we compare a per-
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Fig. 10. A bilinear GLC image synthesized from three pinhole cameras shown on the right.

The generator rays are highlighted in red.

spective panorama and a cross-slit panorama, both rendered using our GLC-RT in a

city scene. The cross-slit panorama is able to illustrate smooth transitions from the

east side of the city to the west side.

We can also generate non-perspective autostereoscopic images, as shown in Fig.13.

While conventional autostereoscopic displays renders each hexagon lenslet as a pinhole

camera, we render each hexagon as a pushbroom camera using our GLC-RT. This

allows us to create ”rotational motion parallax” in additional to the stereo parallax,

as shown in the supplementary video.

8. Conclusions and Future Work. We have presented a General Linear Cam-

era (GLC) model that unifies many previous camera models into a single representa-

tion. The GLC model is capable of describing all perspective (pinhole), orthographic,

and many multiperspective (including pushbroom and two-slit) cameras, as well as

epipolar plane images. It also includes three new and previously unexplored multiper-

spective linear cameras. The GLC model is both general and linear in the sense that,

given any vector space where rays are represented as points, it describes all 2D affine

subspaces (planes) that can be formed by affine combinations of 3 rays. The incident

radiance seen along the rays found on subregions of these 2D affine subspaces are a

precise definition of a projected image of a 3D scene.

We model the GLC imaging process in terms of two separate stages: the mapping

of 3D geometry to rays and the sampling of those rays over an image plane. We

have derived a closed-form solution to projecting 3D points in a scene to rays in a

GLC and a notion of GLC collineation analogous to pinhole cameras. Finally, we

have developed a multiperspective ray-tracer for the direct rendering of GLC images.
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(a) Pushbroom

(d) Pencil(c) Bilinear

(b) Cross-Slit

Fig. 11. Kitchen scene rendered by GLC raytracer using pushbroom camera (a), cross-slit

camera (b), bilinear camera (c), and pencil camera (d).

The GLC ray-tracer is able to create a broad class of multiperspective effects and it

provides flexible controls to reduce multiperspective distortions via collineations.

In the future, we plan to use the commodity graphics hardware to directly render

GLC images directly from the scene geometry. The GLC projections of a line onto the

GLC image plane is a quartic rational. Thus, it is possible to modify the rasterization

unit or the shader to efficiently render the geometry directly into a GLC image using

the graphics hardware. A real-time renderer will also be beneficial to the interactive

design of multiperspective rendering, the creation of backdrops for cel-animation, and

image-based animations.

Finally, we are also interested in designing actual GLC cameras and new stereo

algorithms to enable 3D reconstructions from very wide field-of-view images, as well

as other multiperspective images. We have recently shown [3] that most of the GLC

models can form close-to-stereo image pairs. This makes the GLC model a promising

tool for synthesizing multiperspective stereo fusions.
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