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CONFORMAL SPHERICAL PARAMETRIZATION FOR HIGH

GENUS SURFACES

WEI ZENG∗, XIN LI† , SHING-TUNG YAU‡ , AND XIANFENG GU§

Abstract. Surface parameterization establishes bijective maps from a surface onto a topolog-

ically equivalent standard domain. It is well known that the spherical parameterization is limited

to genus-zero surfaces. In this work, we design a new parameter domain, two-layered sphere, and

present a framework for mapping high genus surfaces onto sphere. This setup allows us to trans-

fer the existing applications based on general spherical parameterization to the field of high genus

surfaces, such as remeshing, consistent parameterization, shape analysis, and so on.

Our method is based on Riemann surface theory. We construct meromorphic functions on sur-

faces: for genus one surfaces, we apply Weierstrass P-functions; for high genus surfaces, we compute

the quotient between two holomorphic one-forms.

Our method of spherical parameterization is theoretically sound and practically efficient. It

makes the subsequent applications on high genus surfaces very promising.

Key words: Conformal Spherical Parameterization, Meromorphic Function, High Genus Sur-

face, Layered Sphere

1. Introduction. Surface parameterization (for a recent survey, we refer the

reader to [Floater and Hormann 2005]) is a fundamental tool in computer graphics

and benefits many digital geometry processing applications such as texture mapping,

shape analysis, compression, morphing, remeshing, etc. Some problems become much

easier to deal with a uniform parameter domain. Usually in these settings surfaces are

represented as triangle meshes, and the maps are required to be at least no-foldovers

and low-distortion in terms of area, angle, or both aspects.

In graphics, spherical parameterizations for genus zero closed surfaces have been

proposed and widely used in the past. Most methods [Gotsman et al. 2003; Gu et

al. 2004; Haker et al. 2000; Sheffer et al. 2004; Praun and Hoppe 2003] are to

directly map the mesh to spherical domain, which is usually formulated as a spher-

ical energy minimization problem, such as conformal, Tutte, Dirichlet, area, spring,

stretch energies, or their combinations, as cited in [Floater and Hormann 2005]. The

optimization process is to relax the initial map to reach no-foldovers under specified

distortion metric.
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In medical imaging, spherical parameterizations are broadly applied for brain

cortex surface mapping. In this setting, preservation of local shapes are crucial.

Therefore, different conformal spherical parameterizations are proposed. Angenent

et.al. [Angenent et al. 1999] construct meromorphic functions on the brain surface

directly, then lift the mapping onto the sphere using inverse stereographic projections.

Gu et.al. [Gu et al. 2004] compute harmonic maps between the brain cortex surface

and the unit sphere and use Möbius transformation to adjust the map. Stephenson

[Stephenson 2005] uses circle packing method to construct conformal brain mapping.

However, it is well known that the spherical parameterization is limited to genus-

zero models. To the best of our knowledge, there are few works on high genus surfaces.

Recently, Lee et.al. [Lee et al. 2006] present a construction method by Boolean op-

erations of positive and negative spheres. This method requires a lot of interactive

human recognitions and geometry editing techniques. Furthermore, the results are

not conformal.

In this work, we aims at automatic generalizing conformal spherical parameter-

izations for high genus surfaces. Because high genus surfaces and spheres are not

topologically equivalent, we allow the existence of branch points.

Our method relies on the conformal structure for higher genus meshes. There

are two ways to compute conformal structures of general surfaces: one method is

based on Hodge theory [Gu and Yau 2002], and the other on discrete surface Ricci

flow [Gu et al. 2005, Jin et al. 2006a, Jin et al. 2006b].

According to Riemann surface theory, a conformal map between a surface and

the sphere is equivalent to a meromorphic function defined on the surface. The map

wraps the surface onto the sphere by several layers and has several branch points,

the number of layers and the branch points are determined by the topology of the

surface (by Riemann-Hurwitz theorem). The key is how to construct the meromorphic

functions on the input surface. For genus one closed surfaces, we construct the well-

known Weierstrass P-function. For high genus surfaces, the quotient between two

holomorphic 1-forms is a meromorphic function.

Compared with the existing planar parameterization for high genus meshes, the

layered sphere is more natural domain than the planar domain. Employing the prop-

erties of sphere geometry and the existing spherical parameterization related appli-

cations on genus-zero meshes, the spherical parameterization designed for high genus

meshes can get more insights on shape analysis, and introduce more possible applica-

tions for high genus meshes.

The contributions of this work are briefly as follows:

• To present a novel practical framework to compute conformal spherical pa-

rameterizations for general surfaces;
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• To extend the applications of general spherical parameterization onto that of

high genus meshes, including re-meshing, morphing, etc;

• To introduce a systematic method to compute meromorphic functions on

general Riemann surfaces.

The remainder of the paper is organized as follows: Section 2 illustrates the basic

definition and theorem in theory used in this work, Section 3 describes the algorithm

flow, and Section 4 shows the experimental results, and discussion on the method.

The paper concludes with a conclusion and future work in Section 5.

2. Basic Theory. In this section, we will briefly introduce the basic theories of

meromorphic function on Riemann surfaces. We refer readers to [Farkas and Kra 1980]

for details.

2.1. Riemann Surfaces. Definition 2.1. Manifold. Suppose M is a topolog-

ical space, each point has a neighborhood Uα and a homeomorphism φα : Uα → Vα

from Uα to an open set Vα in Rn. (Uα, φα) is called a local chart. If two such

neighborhoods Uα, Uβ intersect, then the chart transition function

φαβ = φβφ
−1
α : φα(Uα ∩ Uβ) → φβ(Uβ ∩ Uα)

is a homeomorphism from one open set of Rn to another. Then M is a n dimensional

manifold, the set of all local charts {(Uα, φα)} form an atlas.

Definition 2.2. Holomorphic functions. In complex analysis, a function f : C →

C, (x, y) → (u, v) is holomorphic, if and only if it satisfies the following Riemann-

Cauchy equation

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −

∂v

∂x
.

Definition 2.3. Riemann Surfaces. A Riemann surface is a two dimensional

manifold with an atlas {(Uα, φα)}, such that all chart transitions φαβ are holomorphic

functions. The atlas is called the conformal atlas, and each local coordinates φα(Uα)

are called holomorphic coordinates. The maximal conformal atlas is called a conformal

structure of the surface.

Definition 2.4. Riemannian Metric. A Riemannian metric on a manifold is a

tensor g, which defines an inner product <,>g on the tangent spaces of the manifold.

Suppose v1, v2 are two tangent vectors on the tangent space at point p, then the angle

between them can be calculated as

θ = cos−1 < v1, v2 >g

√
< v1, v1 >g

√
< v2, v2 >g

.

In the current work, we focus on surfaces embedded in the Euclidean space R3.

Therefore, all the surfaces are with induced Euclidean metric g. We require the
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Fig. 1. Example of holomorphic 1-forms. For genus-two cases, there are four 1-forms, described

by the check-board texture mapping. The parameter (u, v) of each vertex is the average of 1-forms

of its connected edges.

conformal structure and the Riemannian metric be compatible in the following way.

Suppose {(Uα, φα)} is a conformal atlas, we denote the local coordinates of (Uα, φα)

as (xα, yβ), then the metric tensor is represented

ds2 = e2λ(xα,yα)(dx2
α + dy2

α),

where λ(xα, yα) is a function. It can be easily verified that the intersection angle

measured by g equals to that measured by Euclidean metric defined on the parameter

domain

ds̄2 = dx2
α + dy2

α.

Namely, the local coordinates preserve angles; therefore conformal structure is also

called angle-preserving structure.

2.2. Holomorphic 1-forms. Our algorithm heavily depends on the calculation

of holomorphic 1-forms of a given Riemann surface.

Definition 2.5. Holomorphic 1-forms. Given a Riemann surface X with a

conformal atlas (Uα, zα), a holomorphic 1-form ω is defined by a family (Uα, zα,

ωα), such that (1) ωα = fα(zα)dzα, where fα is holomorphic on Uα, and (2) if zα =

φαβ(zβ) is the coordinate transformation on Uα

⋂
Uβ(6= ⊘), fα(zα)dzα

dzβ

= fβ(zβ), the

local representation of the differential form ω satisfies the chain rule.

For a Riemann surface X with genus-g(g > 0), all holomorphic 1- forms on X

form a complex g-dimensional vector space (2g real dimensions), denoted as Ω1(X).

The quality of a global conformal parameterization for a high genus surface is mainly

determined by the choice of the holomorphic 1-form. The zero points of a holomorphic

1-form ω are the points where, on any local representation (Uα, zα, ωα), ωα equals

zero. For a genus-g(g > 0) surface, there are in general 2g − 2 zero points for each

holomorphic 1-form. Figure 1 illustrates the holomorphic 1-forms on a genus-two

surface.

2.3. Meromorphic Functions. Definition 2.6. Holomorphic Map. Suppose

X,Y are Riemann surfaces with conformal atlases {(Uα, φα)} and {(Vβ , ψβ)}, a holo-

morphic map between X and Y is a continuous map f : X → Y such that for each



CONFORMAL SPHERICAL PARAMETRIZATION FOR HIGH GENUS SURFACES 277

holomorphic coordinates φα on Uα containing x on X and ψβ defined in a neighbor-

hood of f(x) on Y , the composition

ψβ ◦ f ◦ φ−1
α

is holomorphic.

Intuitively, a holomorphic map is a conformal (angle preserving) map between

two surfaces. In general, such map doesn’t exist between two high genus surfaces.

But conformal maps between a high genus to the unit sphere (with branch points)

always exist.

Definition 2.7. Meromorphic Function. A meromorphic function f on a Rie-

mann surface X is a holomorphic map to the Riemann sphere S = C
⋃
{∞}.

The meromorphic function on a Riemann surface usually has multiple branch

points. A branch point may be informally thought of as a point at which a ”multiple-

valued function” changes values when one winds once around it. The neighborhood

of branch points wrap around the range a finite or infinite number of times.

Definition 2.8. Branch Point. A branch point of an analytic function is a point

in the complex plane whose complex argument can be mapped from a single point in

the domain to multiple points in the range.

For example, if n > 1, then zn has a degree n branch point at 0.

The relationship between the Euler characteristics of the source surface and the

target surface is described by the following theorem, when one is a covering of the

other (here, using Riemann sphere) with branch points.

Theorem 2.9. Riemann-Hurwitz. Let f : X → S be a meromorphic function of

degree d on a closed connected Riemann surface X , and suppose it has branch points

x1, ..., xn where the local form of f(x) − f(xk) is a holomorphic function with a zero

of multiplicity mk. Then

χ(X) = 2d−
n∑

k=1

(mk − 1)

where χ(X) is the Euler number of X and there is χ(S) = 2.

In the settings of this paper, the function is two-valued, there are two overlapped

layers on the complex plane, which is lifted to be a two-layered sphere by inverse stereo

graphic projection, seen in Figure 2. Thus, from the Riemann-Hurwitz formula, the

number of branch points can be computed indirectly. Given a closed g-holed tori,

there are 2g + 2 branch points (See Figure 3, 4).

3. Algorithm. This section explains the algorithm for computing the conformal

spherical parameterizations for high genus surfaces based on meromorphic functions.
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Fig. 2. Two-layered Sphere for genus-one and genus-two cases of our method. From left to

right, they are (1) one-hole torus mesh with 10,000 vertices and 20,000 faces, (2) two-layered sphere

with four branch points, (3) two-holes torus mesh with 12,286 vertices and 24,576 faces, and (4)

two-layered sphere with six branch points. Two layers are connected by branch points where the lines

twist together.

Fig. 3. Branch points illustration for genus-g(g > 0) surfaces. There are 2g + 2 branch points,

two for each tunnel. The outer space is regarded as a tunnel here.

3.1. Holmorphic 1-forms. At the first stage, we calculate the basis for the

holomorphic 1-form group Ω1(M). The method is based on the Hodge theory. All

the surfaces are represented as triangular meshes (simplicial complex). The followings

are the major steps, for details we refer readers to [Gu and Yau 2003]. We assume

the input surface is a genus g closed surface.

1. Compute the basis of the first homology group H1(M,Z), {γ1, γ2, · · · , γ2g}.

2. Compute the dual cohomology group basis H1(M,Z), {ω1, ω2, · · · , ω2g}, such

that ωi(γj) = δi
j .

3. Diffuse cohomology basis to harmonic 1-forms, such that ∆ωi = 0, where ∆

is the Laplace-Beltrami operator.

4. Compute the conjugate harmonic 1-forms, ω∗
i , where ∗ is the Hodge star

operator. {ω1 +
√
−1ω∗

1 , ω2 +
√
−1ω∗

2 , · · · , ω2g +
√
−1ω∗

2g} form a basis for

the holomorphic 1-form group.

3.2. Genus One Surfaces. For a genus one closed surface M , we first compute

the holomorphic 1-form basis, we denote a holomorphic 1-form as ω. ω induces a

Riemannian metric

ds2 = ωω̄,

which is flat everywhere, namely, the Gaussian curvature induced by ω is zero.
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Fig. 4. Branch points of torus. The branch points are shown by the texture, where the region

is formed by eight edges. The corresponding location is shown in its right by practical method.

Definition 3.1. Universal Covering Space. Suppose M is a surface, π : M̄ →M

is a covering space if for every point p in M there is a neighborhood U of p so that

π−1(U) is a disjoint union of open sets Vi, i ∈ I, and the restriction π|Vi
: Vi → U

is a homeomorphism for each i. If M̄ is simply connected, then π : M̄ → M is a

universal covering space.

Definition 3.2. Deck Transformation. Suppose M is a surface, the pair (M̄, π)

is the universal covering space of M , φ : M̄ → M̄ is called a deck transformation, if

π ◦ φ = π.

All the deck transformations of a surface form a group. For the one-hole torus

case, we can embed the universal covering space onto the complex plane using the

flat metric. Then the deck transformations of (M̄, ds2) are translations. We compute

the generators of the deck transformation group Deck(M), which are translations,

and denote them as {w1, w2}. Any deck transformation can be represented as w =

mw1 + nw2,m, n ∈ Z.

The meromorphic function can be easily constructed using the Weierstrass P-

function on the planar domain. Define

℘(z) =
1

z2
+

∑

w 6=0

(
1

(z − w)2
−

1

w2
)

where the sum is over all non-zero w ∈ Deck(M). Because the sum is essentially

over all deck transformations, therefore the Weierstrass function is invariant under

the action of Deck(M),

℘(z + w) = ℘(z), ∀w ∈ Deck(M),

so that this is a meromorphic function defined on the surface M . The branch points

of ℘(z) are 0, w1

2 ,
w
2 ,

w1+w2

2 , (see Figure 5 and 6). The computation example can be

seen in Figure 7.

3.3. Genus-g(g > 1) Surfaces. Suppose M is a genus g closed surface, {ω1, ω2,

· · · , ω2g} form a basis of the holomorphic 1-form group. A meromorphic function can

be constructed using the ratio between two holomorphic 1-forms.
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w1

w2

O

Fig. 5. Generator (w1, w2) of deck transformations. The branch points here are labeled by four

solid circle points, denoting 0,
w1
2

,
w2
2

, and w1+w2
2

respectively.

Fig. 6. Universal covering space and Weierstrass P-function. From left to right, they are (1)

kitten mesh, (2) part of universal covering space, including 24 parameter periods, (3) one parameter

period, and (4) parameter domain under Weierstrass p-function.

Suppose τ1 and τ2 are two holomorphic 1-forms,

τk =
∑

j

akjωj, k = 1, 2.

Suppose {(Uα, φα)} is the conformal atlas of the surface M , on a local chart (Uα, φα),

(1) τ1 = f1(zα)dzα, τ2 = f2(zα)dzα,

the ratio is

F (zα) =
f1(zα)

f2(zα)
.

On an overlapping chart (Uβ , φβ), it can be easily verified that F (zβ) = F (zα(zβ)),

therefore F is a globally well defined meromorphic function on M .

We construct the meromorphic function as F = ω1+ω2

ω1−ω2
. The computation example

can be seen in Figure 8.

3.4. Branch Point Location. According to Riemann-Hurwitz theorem, mero-

morphic function on a Riemann surface has branch points, which are important geo-

metric features of the conformal structure of the surface. In practice, it is crucial to

accurately locate these branch points.

In order to locate the branch points, we apply the following algorithm to compute

the winding number of a closed planar curve. For each point p ∈ M on the surface,
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Fig. 7. Genus-one case by Weierstrass p-function. For one-hole torus case, the computation

steps are (from left to right) (1) one parameter period with zoomed-in part (right), (2) parameter

domain under Weierstrass p-function with zoomed-in part (right), (3) sphere by inverse stereographic

projection, (4) parameter domain after Möbius transformation, and (5) sphere of (4) by inverse

stereographic projection.

Fig. 8. Genus-n(n > 1) case by holomorphic 1-forms. For two-holes torus case, the computa-

tion steps are (from left to right) (1) two holomorphic 1-forms ω1 and ω2, (2) parameter domain

under quotient function by ω1 and ω2, (3) sphere by inverse stereographic projection, (4) parameter

domain after Möbius transformation, and (5) sphere of (4) by inverse stereographic projection.

F (p) ∈ C is on the complex plane. We choose a simple closed curve γ surrounding p

on M , then F (γ) is a curve on C, we define the winding number as

I(γ, p) =
1

2π
√
−1

∫

F (γ)

dz

z − F (p)
.

If I(γ, p) 6= ±1, then p is a branch point.

In practice, in order to improve the accuracy of computing the winding number,

we can zoom the neighborhood of a point p by a Möbius transformation,

φ : C → C, φ(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc = 1.0.

In order to map the complex plane to the sphere conformally, we use the stereo-

graphic projection, suppose a point (x, y, z) is on the unit sphere S2. It is mapped to

the planar point ( 2x
2−z

+
√
−1 2y

2−z
).

In practice, for different purposes, in order to improve the quality of the spherical

conformal surface parameterizations, we can choose the holomorphic 1-forms τ1, τ2 in

Equation 1, and use Möbius transformation to further improve the parameterizations.

4. Results and Discussion. In our implementation, all surfaces are triangular

meshes and represented as half edge data structure. The holomorphic 1-forms are
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Fig. 9. Spherical conformal parameterization for one-hole torus case. The 1st and 2nd rows

are mapped by different textures. From left and to right, each column denotes: (1) conformal

parameterization result on layered sphere, (2) initial spherical conformal parameterization result on

original surface, (3) spherical conformal parameterization result with Möbius transformation, and

(4) curvilinear parameterization of (1), and (5) curvilinear parameterization of (2).

Fig. 10. Spherical conformal parameterization for two-holes torus case. The 1st and 2nd

rows are mapped by different textures. From left to right, each column denotes: (1) conformal

parameterization result on layered sphere, (2) initial spherical conformal parameterization result on

original surface, (3) spherical conformal parameterization result with Möbius transformation, and

represented as simplicial co-chains on the mesh. The whole algorithm is implemented

using c++ on windows platform.

Under the theoretical support of meromorphic function, the implementation of our

method needs only a simple extension of existing conformal planar mesh parametriza-

tion methods[Gu and Yau 2002, Gu and Yau 2003]. The results are bijective maps

(except at the branch points) and conformal as illustrated in figures 9, 10, 11, and 12,

with colored check-board texture.
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Fig. 11. Spherical conformal parameterization for kitten case with 10,219 vertices and 20,438

faces. The 1st and 2nd rows illustrate both sides of the model. From left to right, each column

denotes: (1) and (2) are initial spherical conformal parameterization results on original surface; (3)

and (4) are spherical conformal parameterization results with Möbius transformation; (5) shows the

branch points.

Fig. 12. Spherical conformal parameterization for vase1 and vase2 cases, with the same number

vertices and faces. From left to right, each column is (1) triangular meshes with 5,910 vertices and

11,824 faces; (2) initial spherical conformal parameterization results on original surface; (3) the

results with Möbius transformation.

We conducted experiments on a variety of meshes. Since our method is based

on a composition of several maps, planar parameterization, stereographic projection

and conformal relaxation, the validity and conformality of each them guarantees the

validity and conformality of the whole map. Using the valid embedding and the

periodicity of the planar parameterization, the validity is guaranteed except the over-

lapping around the branch points.
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Fig. 13. Gaussian mapping under harmonic optimization with iterative times 0, 500, and 1200.

For high genus surfaces, the branch points can be detected technically or com-

puted from theoretical definition. Their number b is determined by the number h

of tunnels. Here, we regard the outer boundary as an outer tunnel. So, for closed

two-manifolds, there are formula h = g + 1, and b = 2h. You can easily get this view

from that there are two branch points for each tunnel boundary. Figure 4 illustrates

the experimental results for genus-one, genus-two surfaces. For genus-one case, their

exact locations depend on the start point of computation, because of the periodicity of

parameterization domain. Different choices of ω1 and ω2 get different branch points.

From the planar illustration (Figure 3), you can get the insight that the whole

surface is split into two parts by the sequence connection of each branch points,

labeled in dashed lines. Each part is corresponding to a layer on the spherical domain,

which can be seen in Figure 9, where the parameter (u, v) is the spherical curvilinear

coordinate (θ, φ) [Zayer et al. 2006].

As the most direct application of parameterization, texture mapping results are

shown in Figure 9, 10, and 11. The conformal parameters (u, v) by stereographic pro-

jection may cover a lot of periods of the texture image, so there are many duplicated

texture periods.

Compared with Gaussian spherical mapping, our method embeds the high genus

surfaces onto sphere with one twisting layer (or multiple layers connecting with branch

points) and shows one more natural way for their spherical representations. The

simple Gaussian mapping generates the overlapping on handles and can not be em-

bedded properly even under powerfully iterative harmonic relaxation. The handles

finally shrink to dense bands, see Figure 13, i.e., the handle information is lost, where

under-sampling occurs.

5. Conclusions and Future Work. Conventional conformal spherical param-

eterizations are limited to genus-zero surfaces. In this work, we generalized confor-

mal spherical parameterizations to surfaces with arbitrary topologies. The proposed

method is based on constructing meromorphic functions on Riemann surfaces. High

genus surfaces are conformally mapped to the unit sphere with branching points,
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which are the key features for the conformal structure of the surface. The method is

theoretically sound and practically efficient.

In the future, we will explore along the following directions:

• Intrinsic triangulations. Triangulate the spherical images with branch points,

such that all branch points are vertices, pull back the triangulation to the

original surface. This method gives us an intrinsic triangulation, which is

solely determined by the conformal structure of the surface.

• Surface matching based on the consistent spherical triangulation. If two sur-

faces are with similar conformal structures, they can be triangulated in a con-

sistent way using the above intrinsic triangulations. The related applications

around consistent parameterization [Praun et al. 2001] can be developed onto

high genus surfaces, such as morphing, mapping, matching, etc.

• Meromorphic function based on Poincaré series. Current meromorphic func-

tions on high genus surfaces are the quotient of holomorphic 1-forms, we will

develop novel method based on Poincaré series.
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