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WRITING ON DIRTY PAPER WITH FEEDBACK∗

JIALING LIU† AND NICOLA ELIA†

Abstract. “Writing on dirty paper” refers to the communication problem over a channel with

both noise and interference, where the interference is known to the encoder non-causally and un-

known to the decoder. This problem is regarded as a basic building block in both the single-user and

multiuser communications, and it has been extensively investigated by Costa and other researchers.

However, little is known in the case that the encoder can have access to feedback from the decoder.

In this paper, we study the dirty-paper coding problem for feedback Gaussian channels without or

with memory. We provide the most power efficient coding schemes for this problem, i.e., the schemes

achieve lossless interference cancelation. These schemes are based on the Kalman filtering algorithm,

extend the Schalkwijk-Kailath feedback codes, have low complexity and a doubly exponential re-

liability function, and reveal the interconnections among information, control, and estimation over

dirty-paper channels with feedback. This research may be found useful to, for example, power-

constrained sensor network communication.

Key words: Feedback communication; Dirty-paper coding; Lossless interference cancelation;

Capacity-achieving coding scheme; Interconnections among information, control, and estimation

1. Introduction. The study of lossless interference cancelation in a communica-

tion system has attracted considerable interest from researchers, since the publication

of Costa’s celebrated article “Writing on Dirty Paper” [1]. Costa considered a power

constrained discrete-time channel, in which there are two independent processes that

corrupt the channel inputs. One process, a sequence {ξk} of independently and iden-

tically distributed (i.i.d.) Gaussian random variables of mean zero and variance Q

(i.e. ξk
iid∼ N (0, Q)), is completely known to the encoder non-causally and is unknown

to the decoder; this is referred to as the interference (or channel states). The other

process, a sequence {Nk} of i.i.d. N (0, 1) random variables (independent of {ξk}),
is unknown to neither the the encoder nor the decoder; this is referred to as the

noise. This problem was initially studied in [2] and later in [1] where Costa named

this problem as the writing on dirty paper (WDP) problem. Fig. 1 illustrates this

model, referred to as the dirty-paper model, in which W is the message, u is the

channel input, ξ is the interference, N is the additive white Gaussian noise (AWGN),

y := u + ξ + N is the channel output, and Ŵ is the decoded message. If ξ is zero (or

is also known to the receiver), then the channel can achieve a rate R with the channel

input power being at least P(R) := 22R − 1. If ξ is not zero and is not known to the
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receiver, then obviously the minimum channel input power PWDP (R) for achieving

rate R is bounded by

(1) P(R) ≤ PWDP (R) ≤ (1 + Q)P(R).

What is surprising is that the lower bound is achievable, namely there exists a strategy

such that we can transmit across the channel as if the interference did not exist. In

other words, we can achieve lossless interference cancelation, by which we mean that

the interference is “canceled” without incurring any power increase or rate loss; such

an optimal strategy was introduced by Costa in [1]. Note that the strategy of letting

the encoder ignore the interference knowledge or letting the decoder try the brutal

force way to cancel the interference incurs power increase or rate loss, and hence they

are only suboptimal.

encoder decoder
W

u y

N

cW
Fig. 1. AWGN dirty-paper channel model.

Costa’s results have been generalized to various situations; see [3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13] and references therein. [6, 7] extended the results to the case of

ergodic interference and colored Gaussian noise. [5, 8] showed that lossless interference

cancelation is possible for arbitrarily varying interference, provided that the encoder

and decoder share a common random dither signal. [9] showed that, as long as the

interference and the noise are Gaussian (not necessarily memoryless, stationary, or

ergodic), the channel has a capacity as if the interference did not exist. Various coding

schemes were also provided; see e.g. [5, 8, 13]. On the other hand, if the interference

is known to the transmitter only in a causal manner (in which case the problem is

sometimes referred to as writing on dirty tape (WDT)), the problem is much more

involved; in fact both the capacity computation problem and the capacity-achieving

problem remain unsolved. See [3, 8, 4] for suboptimal coding strategies for the dirty-

tape channels.

These results have found broad applications in information hiding [14], digital

watermarking [7], precoding for intersymbol interference (ISI) channels [5], and pre-

coding for broadcast channels [12]. To summarize its significance, the dirty-paper

coding study has been considered to be a basic building block in both single-user and

multiuser communication problems [13].

The above results are focused on the case where the encoder does not receive

any feedback from the decoder. In many situations, however, it is possible for the
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encoder to access the information at the decoder-side in a strictly causal way, namely

the encoder has feedback from the decoder. This setup of feedback communication

has drawn increasing attention in both the information theory community and control

theory community; see [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] for a

partial list. The availability of such feedback usually allows us to considerably simplify

the coding scheme, to improve the performance, and to increase the capacity. We

remark that little is done to extend the dirty-paper coding to feedback communication

systems. The only notable exception is [30], where a feedback dirty-paper channel

without memory was studied.

In this paper, we consider the dirty-paper channel where there is a noiseless feed-

back from the decoder to the encoder with one-step delay. We assume non-causal

encoder-side information about the interference. In the case of arbitrarily varying

interference and AWGN, we present a Kalman filter based coding scheme to achieve

lossless interference cancelation. We then extend this result to the case of dirty-paper

channels with both AWGN and inter-symbol interference, based on the techniques de-

veloped in the ISI-free case. Our coding schemes greatly simplify the encoder/decoder

design and encoding/decoding processes, guarantee doubly exponentially decay of

probability of error, and are optimal in the sense of achieving the stationary capacity

(see Section 3 for details), namely, they are the most power efficient through these

channels for any given communication rate over all possible stationary input distri-

butions. The schemes are also extensions of the Schalkwijk-Kailath codes for AWGN

non-dirty-paper channels to dirty-paper channels with both AWGN and ISI.

Our study reveals and utilizes the intimate connections among information, and

control, and estimation over a dirty-paper channel. We show that the feedback com-

munication over a dirty-paper channel is essentially equivalent to a Kalman filter-

ing problem and a minimum-energy control problem (see [31, 29] for the study of

minimum-energy control problem). This extends the perspective of integrating infor-

mation, control, and estimation (proposed in [32, 33]) to dirty-paper channels with

feedback. Such a unifying perspective may provide a systematic way to address more

general feedback communication problems such as multiuser dirty-paper channels with

feedback.

We remark that our assumption on the noiseless feedback link, though in general

not realistic enough, is widely assumed in the feedback communication literature, has

significant theoretic implications, and might be a useful step towards the study of

the more realistic case of noisy feedback. On the other hand, a potential application

area of the research under noiseless feedback assumption is the sensor networks, in

which the forward communication from the sensors to the base station (or the cluster

center, if any) may be very noisy due to the limited power of the sensors, whereas

the feedback communication from the base station to the sensors may be viewed as
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noiseless due to the high power of the base station. The interference to a sensor may

be the signals sent by its neighboring sensors. Since the signals for neighboring sensors

are usually correlated, the interference is partially known to this sensor. Our results

say that we can significantly improve the forward transmission by taking advantage

of both the feedback transmission and the knowledge about interference, which may

be useful in sensor networks.

Organization: In Section 2, we introduce the optimal coding scheme for a dirty-

paper channel with AWGN and arbitrarily varying interference. In Section 3, we

study a dirty-paper channel with arbitrarily varying interference, AWGN, and ISI.

In Section 4, we provide a numerical example. Finally we conclude this paper and

discuss future research directions.

Notations: We represent time indices by subscripts, such as yk. We denote by

yK the vector {y0, y1, · · · , yK}, and {yk} the sequence {yk}∞k=0. Note that we assume

the starting time of all processes is 0, consistent with the convention in dynamical

systems but different from the information theory literature. We denote “defined to

be” as “:=”.

2. The AWGN case. Consider the power constrained dirty-paper channel with

AWGN shown in Fig. 1. Let the average power budget be P > 0. Let {ξk} be an

interference sequence known non-causally to the encoder. This interference sequence

can be deterministic or random; we assume that

(2)
1

K + 1

⎛
⎝ K∑

j=0

(1 + P)−
j
2 Eξj

⎞
⎠

2

→ 0

as K tends to infinity (noting that Eξj = ξj in the deterministic case). Let further

{Nk} be AWGN with Nk ∼ N (0, 1). We first describe the proposed coding scheme

and the coding process, then present the coding theorem, followed by the proof, and

finally discuss the connections to a minimum-energy control problem and a Kalman

filtering problem.

2.1. Coding scheme. Fig. 2 illustrates the designed coding system, in which

we can identify the encoder, decoder, and dirty-paper channel. Let us fix the time

horizon to be {0, 1, · · · , K}, namely the number of channel uses is (K + 1).

The encoder/decoder structures

In state-space, the encoder and decoder are described as

(3) encoder:

⎧⎪⎨
⎪⎩

xk = axk−1 − L(yk−1 − ξk−1)

uk = cxk

yk = uk + ξk + Nk
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Fig. 2. The optimal coding scheme for a dirty-paper channel with AWGN. The dotted box

indicates a control system, referred to as the control setup (see Section 2.3).

and

(4) decoder: x̂0,k = x̂0,k−1 + a−k−1Lyk,

where

(5)

a :=
√

1 + P > 1

c := 1

L := a − 1
a
,

ξ−1 := 0, y−1 := 0, x̂0,−1 := 0, and x0 will be determined shortly. We call xk the

encoder state and x̂0,k the decoder state.

Transmission of analog source

The designed communication system can transmit either an analog source or a

digital message. In the former case, we assume that the encoder wishes to convey

a Gaussian random variable through the channel and the decoder wishes to learn

the random variable, which is a rate-distortion problem or a successive refinement

problem (see [18, 20, 34] and reference therein for study of successive refinement and

its generalization, the sequential rate-distortion problem).

The coding process is as follows. Assume without loss of generality that the to-

be-conveyed message W is distributed as N (0,P) (if the variance is not P , we can

scale W to have the desired variance). To encode, let

(6) x−1 :=
W + WM

a
,

i.e. x0 := W + WM , where 1

(7) WM := −
∑K

j=0 a−j−1Lξj

1 − a−K−2
.

1Another choice which is asymptotically equivalent to (7) is WM := −�K
j=0 a−j−1Lξj .
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Then run the system till instant of time K, generating x̂0,k for k = 0, 1, · · · , K. To

decode, let ŴK := x̂0,K . The distortion measure is

(8) MSE(ŴK) := E(W − ŴK)2.

Transmission of digital message

To transmit digital messages over the communication system, let us fix ε > 0

arbitrarily small. Suppose that we wish to transmit one of a set of

(9) MK := a(K+1)(1−ε)

messages. We equally partition the interval

(10)
[
−
√
P
(

1 +
1

MK − 1

)
,
√
P
(

1 +
1

MK − 1

)]

into MK sub-intervals, and map the sub-interval centers to a set of MK equally likely

messages; this is known to both the transmitter and receiver a priori.

Suppose now we wish to transmit the message represented by the center W . To

encode, define x−1 according to (6). Then run the system till instant of time K. To

decode, let the decoder estimate W̄K be

(11) W̄K :=
x̂0,K

1 − a−2K−2
.

We then map W̄K into the closest sub-interval center and obtain the decoded message

ŴK . 2 We declare an error if ŴK �= W , and call a (an asymptotic) rate

(12) R := lim
K→∞

1
K + 1

log MK

achievable if the probability of error PEK vanishes as K tends to infinity.

2.2. Coding theorem.

Theorem 2.1. Let {ξk} be an arbitrarily varying interference sequence (deter-

ministic or random) known to the encoder non-causally and satisfying (2), and {Nk}
be AWGN with Nk ∼ N (0, 1). Then under the average power constraint Eu2 ≤ P,

i) The coding scheme constructed in Section 2.1 transmits an analog source W ∼
N (0,P) from the encoder to the decoder at the capacity rate

(13) C(P) :=
1
2

log(1 + P),

with MSE distortion MSE(ŴK) satisfying the optimal rate-distortion tradeoff given

by

(14) C(P) =
1

2(K + 1)
log

P
MSE(ŴK)

2Another decoding method is to map x̂0,K directly into the closest sub-interval center and obtain

the decoded message ŴK . This is asymptotically identical to the above decoding method. The

scaling by 1/(1 − a−2K−2) is to remove the bias in the estimate of W ; see (24) and [35].
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for each K.

ii) The coding scheme constructed in Section 2.1 can transmit digital messages

from the encoder to the decoder at a rate arbitrarily close to C(P), with PEK decaying

to zero doubly exponentially.

Remark 1. Compared with the coding scheme for AWGN non-dirty-paper

channels, the one for AWGN dirty-paper channels has two main differences: The

presence of “process noise” (see [36] and Section 2.3) ξk−1 at the encoder, and the

presence of initial condition offset WM . The presence of the process noise ξk−1 at the

encoder implies that, the interference ξk does not affect the encoder state xk, since

the process noise cancels the interference before the interference enters the encoder

state. Thus, the channel input uk is not affected by the interference since uk = cxk.

In addition, by linearity of our coding scheme, the decoder state x̂0,K depends affinely

on x0, ξ, and N . The terms associated with x0 and ξ are known to the encoder before

the transmission because ξK is known to the encoder non-causally, and therefore the

encoder can offset x0 to cancel the term associated with ξ in x̂0,K , namely, the decoded

message would not be affected by the interference.

Proof. To establish lossless interference cancelation, we need to show that, both

the decoded message ŴK and the (asymptotic) average channel input power are not

affected by the interference sequence. It is therefore sufficient to prove that both the

decoder state x̂0,K and the channel input uk are decoupled (or asymptotically decou-

pled) from the interference sequence. Then the theorem would follow from standard

results of feedback communication over an AWGN channel without interference. For

completeness, we also include the proof for the AWGN non-dirty-paper channel case.

We first derive the expressions for uk and x̂0,k. We can express the encoder state

in terms of the initial condition, interference, and channel outputs as

(15) xk = ak(W + WM ) + ak
k−1∑
j=0

a−j−1L(ξj − yj).

Hence

(16)
k−1∑
j=0

a−j−1Lyj = W + WM − a−kxk +
k−1∑
j=0

a−j−1Lξj .

On the other hand, noticing that yk = uk + ξk + Nk, the encoder state is also

(17)

xk = axk−1 + L(ξk−1 − uk−1 − ξk−1 − Nk−1)

= (a − Lc)xk−1 − LNk−1

= a−1xk−1 − LNk−1

= a−k(W + WM ) −
k−1∑
j=0

a−k+1+jLNj.
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Then the decoder state is

(18)

x̂0,k−1 =
k−1∑
j=0

a−j−1Lyj

= W + WM − a−kxk +
k−1∑
j=0

a−j−1Lξj

= (1 − a−2k)(W + WM ) + a−2k
k−1∑
j=0

aj+1LNj +
k−1∑
j=0

a−j−1Lξj .

Therefore, by (7), we have

(19) x̂0,K = (1 − a−2K−2)W + a−2K−2
K∑

j=0

aj+1LNj,

and thus the interference does not affect the decoder state at time K and the decoded

message ŴK . Now note that

(20) uk = cxk = a−k(W + WM ) −
k−1∑
j=0

a−k+1+jLNj.

That is, the presence of interference incurs an extra power overhead of a−2kW 2
M ,

which vanishes exponentially and is negligible, since the power due to the term∑k−1
j=0 a−k+1+jLNj approaches a nonzero constant and the coding length (K + 1)

is sufficiently large. In summary, the interference does not affect either the decoded

message or the asymptotic channel input power. This indeed leads to lossless inter-

ference canceling.

Then we compute the average channel input power, followed by the rate and

distortion computation for i), and the rate and probability of error computation

for ii). From (20), the input power is asymptotically determined only by the term∑k−1
j=0 a−k+1+jLNj, which leads to that

(21) Eu2 = L2 lim
k→∞

k−1∑
j=0

a−2k+2+2j =
(a2 − 1)2

a2

a2

a2 − 1
= P .

i) The MSE distortion is

(22)

MSE(ŴK) = E

⎡
⎣a−4K−4W 2 + a−4K−4

K∑
j=0

a2j+2L2(Nj)2

⎤
⎦

= a−4K−4P + a−4K−4P2
K∑

j=0

a2j

= a−4K−4P
(

1 + P a2K+2 − 1
a2 − 1

)
= a−4k−4Pa2K+2

= Pa−2K−2.
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This distortion needs an information rate across the channel to be at least

(23) R =
1

2K + 2
log

P
MSE(ŴK)

= log a = C(P),

which is indeed the capacity of the AWGN channel and implies that the optimality is

achieved.

ii) By (11) and (19), we have

(24) W̄K = W + (a2K+2 − 1)−1
K∑

j=0

aj+1LNj,

that is, W̄K is an unbiased estimate of W . For each given W , it holds that W̄K ∼
N (W, (a2K+2 − 1)−2

∑K
j=0 a2j+2L2).

The signalling rate is

(25) R := lim
K→∞

log MK

K + 1
= (1 − ε) log a.

This signalling rate is achievable if the probability of error vanishes. To compute the

probability of error, note that for each message W , no error occurs if

(26) |W̄K − W | ≤ 1
MK − 1

√
P .

Then the probability of error satisfies

(27)

PEK ≤ 2Q

⎛
⎝ √P/(MK − 1)

(a2K+2 − 1)−1L
√∑K

j=0 a2j+2

⎞
⎠

= 2Q

(√PaK+1
√

1 − a−2K−2

(MK − 1)
√

a2 − 1

)

= 2Q

(
a(K+1)ε

√
1 − a−2K−2

1 − a−(K+1)(1−ε)

)
(a)

≤ 2Q
(
a(K+1)ε

)
(b)

≤ 2√
2πa(K+1)ε

exp
(
−1

2
a2(K+1)ε

)
,

where inequality (a) follows from

(28)

√
1 − a−2K−2

1 − a−(K+1)(1−ε)
≥ 1

for any ε > 0 and K, and (b) follows from the Chernoff bound

Q(t) ≤ 1√
2πt

exp(−1
2
t2).

Thus, PEK decreases to zero doubly exponentially.
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2.3. Connections to control problem and estimation problem. In this

subsection, we briefly discuss the equivalent relations of our coding scheme to a

minimum-energy control problem and a Kalman filtering problem (which can also

be rewritten as a tracking-of-unstable-source problem). These relations are concep-

tually appealing since they provide another example that information, control, and

estimation, three fundamental concepts, can be studied in a unified framework, and

if any one of these problems is solved, other problems can be solved.

The dynamics of xk in (3), repeated here as

(29)

⎧⎪⎨
⎪⎩

xk = axk−1 + L(ξk−1 − yk−1)

uk = cxk

yk = uk + ξk + Nk,

is indeed a control system, as indicated in Fig. 2 as the control setup. The con-

trol setup is open-loop unstable with its pole at a, and is closed-loop stabilized with

its pole at 1/a, which is a minimum-energy control problem and the power of u is

minimized over all possible choice of stabilizing L. Therefore, it can be established

rigorously that the optimality in feedback communication coincides with the optimal-

ity in control, and reliable feedback communication using (3) and (4) is equivalent to

feedback stabilization of (29); see [22] for relevant discussions.

Fig. 3 (a) illustrates a system closely related to the coding scheme shown in Fig.

2. The dynamics in Fig. 3 (a) is

(30)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̌k+1 = ax̌k + Lξk

rk = cx̌k

uk = rk − r̂k

yk = uk + ξk + Nk

x̂k+1 = ax̂k + Lyk

r̂k = cx̂k

x̂0,k = a−k−1x̂k+1,

where x̌0 := (W + WM ) and x̂0 := 0. To see the relation to the coding scheme,

letting xk := x̌k − x̂k in (30), we indeed obtain the dynamics of (3) and (4) through

straightforward manipulation. Therefore, (30) generates the same channel inputs, the

same channel outputs, the same decoded message as (3) and (4) do. However, Fig. 3

(a) has an interpretation of tracking unstable source (i.e. {rk}) over a communication

channel by applying the internal mode principle, which has attracted considerable

attention, see e.g. [20, 23, 22, 29]. It holds that asymptotic tracking of an unsta-

ble source over a (dirty-paper or non-dirty-paper) channel is equivalent to reliable

feedback communication over the same channel.

We can furthermore arrange Fig. 3 (a) to obtain the block diagram shown in Fig.

3 (b), which is a Kalman filtering problem (cf. Fig. 1.1 in [36]).The dynamics of the
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Fig. 3. (a) Tracking of unstable source. (b) The associated Kalman filtering problem. Note

that the “process noise” ξk enters both the process to be estimated and the Kalman filter.

Kalman filtering shown in Fig. 3 (b) is

(31)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x̌k+1 = ax̌k + Lξk

ȳk = cx̌k + Nk

x̂k+1 = ax̂k + Lξk + Lek

ek = ȳk − cx̂k

x̂0,k = a−k−1x̂k+1,

where x̌0 := (W + WM ) and x̂0 := 0. Note that x̌k, x̂k, and ek in (31) are identical

to those in (30), respectively. The feedback communication problem is then linked

to an estimation problem, and the optimality in both problems coincides, see [32] for

more detailed discussion. We also see from Fig. 3 (b) that the interference sequence

becomes the process noise common to both the process to be estimated and the
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Kalman filter. Then a well-known fact about Kalman filtering (cf. [36]) implies that

the interference does not affect the estimation error (x̌k − x̂k) and hence the channel

input uk = c(x̌k − x̂k). Therefore, our dirty-paper coding scheme is essentially a

reformulation of Kalman filtering algorithm for the case of process noise known to

both the process and the Kalman filter. It has been shown that the Kalman filter

is optimal in information processing, storage, and dissipation [37]. The connection

of the optimal dirty-paper coding scheme to the Kalman filter obtained here further

confirms the optimality of the Kalman filter in the information theoretic sense in a

more general setup. The role of the Kalman filter in more general communication

setups is under current investigation.

3. The ISI Gaussian channel case. This section presents the optimal coding

scheme for a dirty-paper channel with AWGN and ISI. We first describe the chan-

nel model. We then introduce the encoder/decoder structures and explain how to

choose the parameters to ensure the optimality, and describe the encoding/decoding

processes. Finally we present the coding theorem.

3.1. Channel model and the stationary capacity. The dirty-paper channel

F with ISI and AWGN is described in state-space as

(32) F :

{
sk+1 = Fsk + Guk

yk = Hsk + uk + ξk + Nk,

where s0 := 0, F ∈ Rm is stable, (F, G) is controllable, (F, H) is observable, the

transfer function from u to y is minimum-phase, m is the dimension or order of F ,

and ξK is an interference sequence known to the encoder non-causally and unknown

to the decoder. See Fig. 4 (a) for the block diagram of F . Through the equivalence

shown in [18, 24, 29], the results developed for this channel hold for dirty-paper

channels with colored Gaussian noise with rational power spectrum.

Our focus is to find a coding scheme to achieve the highest possible information

rate when the channel input distributions are restricted to be stationary (noting that

non-stationary input distributions are of little practical interest), in other words, we

wish to achieve the stationary capacity. 3 Precisely, our objective is to achieve

(33) Cs := Cs(P) := sup
{uk}

lim
K→∞

1
K + 1

I(uK → yK)

where the supremum is over all stationary input sequences {uk} satisfying the power

3It has been recently shown that the feedback capacity equals the stationary feedback capacity

for a non-dirty-paper Gaussian channel, namely the input sequence achieving the feedback capacity

can be chosen as (asymptotic) stationary (cf. [38, 39]). This follows that the proposed scheme in

this paper achieves the feedback capacity for the dirty-paper channel.
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Fig. 4. (a) State-space representation of channel F . (b) The encoder and decoder structures

for F .

constraint

(34) lim
K→∞

1
K + 1

EuK ′uK ≤ P

and in the form of

(35) uk = γkuk−1 + βkξK + ηkyk−1 + ζk

for any γk ∈ R1×k, βk ∈ R1×(K+1), ηk ∈ R1×k, and zero-mean Gaussian random

variable ζk ∈ R. Here P > 0 is the power budget and I(uK → yK) is the directed

information from uK to yK (cf. [18]). The stationary capacity problem admits a

finite-dimensional time-invariant solution, which has low complexity in system design

and operation.

3.2. The coding scheme.

The encoder/decoder structures

In state-space, the encoder and decoder are described as

(36) Encoder:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk = Axk−1 − L1ek−1

uk = Cxk

s̄k = F s̄k−1 + L2ek−1

ek−1 = yk−1 − ξk−1 − Hs̄k−1
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and

(37) Decoder:

⎧⎪⎨
⎪⎩

ŝk+1 = F ŝk + L2êk

êk = yk − Hŝk

x̂0,k = x̂0,k−1 + A−k−1L1êk,

where s0 := 0, s̄−1 := 0, ξ−1 := 0, ŝ0 := 0, x̂0,−1 := 0, A ∈ R(n+1)×(n+1), C ∈
R1×(n+1), L1 ∈ Rn+1, and L2 ∈ Rm. We call (n + 1) the encoder dimension. See Fig.

4 (b) for the block diagram. Here A, C, uk, etc. depend on n, but we do not specify

the dependence explicitly to simplify notations.

Optimal choice of parameters

Fix a desired rate R. Let DI := 2R and n := m − 1 (recalling that m is the

channel dimension), and solve the optimization problem

(38)
[aaaopt

f , Σopt] := arg inf
aaaf∈Rn

DΣD′,

s.t. Σ=AΣA
′−AΣC

′
CΣA

′/(CΣC
′+1)

where

(39)

A :=

[
A 0

GC F

]
, C :=

[
C H

]
, D :=

[
C 0

]
,

A :=

[
0n×1 In

±DI aaaf

]
, C :=

[
1 01×n

]
.

Note that we need to solve (38) twice (one for +DI in A and one for −DI in A),

and choose the optimal solution as the one with the smaller objective function value.

Then we form the optimal Aopt based on aaaopt
f , and let (n∗ + 1) be the number of

unstable eigenvalues in Aopt, where n∗ ≥ 0.

Now let n := n∗, solve (38) again, and obtain a new aaaopt
f and Σopt. Then form

Aopt, let A∗ = Aopt, Σ∗ = Σopt, C∗ := [1, 01×n∗ ], and form A∗,C∗, and D∗. Let

(40) L∗ :=

[
L∗

1

L∗
2

]
:=

A∗Σ∗C∗′

C∗Σ∗C∗′ + 1
.

It holds that (A∗, C∗) is observable, and A∗ has exactly (n∗ +1) unstable eigenvalues.

We assign the encoder/decoder parameters to the scheme built in Fig. 4 (b) by

letting

(41) n := n∗, A := A∗, C := C∗, L1 := L∗
1, L2 := L∗

2.

We then drive the initial condition s0 of channel F to 0. Now we are ready to

communicate at a rate R using power D
∗Σ∗

D
∗′, which is the minimum power needed

to sustain the pre-specified rate R.
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The encoding/decoding processes

1) Transmission of analog source: Assume that the to-be-conveyed message W is

distributed as N (0, In∗+1) (noting that any non-degenerate (n∗ +1)-variate Gaussian

vector W can be transformed in this form). Assume that the coding length is (K +1).

To encode, let

(42) x0 := W + WM ,

where

(43) WM := −
K∑

j=0

A−j−1L1ξj +
K∑

j=0

j−1∑
i=0

A−j−1L1H(F − L2H)k−1−jL2ξj .

Then run the system till time epoch K. To decode, let ŴK := x̂0,K . The distortion

is defined as

(44) MSE(ŴK) := E(W − ŴK)(W − ŴK)′.

2) Transmission of digital message: To transmit digital messages over the com-

munication system, let us first fix ε > 0 small enough and the coding length (K + 1)

large enough. Let

(45) Σ∗
x := [In∗+1, 0]Σ∗[In∗+1, 0]′.

Assume that the matrix (A∗′)−K−1Σ∗
x(A∗)−K−1 has an eigenvalue decomposition as

(46) (A∗′)−K−1Σ∗
x(A∗)−K−1 = EKΛKE′

K ,

where EK = [e(1), · · · , e(n∗+1)] is an orthonormal matrix and ΛK is a positive diagonal

matrix. Let σK,i be the square root of the (i, i)th element of ΛK . Let B ∈ Rn∗+1 be

the hypercube spanned by columns of EK , that is,

(47) B =

{
n∗∑
i=0

α(i)e(i)

∣∣∣∣∣α(i) ∈ [−1
2
,
1
2
], i = 0, · · · , n∗

}
.

Next we partition the ith side of B into (σK,i)−(1−ε) segments. This induces a partition

of B into MK sub-hypercubes, where

(48)
MK =

n∗∏
i=0

(σK,i)
−(1−ε)

=
[
det
(
(A∗′)−K−1Σ∗(A∗)−K−1

)]− 1−ε
2 .

We then map the sub-hypercube centers to a set of MK equally likely messages. The

above procedure is known to both the transmitter and receiver a priori.
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Suppose now we wish to transmit the message represented by the center W . To

encode, define x0 according to (42). Then run the system till time epoch K. To

decode, we map x̂0,K into the closest sub-hypercube center and obtain the decoded

message ŴK . We declare an error if ŴK �= W , and call a (an asymptotic) rate

(49) R := lim
K→∞

1
K + 1

log MK

achievable if the probability of error PEK vanishes as K tends to infinity.

As we can see, the encoder/decoder design and the encoding/decoding processes

are rather simple. The computation complexity involved in coding grows as O(K +1).

3.3. Coding theorem.

Theorem 3.1. Construct the encoder/decoder shown in Fig. 4 (b) using n∗, A∗,

C∗, L∗
1, L∗

2, and WM . Then under the average power constraint Eu2 ≤ P,

i) The coding scheme transmits an analog source W ∼ N (0, In∗+1) from the

encoder to the decoder at rate Cs(P), with MSE distortion MSE(ŴT ) achieving the

optimal asymptotic rate-distortion tradeoff given by

(50) Cs(P) = lim
T→∞

1
2(T + 1)

log
1

detMSE(ŴT )
.

ii) The coding scheme can transmit digital messages from the encoder to the de-

coder at a rate arbitrarily close to Cs(P), with PEK decaying to zero doubly exponen-

tially.

Remark 2. The main idea of this dirty-paper coding scheme is still the tech-

niques used for the AWGN dirty-paper channel: The presence of process noise ξk−1

at the encoder, and the presence of initial condition offset WM . In addition, it still

holds that the feedback communication problem is equivalent to a minimum-energy

control problem and Kalman filtering problem; details are skipped for brevity.

Proof. Similar to the AWGN case, the interference ξ does not affect xk and hence

the channel input uk asymptotically. In addition, the term in x̂0,K associated with ξ

is known to the encoder before the transmission, and therefore the encoder can offset

x0 to completely cancel the term associated with ξ. To facilitate our analysis, we

rewrite the communication system as a control system and then establish the above

claims.

We first define for the coding scheme shown in Fig. 4 (b) that

(51)
s̃k := sk − s̄k

Xk :=

[
xk

s̃k

]
.
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Then the dynamics of the encoder becomes

(52)

⎧⎪⎨
⎪⎩

Xk = AclXk−1 − LNk−1 = AXk−1 − Lek−1

ek−1 = CXk−1 + Nk−1

uk = DXk,

where Acl := A−LC. Note that (52) is a control system (as indicated in Fig. 4 (b)),

and is affected by the interference only through its initial condition X0. We now have

(53) Xk = A
k
clX0 −

k−1∑
j=0

A
k−j−1
cl LNj.

By uk = CXk, any L stabilizing the control system ensures that, the channel input

power is asymptotically equal to
∑k−1

j=0 A
k−j−1
cl LL′Ak−j−1

cl
′, independent of the inter-

ference. We can also verify that the term in x̂0,K generated by x0 is asymptotically

x0.

In addition, the interference would generate an extra term in x̂0,K given by

(54)
K∑

j=0

A−j−1L1ξj −
K∑

j=0

j−1∑
i=0

A−j−1L1H(F − L2H)k−1−jL2ξj ,

if no compensation to the initial condition x0 is used. Then we offset x0 by this

amount and therefore we achieve (asymptotic) lossless cancelation of the interference.

The proof for the coding scheme achieving Cs(P) follows from the reasoning in [29].

4. Numerical examples. In this section, we provide a numerical example of

the proposed optimal coding scheme for AWGN dirty-paper channel. Assume that the

power budget is P := 3, that is, we may achieve any rate equal to C(P)− ε = 1− ε bit

per channel use for any ε > 0. Let ε := 0.05, i.e. the desired rate is R = 0.95C(P) =

0.95 bit per channel use. Then we can construct the coding scheme according to

Section 2.1.

Simulation shows that R is indeed achieved since the decoder can distinguish

among MK := a(K+1)(1−ε) messages with the probability of error decaying to zero (in

a doubly exponential fashion); see Fig. 5 (a). Due to the fast decay of probability

of error, the coding length (and hence the coding delay) can be rather short (within

100) to attain a good performance. The shortened coding length also implies that

the preview of the interference ξK can be short. Additionally, the average channel

input power converges to P , see Fig. 5 (b). For short coding length, however, the

consumed power can be slightly different from the given power budget, since most

of our analysis holds asymptotically. Fig. 5 (b) also shows the convergence of the

decoder estimate W̄k to the message W .
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Fig. 5. (a) Simulated probability of error and theoretic probability of error. (b) Convergence of

the average channel input power, and vanishing of estimation error (W̄K − W ).

5. Conclusions. In this paper, we have proposed capacity-achieving coding

schemes for a dirty-paper channel with AWGN and for a dirty-paper channel with

AWGN and ISI, both having noiseless output feedback. The interference is assumed

to be known to the encoder non-causally before the transmission and unknown to the

decoder, and can be arbitrarily varying, either deterministic or random. We achieved

lossless interference cancelation, that is, we canceled the interference without extra
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power overhead or rate loss. We exhibited the connections among feedback commu-

nication, feedback control, and estimation over a dirty-paper channel. In establishing

lossless interference cancelation, we developed techniques which may be readily ap-

plied to more general dirty-paper channels. We also discussed the potential usefulness

of our feedback communication schemes to sensor networks, in which we may wish

to take advantage of the high-quality feedback link and the knowledge of interfer-

ence to improve the forward communication. Future work includes the study of, first,

multi-input multi-output communication systems with feedback, and second, channels

with feedback and with causal interference information (i.e. dirty-tape channels with

feedback), in which the perspective of investigating their control/estimation theoretic

equivalences as well as the corresponding fundamental limitations (see [22, 29]) may

play an important role.
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