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SEMI-GLOBAL ROBUST OUTPUT REGULATION FOR

NONLINEAR SYSTEMS IN NORMAL FORM USING OUTPUT

FEEDBACK∗

WEIYAO LAN† , ZHIYONG CHEN‡ , AND JIE HUANG§

Abstract. This paper studies the semi-global robust output regulation problem for the class

of nonlinear affine systems in normal form. The same problem was studied before by Khalil under

the assumption that the solution of the regulator equations is polynomial. By using the nonlinear

internal model approach, we have relaxed the polynomial assumption on the solution of the regulator

equations.
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1. Introduction. The nonlinear output regulation problem has been extensively

studied since 1990s in [5], [6], and [8]. The robust version of this problem is addressed

in [1], [2], and [4]. Also, the solvability of the various versions of the regional and/or

semi-global robust output regulation problem are studied in [7], [9], [11], [12], and

[14]. Nevertheless, the results of all these papers rely on a key assumption that

the regulator equations of the system admit a polynomial solution. This assumption

essentially requires that the nonlinear systems contain only polynomial nonlinearities.

Recently, a general framework for studying the robust output regulation problem is

proposed in [3]. Under this framework, the robust output regulation problem for a

given plant can be systematically converted into a robust stabilization problem for an

appropriately defined augmented system. Moreover, this framework admits a class

of nonlinear internal models such that the polynomial condition (see, e.g., [7] and

[12]) can be relaxed by some milder assumption. In this paper, we will further apply

this framework to study a semi-global robust output regulation problem for a class

of nonlinear systems in normal form. As in [3], our approach consists of two steps.

First, convert the semi-global robust output regulation problem of the given system

into a semi-global robust stabilization problem of an appropriately defined augmented
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system. Second, solve the semi-global robust stabilization problem of the augmented

system using the approach adapted from the work of [13] and [14]. It should be noted

that while the first step follows straightforwardly from the framework developed in

[3], the accomplishment of the second step is non-trivial. This is because the zero

dynamics of the augmented system consist of two parts. The first part is a variation

of the zero dynamics of the given plant, and the second part is the dynamics that

govern the nonlinear internal model. We have employed the changing supply function

technique [16] to address the issue of the stability property of the zero dynamics of

the augmented system.

The paper is organized as follows. Section 2 formulates a semi-global robust

output regulation problem, and converts this semi-global robust output regulation

problem into a semi-global robust stabilization problem for an augmented system. In

Section 3, we establish the solvability conditions for the semi-global robust stabiliza-

tion problem of the augmented system by dynamic output feedback, which in turn

leads to the solvability conditions for the semi-global output regulation problem of

the original system. Section 4 gives an example to illustrate our method. Finally,

Section 5 concludes this paper with some remarks.

2. Problem Description and Problem Conversion. Consider a nonlinear

system described as follows,

ż = f0(z, x, v, w)

ẋi = xi+1, i = 1, · · · , r − 1

ẋr = f1(z, x, v, w) + u

v̇ = A1v

e = x1 − q(v, w)

(1)

where z ∈ R
m, x = col(x1, · · · , xr) with xi ∈ R, i = 1, · · · , r, are the plant states,

u ∈ R is the control input, e ∈ R is the tracking error, v ∈ Rq is the exogenous

signal representing the disturbance and/or the reference input, and w ∈ R
N is the

uncertain parameter. All the functions are sufficiently smooth with f0(0, 0, 0, w) = 0,

f1(0, 0, 0, w) = 0, and q(0, w) = 0. The exosystem is neutrally stable, i.e., all the

eigenvalues of A1 are simple and have zero real parts.

The class of output feedback control laws considered here are described by

u = kc(zc, e), żc = fc(zc, e)(2)

where zc is the compensator state vector of dimension nc to be specified later, and kc

and fc are globally defined sufficiently smooth functions.

Semi-global robust output regulation problem. Given compact sets V0 ⊂ Rq,

W ⊂ RN , Z ⊂ Rm, X ⊂ Rr and Zc ⊂ Rnc , which contain the origins of the respective
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Euclidean spaces, a controller of the form (2) is said to solve the robust output regula-

tion problem for the system (1) with respect to V0×W×Z×X×Zc if the closed-loop

system (1)-(2) with its state being denoted by xc = col(z, x, zc) has the following two

properties:

Property 1. For any v(0) ∈ V0, w ∈ W, and xc(0) ∈ Xc where Xc =

Z×X×Zc, the trajectories of the closed-loop system starting from xc(0) and

v(0) exist and are bounded for all t ≥ 0.

Property 2. The tracking error e(t) of the trajectories described in Property

1 approaches zero asymptotically, i.e., limt→∞ e(t) = 0.

If for any given triple (V0,W,Xc), there exists a controller of the form (2) such that

the closed-loop system (1)-(2) has Properties 1 and 2, then we say that the semi-global

robust output regulation problem of the system (1) is solvable.

Remark 2.1. Since the exosystem is neutrally stable, for any v(0) ∈ V0, there

exists a compact set V ⊂ Rq containing the origin of Rq such that v(t) ∈ V for all

t ≥ 0.

Let us first apply the framework developed in [3] to convert the semi-global ro-

bust output regulation problem into a semi-global robust stabilization problem for

an appropriately defined augmented system. To fulfill this conversion, we need the

following standard assumptions.

A1: Let x(v, w) = col(x1(v, w), · · · ,xr(v, w)) where

x1(v, w) = q(v, w)

xi(v, w) =
∂xi−1(v, w)

∂v
A1v, i = 2, · · · , r.

There exists a sufficiently smooth function z(v, w) with z(0, 0) = 0 such that,

for all v ∈ Rq, w ∈ RN ,

∂z(v, w)
∂v

A1v = f0(z(v, w),x(v, w), v, w).

Remark 2.2. Under assumption A1, the regulator equations associated with

the system (1) are solvable by (z(v, w),x(v, w),u(v, w)) where

u(v, w) =
∂xr(v, w)

∂v
A1v − f1(z(v, w),x(v, w), v, w).

However, the solvability of the regulator equations is insufficient for solving the robust

output regulation problem, some additional conditions have to be imposed on the

solution of the regulator equations (see [1], [2], [4], [7], and [12]). Despite the different

appearances of these conditions, they amount to requiring the system admit a linear

internal model, which in turn essentially requires the system only contain polynomial

nonlinearities. Recently, a much less restrictive condition was given in [3] and will be

stated below as assumption A2.
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A2: There exist an integer s and sufficiently smooth functions τ : Rq+N �→ Rs and

Γ : R
s �→ R vanishing at the origin and a matrix Φ ∈ R

s×s such that, for all

trajectories v(t) of the exosystem and all w ∈ RN ,

dτ (v, w)
dt

= Φτ (v, w) , u(v, w) = Γ (τ (v, w)) .(3)

Moreover, let Ψ be the gradient of Γ(τ) at the origin. Then the pair (Ψ,Φ)

is observable.

Remark 2.3. For any nonsingular matrix T of dimension s, let θ = Tτ ,

α(θ) = TΦT−1θ, and β(θ) = Γ(T−1θ). Then, the triplet {θ, α, β} is what is called the

steady-state generator of system (1) with output u [3]. It is noted when the solution of

the regulator equations is polynomial, assumption A2 is satisfied automatically with

Γ a linear function of τ . For this special case, the semi-global stabilization of systems

(1) has been studied in [9] and [12]. What is interesting here is that assumption A2

can be satisfied with Γ a nonlinear function of τ when the solution of the regulator

equations is not polynomial [3].

Remark 2.4. Under assumptions A1-A2, since the pair (Ψ,Φ) is observable,

for any controllable pair (M,N) with M a Hurwitz matrix of dimension s and N a

column vector, there exists a nonsingular matrix T satisfying the Sylvester equation

TΦ−MT = NΨ. Define

η̇ = γ(η, u) = Mη +N(u− β[2](η))(4)

where η ∈ Rs and β[2](η) = β(η) − ΨT−1η. System (4) is introduced in [3] and is

called an internal model of (1) with output u. It is noted that when the function β(·)
is linear, (4) reduces to a linear internal model.

The combination of the system (1) and the internal model (4) is called the aug-

mented system. Under the coordinate and input transformation,

η̄ = η − θ(v, w)

z̄ = z − z(v, w)

x̄i = xi − xi(v, w), i = 1, · · · , r
ū = u− β(η)

(5)

the augmented system takes the following form

˙̄η = (M +NΨT−1)η̄ +Nū

˙̄z = f̄0(z̄, x̄1, · · · , x̄r, v, w)
˙̄xi = x̄i+1, i = 1, · · · , r − 1
˙̄xr = f̄1(η̄, z̄, x̄1, · · · , x̄r, v, w) + ū

v̇ = A1v

e = x̄1

(6)
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where

f̄0(z̄, x̄1, · · · , x̄r, v, w)

= f0(z̄ + z(v, w), x̄1 + x1(v, w), · · · , x̄r + xr(v, w), v, w)

−f0(z(v, w),x1(v, w), · · · ,xr(v, w), v, w);

f̄1(η̄, z̄, x̄1, · · · , x̄r, v, w)

= f1(z̄ + z(v, w), x̄1 + x1(v, w), · · · , x̄r + xr(v, w), v, w)

−f1(z(v, w),x1(v, w), · · · ,xr(v, w), v, w)

+β(η̄ + θ(v, w)) − β(θ(v, w)).

It is clear that

f̄0(0, · · · , 0, v, w) = 0, f̄1(0, · · · , 0, v, w) = 0(7)

that is, the origin col(η̄, z̄, x̄) = 0 is the equilibrium point of the unforced augmented

system (6) for all trajectories v(t) of the exosystem and any w ∈ R
N .

Let d(t) = col(v(t), w) ∈ D = V × W, then system (6) is a special case of the

following more general nonlinear systems

ẋ = f(x, u, d(t)), e = h(x, d(t))(8)

where x is the n-dimensional system state, u the m-dimensional control input, e the p-

dimensional output, d(t) the nd-dimensional uncertain parameters, and f(0, 0, d(t)) =

0 and h(0, d(t)) = 0 for all d(t) ∈ D.

Semi-global robust stabilization problem. Consider the uncertain nonlinear

control system (8) and a dynamic output feedback controller of the form

u = k(ξ, e), ξ̇ = ϕ(ξ, e)(9)

where ξ ∈ Rnξ for some integer nξ, and k and ϕ are globally defined sufficiently

smooth functions satisfying k(0, 0) = 0 and ϕ(0, 0) = 0. Let D ⊂ Rnd , X ⊂ Rn,

and S ⊂ Rnξ be some given compact sets containing the origins of the respective

Euclidian spaces. If there exists a dynamic output feedback controller of the form (9)

such that, for any x(0) ∈ X, ξ(0) ∈ S and d(t) ∈ D, the solution of the closed-loop

system (8) and (9) exists and is bounded for all t ≥ 0 and all the states converge

to the origin asymptotically, then we say that the controller (9) solves the robust

stabilization problem of the system (8) with respect to D × X × S. If for every triple

(D,X, S), there exists a dynamic output feedback controller of the form (9) that solves

the robust stabilization problem of the system (8) with respect to D×X×S, then we

say that the semi-global stabilization problem of the system (8) is solvable by output

feedback control.
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As for the global robust output regulation case studied in [3], the following propo-

sition shows that the solvability of the semi-global robust stabilization problem of the

augmented system (6) leads to that of the semi-global robust output regulation prob-

lem of the original system (1).

Proposition 2.1. Consider the augmented system (6) with the uncertainty

d(t) = col(v(t), w) ∈ D = V × W. If a dynamic output feedback controller

ū = k(ξ, e), ξ̇ = ϕ(ξ, e)(10)

solves the robust stabilization problem of (6) with respect to D× (Ē× Z̄× X̄)×S where

Ē × Z̄ × X̄ ⊂ Rs × Rm × Rr are compact sets containing the origin (in particular,

η̄(0) ∈ Ē, z̄(0) ∈ Z̄, and x̄(0) ∈ X̄), then the dynamic output feedback controller of the

form

u = β(η) + k(ξ, e)

η̇ = Mη +N(k(ξ, e) + ΨT−1η)

ξ̇ = ϕ(ξ, e)

(11)

solves the robust output regulation problem of the original system (1) with respect to

V0 × W × Z × X × Zc where Zc = E × S and

E = {η ∈ R
s : η = η̄ + θ(v, w), η̄ ∈ Ē, col(v, w) ∈ D}

Z = {z ∈ R
m : z = z̄ + z(v, w), z̄ ∈ Z̄, col(v, w) ∈ D}

X = {x ∈ R
r : x = x̄+ x(v, w), x̄ ∈ X̄, col(v, w) ∈ D}.

Proof. For any given compact sets Ē, Z̄, X̄ and S containing the origins of the

respective Euclidian spaces, assume the output feedback controller (10) solves the

robust stabilization problem of the system (6) with respect to D × Ē × Z̄ × X̄ × S,

that is, for any col(η̄(0), z̄(0), x̄(0), ξ(0)) ∈ Ē × Z̄ × X̄ × S and d(t) ∈ D, the states η̄,

z̄, x̄, ξ of the closed-loop system (6) and (10) are bounded for all t ≥ 0 and converge

to the origin asymptotically. Now, consider the closed-loop system (1) and (11), and

denote xc = col(z, x, η, ξ). Since xc = col(z̄ + z(v, w), x̄+x(v, w), η̄ + θ(v, w), ξ), xc is

also bounded for all t ≥ 0 for any xc(0) = col(z(0), x(0), η(0), ξ(0)) ∈ Z × X × E × S.

Furthermore,

lim
t→∞ e(t) = lim

t→∞(x1(t) − x1(v(t), w)) = lim
t→∞ x̄1(t) = 0.

As a result, the controller (11) solves the robust output regulation problem of the

original system (1) with respect to V0 × W × Z × X × Zc.

3. Robust Stabilization via Output Feedback. Due to Proposition 2.1, we

only need to solve the semi-global robust stabilization problem of the augmented
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system (6) in order to solve the semi-global robust regulation problem of the original

system (1). System (6) is in the standard normal form. The robust stabilization

problem of the system of the form (6) has been well studied in literatures [13] and

[14]. In particular, Khalil et al gave solvability conditions for the semi-global robust

stabilization of the system of the form (6) when d is constant [13]. To make use of

the result of [13], let us introduce another transformation

η̃ = η̄ −Nx̄r.(12)

Then, the system (6) is transformed to

˙̃η = Q(η̃, z̄, x̄1, · · · , x̄r, v, w)
˙̄z = f̄0(z̄, x̄1, · · · , x̄r, v, w)

˙̄xi = x̄i+1, i = 1, · · · , r − 1
˙̄xr = f̄1(η̃ +Nx̄r, z̄, x̄1, · · · , x̄r, v, w) + ū

e = x̄1

(13)

where

Q(η̃, z̄, x̄1, · · · , x̄r, v, w) = Mη̃ +MNx̄r −N(β[2](η̃ +Nx̄r + θ(v, w)) − β[2](θ(v, w)))

−N(f1(z̄ + z(v, w), x̄1 + x1(v, w), · · · , x̄r + xr(v, w), v, w)

−f1(z(v, w),x1(v, w), · · · ,xr(v, w), v, w)).

It is clear that

Q(0, 0, 0, · · · , 0, v, w) = 0.(14)

Denote d(t) = col(v(t), w), z̃ = col(η̃, z̄) and x̄ = col(x̄1, · · · , x̄r), then system (13)

can be rewritten as

˙̃z = φ0(z̃, x̄, d)
˙̄x = Ax̄+B(φ1(z̃, x̄, d) + ū)

e = x̄1

(15)

where

A =

[
0(r−1)×1 I(r−1)×(r−1)

0 01×(r−1)

]
, B =

[
0(r−1)×1

1

]

and

φ0(z̃, x̄, d) =

[
Q(η̃, z̄, x̄1, · · · , x̄r, v, w)

f̄0(z̄, x̄1, · · · , x̄r, v, w)

]

φ1(z̃, x̄, d) = f̄1(η̃ +Nx̄r, z̄, x̄1, · · · , x̄r, v, w).

It is noted that φ0(0, 0, d) = 0 for all d.

It can be deduced from Corollary 1 of [13] that system (15) is semi-globally

stabilizable if the system satisfies Conditions 1 to 3 listed below.
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Condition 1: There exist a C1 function W1 : Rm+s �→ R+, and class K∞
functions αi, i = 1, 2, 3, and γ1 such that, for all (z̃, x̄) ∈ R

m+s ×R
r, and all

d ∈ D,

α1(‖z̃‖) ≤W1(z̃) ≤ α2(‖z̃‖)
∂W1(z̃)
∂z̃

φ0(z̃, x̄, d) ≤ −α3(‖z̃‖), ∀‖z̃‖ ≥ γ1(‖x̄‖).

Before introducing Condition 2, the following notations are defined. Let K be

such that A + BK is Hurwitz, and the symmetric positive definite matrix P be the

solution of the Lyapunov equation

P (A+BK) + (A+BK)TP = −I.

Also let

O
1
c1

= { z̃ ∈ R
m+s : W1(z̃) ≤ c1}

O
2
c2

= {x̄ ∈ R
r : W2(x̄) ≤ c2}

where W2(x̄) = x̄TP x̄.

Condition 2: For each pair of c1, c2 > 0 satisfying

α4(
√
c2/λmin(P )) ≤ c1

where λmin(P ) is the minimal eigenvalue of the matrix P , and α4 = α2 ◦ γ1,

there exists a scalar nonnegative locally Lipschitz function ρ(x̄) such that

|φ1(z̃, x̄, d) −Kx̄| ≤ ρ(x̄)

for all (z̃, x̄) ∈ O
1
c1

× O
2
c2

, all d ∈ D.

Condition 3: In some neighborhood of (z̃, x̄) = 0, there exist a C1 positive

definite function W̃1 : R
m+s �→ R

+, such that, for all d ∈ D,

∂W̃1(z̃)
∂z̃

φ0(z̃, 0, d) ≤ −λ1‖z̃‖2

|φ1(z̃, 0, d)| ≤ λ2‖z̃‖
∂W̃1(z̃)
∂z̃

[φ0(z̃, x̄, d) − φ0(z̃, 0, d)] ≤ λ3‖z̃‖‖x̄‖

where λi > 0, i = 1, 2, 3.

Remark 3.1. Note that, in [13], the uncertainty d is assumed to be constant.

It is not difficult to conclude that the results of [13] also apply to the case where d is

time-varying as long as d belongs to a compact set.

The zero dynamics of the augmented system (6) consist of the zero dynamics of the

original plant and the dynamics governing the internal model. Therefore, even though
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the zero dynamics of the plant satisfy Conditions 1 to 3, there is no guarantee that

the zero dynamics of the augmented system also satisfy Conditions 1 to 3. Therefore,

it is interesting to further study the problem of imposing conditions on the plant and

the internal model (4) so that the zero dynamics of the augmented system can satisfy

Conditions 1 to 3.

A3: There exist a C1 function V1(z̄) and class K∞ functions ᾱi, i = 1, 2, 3 and σ,

independent on d(t) such that, for all (z̄, x̄) ∈ Rm × Rr, and all d ∈ D,

ᾱ1(‖z̄‖) ≤ V1(z̄) ≤ ᾱ2(‖z̄‖)
∂V1(z̄)
∂z̄

f̄0(z̄, x̄, d) ≤ −ᾱ3(‖z̄‖) + σ(‖x̄‖),

and in some neighborhood of z̄ = 0,∥∥∥∥∂V1(z̄)
∂z̄

∥∥∥∥ ≤ λ̄1‖z̄‖, λ1 > 0.

Moreover, the function ᾱ3(·) satisfies

lim
s→0+

sup
ᾱ−1

3 (s2)
s

< +∞.

A4: Let the symmetric positive definite matrix PM be the solution of the Lyapunov

equation

PMM +MTPM = −I.

Then there exists a positive number R, such that, for all η̃ and δ,

−2η̃TPMN(β[2](η̃ + δ) − β[2](δ)) ≤ (1 −R)η̃T η̃.(16)

Theorem 3.1. Suppose the system (15) satisfies assumptions A3 and A4, then

there exists a positive definite function W1(z̃) such that α1(‖z̃‖) ≤ W1(z̃) ≤ α2(‖z̃‖)
for some class K∞ functions αi, i = 1, 2, and

∂W1(z̃)
∂z̃

φ0(z̃, x̄, d(t)) ≤ −α3(‖z̃‖), ∀‖z̃‖ ≥ γ1(‖x̄‖)

for some class K∞ functions γ1 and α3. Further, suppose the system (15) satisfies

the additional assumption

A5: For each pair of c1, c2 > 0 satisfying

α4(
√
c2/λmin(P )) ≤ c1,

where α4 = α2◦γ1, there exists a scalar nonnegative locally Lipschitz function

ρ(x̄) such that

|φ1(z̃, x̄, d) −Kx̄| ≤ ρ(x̄)

for all (z̃, x̄) ∈ O3
c1

× O2
c2

, and all d ∈ D where O3
c1

= { z̃ ∈ Rm+s : V1(z̄) ≤
c1, V2(η̃) ≤ c1} and V2(η̃) = η̃TPM η̃.



394 WEIYAO LAN, ZHIYONG CHEN, AND JIE HUANG

Then, the semi-global robust stabilization problem of the system (15) is solvable by a

dynamic output feedback controller of the form (9).

Proof. It suffices to prove that system (15) satisfies Condition 1 under assumptions

A3 and A4, and Conditions 2 and 3 under assumptions A3-A5.

Verification of Condition 1: Consider the z̃-subsystem of (15), ˙̃z = φ0(z̃, x̄, d),

that is,

˙̃η = Q(η̃, z̄, x̄, d(t))(17)

˙̄z = f̄0(z̄, x̄, d(t)).(18)

From (7) and (14), it is clear that φ0(0, 0, d) = 0.

On one hand, system (17) can be rewritten as

˙̃η = Q(η̃, z̄, x̄, d(t)) = Mη̃ −N(β[2](η̃ + δ) − β[2](δ)) + ψ(z̄, x̄, d(t))

where δ = Nx̄r + θ, and

ψ(z̄, x̄, d(t)) = MNx̄r −Nf1(z̄ + z(v, w), x̄1 + x1(v, w), · · · , x̄r + xr(v, w), v, w)

+ Nf1(z(v, w),x1(v, w), · · · ,xr(v, w), v, w) −N(β[2](Nx̄r + θ) − β[2](θ)).

Under assumption A4, the derivative of V2(η̃) along system (17) is

dV2(η̃)
dt

= −η̃T η̃ − 2η̃TPMN(β[2](η̃ + δ) − β[2](δ)) + 2η̃PMψ(z̄, x̄, d(t))

≤ −Rη̃T η̃ + 2η̃PMψ(z̄, x̄, d(t)) ≤ −R
2
‖η̃‖2 +

2
R
‖PMψ(z̄, x̄, d(t))‖2.

Noting that ψ(0, 0, d(t)) = 0, it is not difficult to find C1 class K∞ functions σz̄ and

σx̄, independent of d(t), such that σz̄(‖z̄‖) ≤ ‖z̄‖2σ̂z̄(‖z̄‖) for some smooth positive

function σ̂z̄ , and

dV2(η̃)
dt

≤ −R
2
‖η̃‖2 + σz̄(‖z̄‖) + σx̄(‖x̄‖).

On the other hand, under A3, by using the changing supply function tech-

nique [16], for any positive function Δ(z̄), there exist a smooth function V ′
1(z̄) =∫ V1(z̄)

0 S(s)ds, where S(s) ≥ 1 is a C1 nondecreasing function, and class K∞ functions

ᾱ′
i, i = 1, 2, and σ′, independent of d(t), such that

ᾱ′
1(‖z̄‖) ≤ V ′

1(z̄) ≤ ᾱ′
2(‖z̄‖)

∂V ′
1(z̄)
∂z̄

f̄0(z̄, x̄, d(t)) ≤ −Δ(z̄)ᾱ3(‖z̄‖) + σ′(‖x̄‖).

Since the function ᾱ3(·) satisfies lims→0+ sup ᾱ−1
3 (s2)

s < +∞, we can choose Δ such

that

Δ(z̄)ᾱ3(‖z̄‖) ≥ ‖z̄‖2 [σ̂z̄(‖z̄‖) + 1] .(19)
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Hence, we have Δ(z̄)ᾱ3(‖z̄‖) ≥ σz̄(‖z̄‖)+‖z̄‖2. To show (19), note that for any smooth

function Δ̄(z̄), there exists a smooth function Δ(z̄) such that

Δ(z̄)ᾱ3(‖z̄‖) ≥ ‖z̄‖2Δ̄(z̄).(20)

In fact, since ᾱ3(·) satisfies lims→0+ sup ᾱ−1
3 (s2)

s < +∞, there exits some constant

L1 ≥ 1 such that ‖z̄‖2

L2
1

≤ ᾱ3(‖z̄‖) for ‖z̄‖ ≤ 1, and since ᾱ3(·) is of class K∞, for some

constant L2 > 0, ᾱ3(‖z̄‖) ≥ L2 when ‖z̄‖ ≥ 1. As a result, (20) holds for

Δ(z̄) ≥ L2
1Δ̄(z̄) +

1
L2

‖z̄‖2Δ̄(z̄).

Then, (19) holds from (20) by taking Δ̄(z̄) ≥ σ̂z̄(‖z̄‖) + 1.

Now, let W1(z̃) = V ′
1 (z̄) + V2(η̃), then clearly, α1(‖z̃‖) ≤ W1(z̃) ≤ α2(‖z̃‖) for

some class K∞ functions αi, i = 1, 2, and

∂W1(z̃)
∂z̃

φ0(z̃, x̄, d(t))

≤ −R
2
‖η̃‖2 + σz̄(‖z̄‖) + σx̄(‖x̄‖) − Δ(z̄)ᾱ3(‖z̄‖) + σ′(‖x̄‖)

≤ −R
2
‖η̃‖2 − ‖z̄‖2 + σx̄(‖x̄‖) + σ′(‖x̄‖).(21)

Clearly, there exist class K∞ functions γ1 and α3 such that

∂W1(z̃)
∂z̃

φ0(z̃, x̄, d(t)) ≤ −α3(‖z̃‖), ∀‖z̃‖ ≥ γ1(‖x̄‖).

Verification of Condition 2: Under assumption A5, it suffices to prove that (z̃, x̄) ∈
O1

c1
× O2

c2
implies (z̃, x̄) ∈ O3

c1
× O2

c2
. In fact, when z̃ ∈ O1

c1
, we have

W1(z̃) = V ′
1(z̄) + V2(η̃) =

∫ V1(z̄)

0

S(s)ds+ V2(η̃) ≤ c1,

which gives

∫ V1(z̄)

0

S(s)ds ≤ c1 and V2(η̃) ≤ c1.

Since S(s) ≥ 1, we further get that V1(z̄) ≤ c1. As a result, z̃ ∈ O3
c1

.

Verification of Condition 3: From inequality (21), it can be seen that α3 can be

chosen such that locally, α3(‖z̃‖) ≥ λ1‖z̃‖2 for some λ1 > 0. Hence,

∂W1(z̃)
∂z̃

φ0(z̃, 0, d(t)) ≤ α3(‖z̃‖) ≤ −λ1‖z̃‖2.

Second, since φ1(z̃, 0, d) is C1 and d ∈ D, we have, locally, |φ1(z̃, 0, d)| ≤ λ2‖z̃‖
for some λ2 > 0.
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Third, we have

∂W1(z̃)
∂z̃

[φ0(z̃, x̄, d(t)) − φ0(z̃, 0, d(t))]

≤
[
S(V1(z̄))

∂V1(z̄)
∂z̃

+ 2PM η̃

]
[φ0(z̃, x̄, d(t)) − φ0(z̃, 0, d(t))].

Since φ0(z̃, x̄, d(t)) is C1, then under A3, we have, locally,

∂W1(z̃)
∂z̃

[φ0(z̃, x̄, d(t)) − φ0(z̃, 0, d(t))] ≤ λ3‖z̃‖‖x̄‖

for some λ3 > 0. From above, Condition 3 holds with W̃1(z̃) = W1(z̃).

Remark 3.2. Roughly, assumption A3 implies that the subsystem ˙̄z = f̄0(z̄,

x̄, d) is robust input-to-state stable with x̄ as input, z̄ as state and d as uncertainty,

and it also implies that the equilibrium point of ˙̄z = f̄0(z̄, 0, d) at z̄ = 0 is locally

exponentially stable if the functions ᾱ1 and ᾱ2 take quadratic form in some neighbor-

hood of the origin. A similar assumption can be found in [10] which handles the global

robust regulation problem of lower triangular systems. This assumption together with

assumption A4 guarantees that the zero dynamics of the augmented system satisfies

Conditions 1 and 3. Assumption A5 is made to guarantee that the zero dynamics of

the augmented system satisfies Conditions 2.

Remark 3.3. As pointed out in [3], assumption A4 is satisfied when
∣∣β[2](η̃ + δ)

−β[2](δ)
∣∣ ≤ (1−R)

2‖PM N‖‖η̃‖. In particular, assumption A4 is satisfied when β(x) is a linear

function of x.

By Proposition 2.1 and Theorem 3.1, we have the following conclusion.

Theorem 3.2. Under assumptions A1-A5, the semi-global robust output regula-

tion problem of the system (1) is solvable by a dynamic output feedback controller.

Remark 3.4. The methodology of this paper is different from the one in

[12]. In [12], the dynamics of the exosystem is treated as part of the augmented

system. In this paper, the augmented system only consists of the given plant and the

internal model while the exogenous signal v is treated as a time-varying disturbance,

which can be handled in the same way as the unknown parameter w. Therefore, the

augmented system is still in the standard normal form. As a result, the semi-global

robust stabilization technique in [13] can be directly applied to handle the robust

stabilization problem of the augmented system.

4. An Example. Consider the following system

ż = −z − z3 + w1z(x1 − v1) + x2 + v2

ẋ1 = x2

ẋ2 = w1z − x1 + 0.1 sin2(w2x1x2) + w2v1x2 + u

y = x1

e = y − v1

(22)
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with the exosystem

v̇1 = −v2, v̇2 = v1.(23)

It can be verified that the solution of the regulator equations associated with the

system (22)-(23) is given by

z(v, w) = 0, x1(v, w) = v1, x2(v, w) = −v2,
u(v, w) = w2v1v2 − 0.1 sin2(w2v1v2).

(24)

Thus, system (22)-(23) satisfies assumption A1. Since, u(v, w) is not a polynomial in

v, the semi-global robust output regulation of this system cannot be solved by any

existing approaches.

Let τ(v, w) =

[
τ1(v, w)

τ2(v, w)

]
=

[
w2v1v2

w2(v2
1 − v2

2)

]
. Then, assumption A2 is satisfied

with Γ(τ) = τ1−0.1 sin2(τ1), Φ =

[
0 1

−4 0

]
, and Ψ = [1 0]. Let M =

[
−1 0

0 −2

]
,

and N =

[
1

2

]
. Solving the Sylvester equation TΦ−MT = NΨ gives a nonsingular

matrix T =

[
0.2 −0.2

0.5 −0.25

]
. Thus,

θ = Tτ

β(η) = Γ(T−1η) = [−5 4]η − 0.1 sin2([−5 4]η)

β[2](η) = −0.1 sin2([−5 4]η).

An internal model is given as follows

η̇ = Mη +N(u− β[2](η)).(25)

Performing the coordinate and input transformation (5) converts the augmented sys-

tem (22) and (25) into the following form

˙̃η = Mη̃ −N(β[2](η̃ + δ) − β[2](δ)) + ψ(z̄, x̄, d)
˙̄z = −z̄ − z̄3 + w1z̄x̄1

˙̄x1 = x̄2

˙̄x2 = β(η̃ +Nx̄2 + θ) + w1z̄ − x̄1 + w2v1(x̄2 − v2)

+0.1 sin2(w2(x̄1 + v1)(x̄2 − v2)) + ū

(26)

where δ = Nx̄2 + θ, and

ψ(z̄, x̄, d) = MNx̄2 −N(β[2](Nx̄2 + θ) − β[2](θ)) −N(w1z̄ + x̄1 + w2v1x̄2

−0.1 sin2(w2v1v2)) + 0.1 sin2(w2(x̄1 + v1)(x̄2 − v2))
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It can be verified that the system (26) satisfies the assumptions A3-A5, and then

satisfies Condition 1-3. To be more specific, assume V = {v2
1 + v2

2 ≤ 1}, and W =

{−1 ≤ wi ≤ 1, i = 1, 2}, X = {|xi| ≤ 2, i = 1, 2} and Z = {|z| ≤ 1}. Let

V1(z̄) = 1
2 z̄

2, then

∂V1(z̄)
∂z̄

f̄0(z̄, x̄, d) = −z̄2 − z̄4 + w1z̄
2x̄1 ≤ −z̄2 +

1
4
x̄2

1 ≤ −z̄2 +
1
4
‖x̄‖2

that is, assumption A3 is satisfied with ᾱ1(s) = ᾱ2(s) = 1
2s

2, ᾱ3(s) = s2 and σ(s) =

1
4s

2. Solving the Lyapunov equation PMM+MTPM = −I gives PM =

[
0.5 0

0 0.25

]

then,

−2η̃T

[
0.5 0

0 0.25

][
1

2

]
(η̃ + δ) − β[2](δ))

≤ 0.1|(η̃1 + η̃2)(−5η̃1 + 4η̃2)| ≤ 0.6‖η̃‖2

that is, assumption A4 is satisfied with 0 < R < 0.4. Now let R = 0.2, and V2(η̃) =

η̃TPM η̃, then

dV2(η̃)
dt

≤ −0.1η̃T η̃ + 10‖PMψ(z̄, x̄, d)‖2

≤ −0.1η̃T η̃ + σz̄(‖z̄‖) + σx̄(‖x̄‖)

for σz̄(s) = 20s2 and σx̄(s) = 173.2s2 + 0.01s4. Let W1(z̃) = 20.1V1(z̄) + V2(η̃), then

∂W1(z̃)
∂z̃

φ0(z̃, x̄, d) ≤ −0.1η̃T η̃ − 0.1z̄2 + 178.45‖x̄‖2 + 0.01‖x̄‖4

≤ −0.05‖z̃‖2, ∀‖z̃‖ ≥
√

20(178.45‖x̄‖2 + 0.01‖x̄‖4)

thus, Condition 1 is satisfied with

α3(s) = 0.05s2 and γ1(s) =
√

20(178.45s2 + 0.01s4).

Let K = [−1 − 2], then solving the Lyapunov equation P (A+BK)+ (A+BK)P =

−I gives P =

[
1.5 0.5

0.5 0.5

]
. Let c1 = 400 and c2 = 12, assumption A5, and thus

Condition 2, is satisfied with ρ(x̄) = 20 + 5|x̄2|. Also, it is not difficult to verify that

Condition 3 holds with W̃1(z̃) = W1(z̃). Thus, by the approach detailed in [13], a

state feedback controller that solves the stabilization problem for the system (26) is

given as follows,

u = k(x̄) = −q(x̄)qs(x̄)(27)

where q(x̄) = 20 + 5|x̄2|, and

qs(x̄) =

{
s
|s| , q(x̄)|s| > μ > 0

q(x̄) s
μ , q(x̄)|s| ≤ μ
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with s = 2BTP x̄ and μ = 10. To implement the state feedback controller (27) as an

output feedback controller, we use the following high gain observer,

˙̂x1 = x̂2 + 5.5(e− x̂1)/ε

˙̂x2 = 6(e− x̂1)/ε2.

with ε = 0.04. Finally, an output feedback controller solves the output regulation

problem for the system (22) is given as follows,

u = β(η) + k(x̂)

˙̂x1 = x̂2 + 5.5(e− x̂1)/ε

˙̂x2 = 6(e− x̂1)/ε2

η̇ = Mη +N(k(x̂) + ΨT−1η).

The performance of the controller is simulated for the case where w1 = 0.7,

w2 = −0.5, z(0) = 0.5, x(0) = [1.5 1]T , η(0) = 0, x̂(0) = 0 and is shown in Figure 1.

5. Conclusions. This paper addresses the semi-global robust output regulation

problem for a class of minimum phase nonlinear systems by using dynamic output

feedback. Under the framework of [3], the problem is solved in two steps. In the

first step, the semi-global robust output regulation problem is converted into a semi-

global robust stabilization problem, and then in the second step, the semi-global

robust output regulation problem is solved by solving the corresponding semi-global

robust stabilization problem with min-max control proposed in [13]. Moreover, by

introducing a nonlinear internal model, the polynomial condition on the solution of

the regulator equations is relaxed.
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Fig. 1. Tracking performance of the closed-loop system


