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FAST AND NUMERICALLY STABLE ALGORITHMS FOR

DISCRETE HARTLEY TRANSFORMS AND APPLICATIONS TO

PRECONDITIONING

ANTONIO ARICO∗, STEFANO SERRA-CAPIZZANO† , AND MANFRED TASCHE‡

Abstract. The discrete Hartley transforms (DHT) of types I – IV and the related matrix alge-

bras are discussed. We prove that any of these DHTs of length N = 2t can be factorized by means

of a divide–and–conquer strategy into a product of sparse, orthogonal matrices where in this context

sparse means at most two nonzero entries per row and column. The sparsity joint with orthogonality

of the matrix factors is the key for proving that these new algorithms have low arithmetic costs equal

to 5
2
N log2(N)+O(N) arithmetic operations and an excellent normwise numerical stability. Further,

we consider the optimal Frobenius approximation of a given symmetric Toeplitz matrix generated

by an integrable symbol in a Hartley matrix algebra. We give explicit formulas for computing these

optimal approximations and discuss the related preconditioned conjugate gradient (PCG) iterations.

By using the matrix approximation theory, we prove the strong clustering at unity of the precon-

ditioned matrix sequences under the sole assumption of continuity and positivity of the generating

function. The multilevel case is also briefly treated. Some numerical experiments concerning DHT

preconditioning are included.
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1. Introduction. Discrete trigonometric transforms are widely used in signal

processing, image compression, and numerical linear algebra. Examples of such trans-

forms are discrete Fourier transforms (DFT), discrete cosine transforms, discrete sine

transforms, and discrete Hartley transforms (DHT). These transforms are represented

by unitary and orthogonal matrices, respectively. The historical roots of the DHT,

which is intertwined closely with the DFT, go back to the introduction of the con-

tinuous Hartley transform by R. Hartley in 1942. The need to sample signals and

approximate the continuous transform on computers led to the DHT. Like the DFT,

the DHT is a matrix–vector product, and it requires laborious calculations. The
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key step was performed in 1984 by R.N. Bracewell [6] and the result was the first fast

DHT algorithm. This algorithm achieves its speed in the same way as the fast Fourier

transform does and computes the DHT of length N = 2t in O(N log2(N)) operations.

Note that every application of the DFT can be realized also by an application of the

DHT.

In this paper, we shall concentrate on the construction of real, fast, and recursive

DHT algorithms having an excellent numerical stability in floating point arithmetic

(see e.g [17, 21]). Further, we will present an application of matrix algebras related

to DHT in numerical linear algebra. We will explicitly compute optimal approxima-

tions of a symmetric (one–level and multilevel) Toeplitz matrix and we will discuss

the related preconditioned conjugate gradient (PCG) iterations. Note that a uni-

fied approach to discrete cosine/sine transforms with applications to preconditioning

was given by T. Kailath and V. Olshevsky [24, 25] and more general preconditioning

results were obtained by Di Benedetto and the second author in [13, 14, 34].

There is a close connection between fast DHT algorithms and factorizations of

the corresponding orthogonal Hartley matrix HN ∈ RN×N with N = 2t (t ∈ N).

Assume that we know a factorization of HN into a product of sparse matrices

(1.1) HN = M
(m−1)
N . . . M

(0)
N , (1 < m ≪ N).

Then the transformed vector HNx with arbitrary x ∈ RN can be computed iteratively

by

x(s+1) := M
(s)
N x(s), x(0) := x

for s = 0, . . . , m − 1 such that x(m) = HNx. Since all matrix factors in (1.1) are

sparse, the arithmetic cost of this method will be low such that the factorization (1.1)

of HN generates a fast DHT algorithm.

An interesting result in [31] (see also [37]) says that a fast DHT algorithm pos-

sesses an excellent numerical stability, if the algorithm is based on a factorization of

HN into sparse, (almost) orthogonal matrices. Here a matrix is called almost ortho-

gonal, if it is orthogonal up to a positive factor. Therefore, in order to get a real,

fast, and numerically stable DHT algorithm, one should be especially interested in a

factorization (1.1) with (almost) orthogonal matrix factors of simple structure. Note

that various factorizations of HN use also non–orthogonal matrix factors.

In this paper, we shall derive fast, completely recursive DHT algorithms of radix–

2 length. As usual, all fast DHT algorithms use divide–and–conquer techniques.

Further, we shall present complete real factorizations of Hartley matrices into sparse,

(almost) orthogonal matrices, where in this context sparse means at most two nonzero

entries per row and column. Our DHT algorithms require only permutations, scal-

ing operations, butterfly operations, and plane rotations with small rotation angles.
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These matrix factorizations can be also used for a direct (instead of recursive) imple-

mentation of the algorithms. The sparsity and orthogonality of the matrix factors in

(1.1) are the key for proving that these DHT algorithms have low arithmetic costs

and an excellent normwise numerical stability. Using the Wilkinson model for binary

floating point arithmetic which is implemented in the IEEE standard, we shall give

new, explicit worst case estimates for the errors caused by the applications of our fast

DHT algorithms in floating point arithmetic. Further, we consider Hartley matrix

algebras which consist of special symmetric Toeplitz–plus–Hankel matrices. Using

new representation formulas of these Hartley matrix algebras, we define the best ap-

proximation in Frobenius norm of a given symmetric Toeplitz matrix generated by

an integrable symbol in the four Hartley matrix algebras. We give explicit formulas

for computing these optimal approximations and discuss the related PCG iterations.

By using the matrix approximation theory developed in [33, 34], we prove the strong

clustering at unity of the preconditioned matrix sequences under the sole assumption

of continuity and positivity of the generating function. Concerning the multilevel

Toeplitz setting, we carry out the analysis along the same lines as in the one–level

case and we show how the new results fit the negative results by the second author

and E. Tyrtyshnikov [35, 36].

The paper is organized as follows. In Section 2 we introduce Fourier and Hartley

matrices of types I – IV. We sketch the close connection between Fourier and Hartley

matrices and discuss the symmetry properties of the Hartley matrices. In this paper,

we often use the close relations between Hartley and Fourier matrices. For brevity,

we do not discuss the connections between Hartley and cosine/sine matrices. For

such a discussion see e.g. [30], pp. 63–66, and for a numerical stability comparison

refer to [1]. In Section 3 we recall the main features of circulant and skew–circulant

matrices and of their diagonalizations by Fourier matrices of types I – IV. Section

4 is devoted to Hartley matrix algebras. If RN×N is equipped with the Frobenius

inner product, then these matrix algebras can be represented as orthogonal sums and

corresponding splitting formulas of matrices can be given. In Section 5 we introduce

fast recursive DHT algorithms which are based on a recursive factorization of the

Hartley matrix of type I of order N = 2t. The proof of the factorization is mainly

based on divide–and–conquer technique applied directly to a matrix such that the

Hartley matrix can be represented as a direct sum of Hartley matrices of half order

(and possibly of different type). We also compute the arithmetic costs of these fast

DHT algorithms. Corresponding factorizations of Hartley matrices of type I – IV into

sparse, (almost) orthogonal matrix factors of simple structure are given. Using these

matrix factorizations, we present a comprehensive analysis of the numerical stability

of these fast DHT algorithms in Section 6. In Sections 7 and 8, we consider the

optimal Frobenius approximation of a given symmetric Toeplitz matrix in a Hartley

matrix algebra. With these results, we construct optimal preconditioners for the PCG
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method. More precisely, an explicit computation of optimal preconditioners is pre-

sented in Subsections 7.1 (for the one–level Toepliz case) and 8.1 (for the multilevel

Toeplitz case), while an approximation analysis for optimal preconditioners is given

in Subsections 7.2 (for the one–level case) and 8.2 (for the multilevel case). Subsec-

tion 8.3 and Section 9 finish the paper with numerical experiments and conclusions,

respectively.
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2. Fourier and Hartley matrices. Let N ≥ 2 be a given integer. In what

follows, we consider Fourier and Hartley matrices of type X ∈ {I, II, III, IV} which

are defined as

F I
N := 1√

N

(

wjk
N

)N−1

j,k=0
, F II

N := 1√
N

(

w
j(2k+1)
2N

)N−1

j,k=0
,

F III
N := 1√

N

(

w
(2j+1)k
2N

)N−1

j,k=0
, F IV

N := 1√
N

(

w
(2j+1)(2k+1)
4N

)N−1

j,k=0

and

HI
N := 1√

N

(

cas
(

2π jk
N

))N−1

j,k=0
, HII

N := 1√
N

(

cas
(

2π j(2k+1)
2N

))N−1

j,k=0
,

HIII
N := 1√

N

(

cas
(

2π (2j+1)k
2N

))N−1

j,k=0
, HIV

N := 1√
N

(

cas
(

2π (2j+1)(2k+1)
4N

))N−1

j,k=0
,

respectively, with wN := exp(−2πi/N) and i2 = −1. Furthermore, cas(x) := cos(x)+

sin(x), where the word “cas” represents a contraction of the expression “cosine and
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sine”. For the subsequent analysis it is useful to adopt a more compact notation

(2.1) FX
N := 1√

N

(

w
(2j+tX [1])(2k+tX [0])
4N

)N−1

j,k=0
,

(2.2) HX
N := 1√

N

(

cas
(

2π (2j+tX [1])(2k+tX [0])
4N

))N−1

j,k=0
,

with tI := 0, tII := 1, tIII := 2, tIV := 3, and where tX[j] denotes the j-th bit of the

binary representation of tX. We observe that F III
N = (F II

N )T and HIII
N = (HII

N )T for

every N ≥ 2, while for N = 2 we have

HI
2 = HII

2 = HIII
2 = 1√

2

(

1 1

1 −1

)

= F I
2 , HIV

2 =

(

1 0

0 1

)

.

The 2π–periodic cas–function is bounded by
√

2 and fulfills the identities

cas(x + y) = cos(y) cas(x) + sin(y) cas(−x),

cas(x + y) + cas(x − y) = 2 cos(y) cas(x),(2.3)

cas(x + π) = −cas(x).

In our notation, a subscript of a matrix denotes the corresponding order, while a

superscript means the “type” of the matrix. The Hartley matrix of type I coincides

with the classical one introduced by R.N. Bracewell [6]. Modified Hartley matrices of

type II – IV are studied in [22, 19, 7, 15]. Note that Fourier matrices of type I – IV are

unitary (it is a trivial check) and that Hartley matrices of type I – IV are orthogonal.

This is a consequence of the unitarity of the Fourier matrices (see Lemma 2.1). A

discrete Fourier transform of type X ∈ {I, II, III, IV} with length N (DFT−X(N))

is the linear mapping which maps any vector x ∈ CN into FX
N x. Analogously, a

discrete Hartley transform of type X ∈ {I, II, III, IV} with length N (DHT−X(N))

is the linear mapping which maps any vector x ∈ RN into HX
N x.

First let us agree on some notations and concepts that will be used throughout

the paper. By IN we denote the identity matrix of order N and by JN the counter–

identity matrix which is defined by JNx = (xN−1, xN−2, . . . , x0)
T = (xN−1−j)

N−1
j=0

for every vector x = (xj)
N−1
j=0 . By ON we denote the zero matrix of order N , and by

o the zero vector. The direct sum of two square matrices A, B is defined to be the

block diagonal matrix A ⊕ B := diag(A, B), the Kronecker product of two matrices

A, B is defined to be the block matrix A ⊗ B := (aj,kB)N−1
j,k=0 with A = (aj,k)N−1

j,k=0.

Then

J ′
N := 1 ⊕ JN−1, J ′′

N := (−1) ⊕ JN−1

are (modified) flip matrices with the obvious property that

J ′
Nx = (x0, xN−1, . . . , x1)

T , J ′′
Nx = (−x0, xN−1, . . . , x1)

T
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Table 2.1

Symmetries, dimensions, and structures of the linear subspaces of even/odd vectors x ∈ RN .

for any vector x = (xj)
N−1
j=0 . Note that JN , J ′

N , J ′′
N are symmetric and orthogonal and

consequently involution matrices by [JN ]2 = [J ′
N ]2 = [J ′′

N ]2 = IN . A vector x ∈ CN

is called JN–even, J ′
N–even, and J ′′

N–even, respectively, if

JNx = x, J ′
Nx = x, J ′′

Nx = x,

respectively. Analogously, a vector x ∈ CN is called JN–odd, J ′
N–odd, and J ′′

N–odd,

respectively, if

JNx = −x, J ′
Nx = −x, J ′′

Nx = −x,

respectively. We use the same definitions of even and odd vectors also for vectors

with real entries. The various linear subspaces of even and odd vectors are formed

by vectors x of the form indicated in Table 2 and, as a consequence, they possess the

dimensions displayed in the same table (with respect to the real field R).

The modified Fourier matrices of type X ∈ {I, II, III, IV} are connected each

other via F I
N and more precisely we have

(2.4) F II
N = WN F I

N , F III
N = F I

N WN , F IV
N = w4NWN F I

N WN

with

WN := diag
(

exp(−πji
N )
)N−1

j=0
.

By the definition of Fourier and Hartley matrices given in (2.1) – (2.2), for X ∈
{I, II, III, IV}, we infer that

HX
N = Re(FX

N ) − Im(FX
N )

with Re(FX
N ) = 1

2 (FX
N + F̄X

N ) and Im(FX
N ) = 1

2i (F
X
N − F̄X

N ). Note that

(2.5)

F̄ I
N = J ′

NF I
N = F I

NJ ′
N ,

F̄ II
N = −J ′′

NF II
N = F II

N JN ,

F̄ III
N = JNF III

N = −F III
N J ′′

N ,

F̄ IV
N = −JNF IV

N = −F IV
N JN .
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Then we obtain:

Lemma 2.1. Let N ≥ 2 be an integer. For X ∈ {I, II, III, IV}, it holds

(2.6) HX
N = FX

N UX
N

with the unitary matrices

UX
N :=







1
2 (1 + i)IN + 1

2 (1 − i)J ′
N for X = I,

1
2 (1 + i)IN + 1

2 (1 − i)JN for X = II,

1
2 (1 + i)IN − 1

2 (1 − i)J ′′
N for X = III,

1
2 (1 + i)IN − 1

2 (1 − i)JN for X = IV.

Further HX
N is orthogonal.

Proof. For simplicity, we consider only the case of X = I. By the symmetry of

J ′
N we have

U I
N [Ū I

N ]T =
[
1
2 (1 + i)IN + 1

2 (1 − i)J ′
N

] [
1
2 (1 − i)IN + 1

2 (1 + i)J ′
N

]

= 1
2IN + 1

4 (1 + i)2J ′
N + 1

4 (1 − i)2J ′
N + 1

2IN = IN ,

and therefore U I
N is unitary. Furthermore, by (2.5), HI

N can be represented in the

form

HI
N = Re(F I

N ) − Im(F I
N )

= 1
2 (F I

N + F I
NJ ′

N ) − 1
2i (F

I
N − F I

NJ ′
N )

= F I
N

[
1
2 (1 + i)IN + 1

2 (1 − i)J ′
N

]
= F I

N U I
N .

Hence the real matrix HI
N is the product of unitary matrices and therefore HI

N is

orthogonal.

As a consequence of (2.5) – (2.6), we deduce the following relationships:

(2.7)
HI

NJ ′
N = J ′

NHI
N , HII

NJN = −J ′′
NHII

N ,

HIII
N J ′′

N = −JNHIII
N , HIV

N JN = JNHIV
N .

From (2.7) we can easily deduce several symmetry properties of DHTs. Note that

Lemma 2.2 improves a corresponding result of [19, 20].

Lemma 2.2. Let N ≥ 2 be an integer. Then we have the following properties:

1. DHT–I(N) maps any J ′
N–even vector x ∈ RN into a J ′

N–even vector HI
Nx =

F I
Nx and any J ′

N–odd vector y ∈ RN into a J ′
N–odd vector HI

Ny = iF I
Ny.

2. DHT–II(N) maps any JN–even vector x ∈ RN into a J ′′
N–odd vector HII

Nx =

F II
N x and any JN–odd vector y ∈ RN into a J ′′

N–even vector HII
Ny = iF II

Ny.
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3. DHT–III(N) maps any J ′′
N–even vector x ∈ RN into a JN–odd vector HIII

N x =

iF III
N x and any J ′′

N–odd vector y ∈ RN into a JN–even vector HIII
N y = F III

N y.

4. DHT–IV(N) maps any JN–even vector x ∈ RN into a JN–even vector HIV
N x

= iF IV
N x and any JN–odd vector y ∈ RN into a JN–odd vector HIV

N y = F IV
N y.

Proof. The results follow immediately from (2.5) – (2.7). For simplicity, we

sketch the proof only in the case of X = II. Let x ∈ RN be JN–even. Then HII
Nx is

J ′′
N–odd, since a direct computation, based on (2.7), shows that HII

Nx = HII
NJNx =

−J ′′
N (HII

Nx). If y ∈ RN is JN–odd, then HII
Ny is J ′′

N–even because (again by (2.7))

HII
Ny = HII

N (−JNy) = J ′′
N (HII

Ny). Moreover, by (2.5) – (2.6), for JN–even x ∈ RN ,

we obtain that

HII
N x = F II

N U II
N x = F II

N

(
1+i

2 IN + 1−i

2 JN

)

x = F II
N

(
1+i

2 + 1−i

2

)

x = F II
N x.

In a similar manner, we can prove the relation HII
Ny = iF II

N y for any JN–odd vector

y ∈ RN .

3. Circulant and skew-circulant matrices. The circulant matrix of x =

(xj)
N−1
j=0 ∈ CN is defined by

circ(x) :=
(
x(j−k)modN

)N−1

j,k=0

(see [11], p. 66). Here (j − k)modN denotes the nonnegative residue of j − k modulo

N for j, k = 0, . . . , N − 1, i.e.

(j − k)modN =

{

j − k if j − k ≥ 0,

j − k + N if j − k < 0.

Note that for e0 = (1, 0, . . . , 0)T ∈ CN , we have circ(e0) = IN . The circulant matrices

are related to the cyclic convolution. More precisely for x,y ∈ CN , their cyclic

convolution is defined as

z = (zj)
N−1
j=0 = x ∗ y := circ(x) y

i.e.

zj =

N−1∑

k=0

x(j−k)modN yk.

The cyclic convolution is an associative, commutative and distributive multiplication

with the unit element e0. By the cyclic convolution property of DFT–I(N), for all

x,y ∈ CN we have

[F I
N ]α(x ∗ y) =

√
N ([F I

N ]αx) ◦ ([F I
N ]αy) (α ∈ {−1, 1}),
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where ◦ denotes the componentwise product of vectors: x ◦ y := diag(x)y. From the

above relation with α = −1 we deduce that

[F I
N ]−1circ(x)y = diag

(√
N [F I

N ]−1x
)

[F I
N ]−1y

and hence

(3.1) circ(x) = F I
N diag

(√
N [F I

N ]−1x
)

[F I
N ]−1.

As a consequence, any circulant matrix of order N is diagonalized by F I
N .

Let Circ(N) be the set of all circulant matrices of order N . By (3.1), it follows that

Circ(N) is a commutative algebra. Let Diag(FX
N ) with X ∈ {I, II, III, IV} denote

the set of matrices AN such that [FX
N ]−1ANFX

N is a diagonal matrix. It is clear that

Diag(FX
N ) is a commutative algebra as well.

Lemma 3.1. Let N ≥ 2 be an integer. Then we have

Diag(F I
N ) = Diag(F III

N ) = Circ(N).

Moreover, for every x ∈ CN

[F I
N ]−1 circ(x)F I

N = diag(
√

N [F I
N ]−1x),(3.2)

[F III
N ]−1 circ(x)F III

N = diag(
√

N [F I
N ]−1x).(3.3)

Proof. Formula (3.2) follows directly from (3.1). By (2.4) we know that F III
N =

F I
NWN with unitary diagonal matrix WN . Therefore the columns of F III

N are just

multiple (via coefficients of modulus 1) of the columns of F I
N and consequently (3.3)

is valid, since both the set of columns of F I
N , F III

N are systems of eigenvectors of circ(x)

related to the same ordering of the eigenvalues.

The skew–circulant matrix of x = (xj)
N−1
j=0 ∈ CN is defined by

scirc (x) :=
(
(sign(j − k))x(j−k)modN

)N−1

j,k=0
,

with sign(j − k) := 1 if j − k ≥ 0 and sign(j − k) := −1 otherwise (see [11], p.

83). Note that scirc(e0) = IN . The skew–circulant matrices are closely related to the

skew–cyclic convolution. More in detail, for x,y ∈ CN , the skew–cyclic convolution

is defined as

z = (zj)
N−1
j=0 = x ⋄ y := scirc(x) y

i.e.

zj =
N−1∑

k=0

(sign(j − k)) x(j−k)modN yk.
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The skew-cyclic convolution is also an associative, commutative and distributive mul-

tiplication with the unit element e0. By DFT–III(N), the skew–cyclic convolution

can be transferred into a componentwise product. This corresponds to the so–called

skew–cyclic convolution property of DFT–III(N):

Lemma 3.2. For all x,y ∈ CN , we have

F III
N (x ⋄ y) =

√
N (F III

N x) ◦ (F III
N y).

Proof. Let z = (zj)
N−1
j=0 = x⋄y and let us compute the s-th component of F III

N z:

(F III
N z)s = 1√

N

N−1∑

j=0

w
(2s+1)j
2N zj (s = 0, . . . , N − 1)

with

zj =

N−1∑

k=0

(sign(j − k)) x(j−k)modN yk.

Thus by a change in the summation order, we get

(F III
N z)s = 1√

N

N−1∑

k=0

yk w
(2s+1)k
2N





N−1∑

j=0

w
(2s+1)(j−k)
2N (sign(j − k)) x(j−k)modN



 .

Now we substitute t := (j − k)modN in the second sum. For arbitrary fixed k ∈
{0, . . . , N − 1}, the new index t runs over the whole set {0, . . . , N − 1} as j moves

over it and moreover

(sign(j − k)) w
(2s+1)(j−k)
2N = w

(2s+1)t
2N ,

since wN
2N = −1. Hence we obtain

(F III
N z)s = 1√

N

(
N−1∑

k=0

yk w
(2s+1)k
2N

)(
N−1∑

t=0

xt w
(2s+1)t
2N

)

=
√

N (F III
N y)s (F III

N x)s (s = 0, . . . , N − 1)

and the proof is complete.

Since JN F III
N = [F II

N ]−1, and JN diag(v) = diag(JNv)JN , by Lemma 3.2 it follows

that

[F II
N ]−1 scirc(x) y = diag

(√
N [F II

N ]−1 x
)

[F II
N ]−1y

and consequently

(3.4) scirc(x) = F II
N diag

(√
N [F II

N ]−1 x
)

[F II
N ]−1.
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Thus any skew–circulant matrix of order N is diagonalized by F II
N . Let Scirc(N) be

the set of all skew–circulant matrices of order N . By (3.4), we infer that Scirc(N) is

a commutative algebra.

Lemma 3.3. Let N ≥ 2 be an integer. Then we have

Diag(F II
N ) = Diag(F IV

N ) = Scirc(N).

Moreover, for every x ∈ CN

[F II
N ]−1 scirc(x)F II

N = diag
(√

N [F II
N ]−1 x

)

,(3.5)

[F IV
N ]−1 scirc(x)F IV

N = diag
(√

N [F II
N ]−1 x

)

.(3.6)

Proof. Formula (3.5) is a plain consequence of (3.4). By (2.4) we know that

F IV
N = w4N F II

N WN with diagonal unitary matrix WN . Therefore the columns of F IV
N

are just multiples (with factors of modulus 1) of the columns of F II
N and consequently

(3.6) is valid, since both the sets of columns are systems of eigenvectors of scirc(x)

related to the same ordering of the eigenvalues.

By dimF(·) we denote the dimension of a linear space with respect to the field

F ∈ {R,C}. Note that dimC(Circ(N)) =dimC(Scirc(N)) = N and dimR(Circ(N)) =

dimR(Scirc(N)) = 2N . By Circ0(N) and Circ1(N), we denote the set of all circulant

matrices circ(x) with J ′
N–even and J ′

N–odd vectors x ∈ RN , respectively. Analo-

gously, by Scirc0(N) and Scirc1(N), we denote the set of all skew–circulant matri-

ces scirc(x) with J ′′
N–even and J ′′

N–odd vectors x ∈ RN , respectively. Obviously,

Circ0(N), Circ1(N), Scirc0(N) and Scirc1(N) are linear subspaces of RN×N and, in

view of Table 2, we have

dimR(Circ0(N)) = ⌈(N + 1)/2⌉, dimR(Circ1(N)) = ⌊(N − 1)/2⌋,
dimR(Scirc0(N)) = ⌈(N − 1)/2⌉, dimR(Scirc1(N)) = ⌊(N + 1)/2⌋.

The sum dimR(Circ0(N)) + dimR(Circ1(N)) is N , as the dimension of the real sub-

space of Circ(N) of real circulant matrices. The same is true for Scirc0(N) and

Scirc1(N) of course. Later we will see that Circ0(N) and Scirc1(N) are commutative

matrix algebras, while Circ1(N) and Scirc0(N) do not possess such a structure.

4. Hartley matrix algebras. By Diag(HX
N ) with X ∈ {I, II, III, IV} we de-

note the set of real matrices AN such that [HX
N ]−1 AN HX

N is a diagonal matrix. It

is clear that Diag(HX
N ) is the (real) commutative matrix algebra related to DHT–

X(N) which is called Hartley matrix algebra of type X . We will see that for every

X ∈ {I, II, III, IV}, the sets Diag(HX
N ) consist of special symmetric Toeplitz–plus–

Hankel matrices. More specifically, in this section we improve previous results by Bini

and Favati [4] and by Bortoletti and Di Fiore [5]. Bini and Favati [4] have considered
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the Hartley matrix algebra of type I and, recently, Bortoletti and Di Fiore [5] have

analyzed the Hartley matrix algebras of types X ∈ {II, III, IV}.
In the space RN×N , we introduce the Frobenius inner product

(4.1) 〈AN , BN 〉 := tr(AT
NBN ), (AN , BN ∈ RN×N)

with tr(A) denoting the trace of a square matrix A. Then RN×N with the latter inner

product is a Hilbert space. By ⊕ we denote the orthogonal sum of linear subspaces

of RN×N . The following theorem improves a corresponding result of Bini and Favati

[4], more specifically, the orthogonal sum representation (4.2) and formula (4.3) are

new.

Theorem 4.1. Let N ≥ 2 be an integer. Then the following orthogonal sum

representation is valid

(4.2) Diag(HI
N ) = Circ0(N) ⊕ J ′

N Circ1(N).

Moreover, for arbitrary x ∈ RN

(4.3) HI
N diag(

√
Nx)HI

N = circ(HI
Nx+) − J ′

N circ(HI
Nx−)

with J ′
N–even and J ′

N–odd parts of x defined by

x+ := 1
2 (x + J ′

Nx), x− := 1
2 (x − J ′

Nx).

Proof. 1. For arbitrary x ∈ RN , let X I
N := HI

N diag(
√

Nx) HI
N . Since HI

N

is symmetric and orthogonal, we have X I
N = HI

N diag(
√

Nx) [HI
N ]−1. By (2.6) we

know that

HI
N = F I

N

(
1
2 (1 + i)IN + 1

2 (1 − i)J ′
N

)
,

[HI
N ]−1 =

(
1
2 (1 − i)IN + 1

2 (1 + i)J ′
N

)
[F I

N ]−1.

Hence we obtain

X I
N = F I

N

√
N
(

1
2diag (x) − i

2J ′
Ndiag (x) + i

2diag (x) J ′
N + 1

2J ′
Ndiag (x)J ′

N

)
[F I

N ]−1.

By

(4.4) J ′
N diag(x) J ′

N = diag (J ′
Nx) , diag(x) J ′

N = J ′
N diag(J ′

Nx)

it follows that X I
N = F I

N

√
N
(
diag(x+) − iJ ′

Ndiag(x−)
)
[F I

N ]−1. By (3.2), we get

X I
N = circ

(
F I

Nx+

)
− iJ ′

Ncirc
(
F I

Nx−
)
.

Since x ∈ RN , we deduce by Lemma 2.2 that

F I
Nx+ = HI

Nx+, F I
Nx− = −iHI

Nx−,



FAST AND NUMERICALLY STABLE ALGORITHMS 33

where HI
Nx+ is J ′

N–even and HI
Nx− is J ′

N–odd. Thus (4.3) is proven.

2. By (4.3) it follows that

Diag(HI
N ) ⊆ Circ0(N) + J ′

N Circ1(N),

since HI
Nx+ ∈ RN is J ′

N–even and HI
Nx− ∈ RN is J ′

N–odd by Lemma 2.2.

Conversely, if circ (a) − J ′
Ncirc (b) is an arbitrary matrix belonging to Circ0(N) +

J ′
N Circ1(N) (so that a ∈ RN is J ′

N–even and b ∈ RN is J ′
N–odd), then we form

x := HI
N (a + b) ∈ RN . By Lemma 2.2, the J ′

N–even and J ′
N–odd parts of x read as

follows

x+ = 1
2 (x + J ′

Nx) = HI
Na, x− = 1

2 (x − J ′
Nx) = HI

Nb.

Since [HI
N ]−1 = HI

N , we get a = HI
Nx+ and b = HI

Nx−. Using (4.3), we see that

circ(a) − J ′
N circ(b) = circ(HI

Nx+) − J ′
Ncirc(HI

Nx−)

= HI
N diag(

√
Nx)HI

N ∈ Diag(HI
N ).

Thus we also have

Circ0(N) + J ′
NCirc1(N) ⊆ Diag(HI

N ).

3. Finally we show that (4.2) is an orthogonal sum representation of Diag(HI
N ).

For arbitrary J ′
N–even a ∈ RN and J ′

N–odd b ∈ RN , we have to prove that the inner

product

〈circ(a), J ′
N circ(b)〉 = tr

[
(circ(a))T J ′

N circ(b)
]

vanishes. By (4.3), we have

circ(a) = HI
N diag(

√
N â) HI

N , J ′
N circ(b) = −HI

N diag(
√

N b̂) HI
N

with â = (âj)
N−1
j=0 = HI

Na and b̂ = (b̂j)
N−1
j=0 = HI

Nb. By the trace theorem, it follows

that

〈circ(a), J ′
N circ(b)〉 = −N tr

[

HI
N diag(â) diag(b̂) HI

N

]

= −N

N−1∑

j=0

âj b̂j .

But by Lemma 2.2, â is J ′
N–even and b̂ is J ′

N–odd and therefore

âj = âN−j , b̂j = −b̂N−j, b̂0 = 0 (j = 1, . . . , N − 1).

Then we conclude that

〈circ(a), J ′
N circ (b)〉 = −N

(
â0b̂0 + 1

2

N−1∑

j=1

(âj b̂j + âN−j b̂N−j)
)

= 0.
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This completes the proof.

Example 4.2. Let x ∈ RN be an arbitrary vector with J ′
N–even and J ′

N–odd

parts indicated by x+ and x−, respectively. For the sake of notational simplicity, we

introduce the vectors a = HI
Nx+ and b = HI

Nx− which, by Lemma 2.2, are J ′
N–

even and J ′
N–odd, respectively. For N = 4 the latter means a = (a0, a1, a2, a1)

T and

b = (0, b1, 0,−b1)
T with arbitrary a0, a1, a2, b1 ∈ R and

X I
4 =









a0 a1 a2 a1

a1 a0 a1 a2

a2 a1 a0 a1

a1 a2 a1 a0









+









0 b1 0 −b1

b1 0 −b1 0

0 −b1 0 b1

−b1 0 b1 0









with X I
4 = 2 HI

4 diag(x)HI
4. For N = 5, following the same lines we have a =

(a0, a1, a2, a2, a1)
T and b = (0, b1, b2,−b2,−b1)

T with arbitrary a0, a1, a2, b1, b2 ∈ R

and

X I
5 =











a0 a1 a2 a2 a1

a1 a0 a1 a2 a2

a2 a1 a0 a1 a2

a2 a2 a1 a0 a1

a1 a2 a2 a1 a0











+











0 b1 b2 −b2 −b1

b1 b2 −b2 −b1 0

b2 −b2 −b1 0 b1

−b2 −b1 0 b1 b2

−b1 0 b1 b2 −b2











with X I
5 =

√
5HI

5 diag(x)HI
5. We just observe that Diag(HI

N ) consists of special

symmetric Toeplitz–plus–Hankel matrices.

Now we improve some results concerning Diag(HX
N ) with X ∈ {II, III, IV}, re-

cently obtained by Bortoletti and Di Fiore [5]. More in detail, the orthogonal sum

representations of Diag(HX
N ), X ∈ {II, III, IV}, and formulae (4.6), (4.9), and (4.11)

are new.

Theorem 4.3. Let N ≥ 2 be an integer. Then the following orthogonal sum

representation is valid

(4.5) Diag(HII
N ) = Scirc1(N) ⊕ J ′′

N Scirc0(N).

Moreover, for arbitrary x ∈ RN

(4.6) HII
N diag(

√
N x) HIII

N = scirc(HII
Nx+) + J ′′

N scirc(HII
Nx−)

with JN–even and JN–odd parts of x defined by

x+ := 1
2 (x + JNx), x− := 1

2 (x − JNx).

Proof. 1. For arbitrary x ∈ RN , let X II
N := HII

N diag(
√

Nx) HIII
N . Since HII

N is

orthogonal and its transpose coincides with HIII
N , it holds

X II
N = HII

N diag(
√

Nx) [HII
N ]−1.
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By (2.6) we know that

HII
N = F II

N

(
1
2 (1 + i)IN + 1

2 (1 − i)JN

)
,

[HII
N ]−1 =

(
1
2 (1 − i)IN + 1

2 (1 + i)JN

)
[F II

N ]−1.

Hence we obtain

X II
N = F II

N

√
N
2 [diag(x) − i JN diag(x) + i diag(x)JN + JN diag(x)JN ] [F II

N ]−1.

By

(4.7) JN diag (x) JN = diag(JNx), diag(x)JN = JN diag(JNx)

it follows that X II
N = F II

N

√
N [diag(x+) − iJN diag(x−)] [F II

N ]−1. We have by (2.5)

that

F II
N JN = −J ′′

N F II
N .

Thus we get by (3.5) that

X II
N = scirc

(
F II

N x+

)
+ iJ ′′

N scirc
(
F II

N x−
)
.

For arbitrary x ∈ RN , we get by Lemma 2.2 that

F II
N x+ = HII

N x+ , F II
N x− = −iHII

N x− ,

where HII
Nx+ is J ′′

N–odd and HII
Nx− is J ′′

N–even. Thus (4.6) is proven.

2. By (4.6) it follows that

Diag(HII
N ) ⊆ Scirc1(N) + J ′′

N Scirc0(N)

since HII
Nx+ ∈ RN is J ′′

N–odd and HII
Nx− ∈ RN is J ′′

N–even by Lemma 2.2.

Conversely, if scirc (a) + J ′′
N scirc (b) is an arbitrary matrix belonging to Scirc1(N) +

J ′′
N Scirc0(N) (so that a ∈ RN is J ′′

N–odd and b ∈ RN is J ′′
N–even), then we form

x := HIII
N (a + b) ∈ RN . By Lemma 2.2, the JN–even and JN–odd parts of x read as

follows

x+ = 1
2 (x + JNx) = HIII

N a, x− = 1
2 (x − JNx) = HIII

N b.

Since [HIII
N ]−1 = HII

N , we get a = HII
Nx+ and b = HII

Nx−. Using (4.6), we see that

scirc (a) + J ′′
N scirc (b) = scirc

(
HII

Nx+

)
+ J ′′

N scirc
(
HII

Nx−
)

= HII
N diag(

√
N x) HIII

N ∈ Diag(HII
N ).

Thus we also have

Scirc1(N) + J ′′
N Scirc0(N) ⊆ Diag(HII

N ).
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3. Finally we show that (4.5) is an orthogonal sum representation of Diag(HII
N ).

For arbitrary J ′′
N–odd a ∈ RN and J ′′

N–even b ∈ RN , we have to prove that the inner

product

〈scirc (a) , J ′′
N circ (b)〉 = tr

[
(scirc(a))T J ′′

N scirc(b)
]

vanishes. By (4.6), we have

scirc (a) = HII
N diag(

√
N â) HIII

N , J ′′
N scirc (b) = HII

N diag(
√

N b̂) HIII
N

with â = (âj)
N−1
j=0 = HIII

N a and b̂ = (b̂j)
N−1
j=0 = HIII

N b. By the trace theorem, it follows

that

〈scirc (b) , J ′′
N scirc (a)〉 = N tr

[

HII
N diag(â) diag(b̂) HIII

N

]

= N

N−1∑

j=0

âj b̂j .

But by Lemma 2.2, â is JN–odd and b̂ is JN–even and therefore

âj = −âN−1−j, b̂j = b̂N−1−j , (j = 0, . . . , N − 1).

Then we conclude that

〈scirc (b) , J ′′
N scirc (a)〉 = N

2

N−1∑

j=0

(âj b̂j + âN−1−j b̂N−1−j) = 0

and this completes the proof.

Example 4.4. Let x ∈ RN be an arbitrary vector with JN–even and JN–odd

parts denoted by x+ and x−, respectively. We define the vectors a = HII
Nx+ and

b = HII
Nx− which, by Lemma 2.2, are J ′′

N–odd and J ′′
N–even, respectively. For N = 4

the latter means a = (a0, a1, 0,−a1)
T and b = (0, b1, b2, b1)

T with arbitrary real

numbers a0, a1, b1, b2 and

X II
4 =









a0 a1 0 −a1

a1 a0 a1 0

0 a1 a0 a1

−a1 0 a1 a0









+









0 b1 b2 b1

b1 b2 b1 0

b2 b1 0 −b1

b1 0 −b1 −b2









with X II
4 = 2 HII

4 diag (x) HIII
4 .

For N = 5, following the same lines we have a = (a0, a1, a2,−a2,−a1)
T and b =

(0, b1, b2, b2, b1)
T with arbitrary real numbers a0, a1, a2, b1, b2 and

X II
5 =











a0 a1 a2 −a2 −a1

a1 a0 a1 a2 −a2

a2 a1 a0 a1 a2

−a2 a2 a1 a0 a1

−a1 −a2 a2 a1 a0











+











0 b1 b2 b2 b1

b1 b2 b2 b1 0

b2 b2 b1 0 −b1

b2 b1 0 −b1 −b2

b1 0 −b1 −b2 −b2










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with X II
5 =

√
5 HII

5 diag (x)HIII
5 . We notice that Diag(HII

N ) consists of special sym-

metric Toeplitz–plus–Hankel matrices.

Theorem 4.5. Let N ≥ 2 be an integer. Then the following orthogonal sum

representation is valid

(4.8) Diag(HIII
N ) = Circ0(N) ⊕ JN Circ1(N).

Moreover, for arbitrary x ∈ RN

(4.9) HIII
N diag(

√
Nx) HII

N = circ(HI
Nx+) − JN circ(HI

Nx−)

with x+, x− being the J ′
N–even and J ′

N–odd parts of x, respectively.

The proof is totally similar to the one of Theorem 4.3 and is omitted here.

Example 4.6. We use the same notations as in Example 4.2. For N = 4, we get

X III
4 =









a0 a1 a2 a1

a1 a0 a1 a2

a2 a1 a0 a1

a1 a2 a1 a0









+









b1 0 −b1 0

0 −b1 0 b1

−b1 0 b1 0

0 b1 0 −b1









with X III
4 = 2 HIII

4 diag(x)HII
4 . In the case N = 5, we obtain

X III
5 =











a0 a1 a2 a2 a1

a1 a0 a1 a2 a2

a2 a1 a0 a1 a2

a2 a2 a1 a0 a1

a1 a2 a2 a1 a0











+











b1 b2 −b2 −b1 0

b2 −b2 −b1 0 b1

−b2 −b1 0 b1 b2

−b1 0 b1 b2 −b2

0 b1 b2 −b2 −b1











with X III
5 =

√
5 HIII

5 diag(x)HII
5 . Also for type III we find that Diag(HIII

N ) consists of

special symmetric Toeplitz–plus–Hankel matrices. Moreover note that Diag(HIII
N ) 6=

Diag(HI
N ).

Theorem 4.7. Let N ≥ 2 be an integer. Then the following orthogonal sum

representation is valid

(4.10) Diag(HIV
N ) = Scirc1(N) ⊕ JN Scirc0(N).

Moreover, for arbitrary x ∈ RN

(4.11) HIV
N diag(

√
Nx) HIV

N = scirc(HII
Nx+) + JN scirc(HII

Nx−)

with x+, x− being the JN–even and JN–odd parts of x, respectively.

The proof follows similar lines as the proof of Theorem 4.3 and is omitted here.
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Example 4.8. We use the same notations as in Example 4.4. For N = 4 we get

X IV
4 =









a0 a1 0 −a1

a1 a0 a1 0

0 a1 a0 a1

−a1 0 a1 a0









+









b1 b2 b1 0

b2 b1 0 −b1

b1 0 −b1 −b2

0 −b1 −b2 −b1









with X IV
4 = 2 HIV

4 diag (x)HIV
4 , while for N = 5, we obtain

X IV
5 =











a0 a1 a2 −a2 −a1

a1 a0 a1 a2 −a2

a2 a1 a0 a1 a2

−a2 a2 a1 a0 a1

−a1 −a2 a2 a1 a0











+











b1 b2 b2 b1 0

b2 b2 b1 0 −b1

b2 b1 0 −b1 −b2

b1 0 −b1 −b2 −b2

0 −b1 −b2 −b2 −b1











with X IV
5 =

√
5HIV

5 diag (x) HIV
5 . We observe that Diag(HIV

N ) consists of special

symmetric Toeplitz–plus–Hankel matrices. Finally notice that all the Hartley matrix

algebras Diag(HX
N ) of types X ∈ {I, II, III, IV} are pairwise distinct.

Remark 4.9. The sets Circ0(N), Circ1(N), Scirc0(N), and Scirc1(N) are linear

spaces. Furthermore Circ0(N) and Scirc1(N) are commutative matrix algebras, but

Circ1(N) and Scirc0(N) do not possess such a structure.

If circ(a), circ(b) ∈ Circ0(N) with J ′
N–even vectors a, b ∈ RN , then by Theorem 4.1

and Lemma 2.2 we get

circ (a) = HI
N diag(

√
N â) HI

N , circ (b) = HI
N diag(

√
N b̂) HI

N

with J ′
N–even vectors â = HI

Na and b̂ = HI
Nb and hence

circ(a) circ(b) = HI
N diag(

√
N â) diag(

√
N b̂) HI

N

= HI
N diag(N â ◦ b̂) HI

N ∈ Circ0(N),

since the componentwise product â ◦ b̂ ∈ RN remains J ′
N–even. Analogously, by

Theorem 4.7 and Lemma 2.2 it can be seen that Scirc1(N) is a matrix algebra.

On the other hand, if circ(a), circ(b) ∈ Circ1(N) with J ′
N–odd vectors a, b ∈ RN ,

then again by Theorem 4.1 and Lemma 2.2 we obtain

circ (a) = −J ′
NHI

N diag(
√

N â) HI
N , circ (b) = −J ′

NHI
N diag(

√
N b̂) HI

N

with J ′
N–odd vectors â = HI

Na and b̂ = HI
Nb. Therefore by (2.7) we deduce

circ (a) circ (b) = −J ′
NHI

N diag(
√

N â) HI
N (−J ′

N )HI
N diag(

√
N b̂) HI

N

= HI
N J ′

N diag(
√

N â) HI
NHI

NJ ′
N diag(

√
N b̂) HI

N

= HI
NJ ′

N diag(
√

N â) J ′
N diag(

√
N b̂) HI

N

= HI
N diag(

√
NJ ′

N â) diag(
√

N b̂) HI
N

= −HI
N diag(

√
N â) diag(

√
N b̂) HI

N

= −HI
N diag(N â ◦ b̂) HI

N ∈ Circ0(N),
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since â ◦ b̂ is now J ′
N–even. Thus Circ1(N) is not a matrix algebra. In a similar way,

by Theorem 4.7 and Lemma 2.2 we can prove that Scirc0(N) is not a matrix algebra.

Remark 4.10. We observe that the proofs in parts 3 of Theorems 4.1, 4.3,

4.5, and 4.7 regarding the orthogonality of the decompositions (4.2), (4.5), (4.8), and

(4.10), and the proofs of the statements reported in Remark 4.9 only concern Circ0(N),

Circ1(N), Scirc0(N), and Scirc1(N), i.e. real linear subspaces of the circulant and

skew–circulant matrices. However the employed tools include formulae (4.3), (4.6),

(4.9), and (4.11), and Lemma 2.2 which basically concerns links between Hartley

matrices (and Hartley matrix algebras) and Fourier matrices (and circulant, skew–

circulant matrices). Of course, we can also prove the above statements only referring

to circulant, skew–circulant, and Fourier matrices. The (modest) price to pay is that

we have to work in the complex field.

As an example, let us prove the orthogonality of the decompositions (4.2) reported

in part 3 of the proof of Theorem 4.1 by using purely “circulant tools”. For arbitrary

J ′
N–even a ∈ RN and J ′

N–odd b ∈ RN , we have to prove that the inner product

〈circ (a) , J ′
N circ(b)〉 = tr

[
(circ(a))T J ′

N circ (b)
]

vanishes. Setting â = (âj)
N−1
j=0 = [F I

N ]−1a and b̂ = (b̂j)
N−1
j=0 = [F I

N ]−1b, by (3.2), we

have

circ (a) = F I
N diag

(√
N â
)

[F I
N ]−1, circ (b) = F I

N diag
(√

N b̂
)

[F I
N ]−1.

By the trace theorem and by (2.5), it follows that

〈circ (a) , J ′
N circ (b)〉 = N tr

[

F I
N diag(â) [F I

N ]−1J ′
NF I

N diag(b̂) [F I
N ]−1

]

= N tr
[

F I
N diag(â) J ′

N diag(b̂) [F I
N ]−1

]

= N ×
{

â0b̂0 if N is odd,

(â0b̂0 + âN/2b̂N/2) otherwise.

By direct check, b̂ ∈ CN is J ′
N–odd and therefore b̂0 = 0 and b̂N/2 = 0, if N is even.

Then we conclude that 〈circ (a) , J ′
N circ (b)〉 = 0.

Remark 4.11. The results contained in Theorems 4.1, 4.3, 4.5, and 4.7 are

(partially) summarized in Table 4.11. More precisely, x+ indicates the even vector

and x− the odd vector obtained from x with respect to the matrix J ′
N for the Hartley

matrix algebras of types I and III and with respect to JN for the Hartley matrix

algebras of types II and IV.

5. Fast DHT algorithms. The aim of the present section is to introduce and

discuss fast DHT algorithms (cf. [2, 7, 5]). We start with some preliminaries. For
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Table 4.1

Symmetries of vectors and structures of Hartley matrix algebras.

N ≥ 4, PN denotes the even–odd permutation matrix (or 2–stride permutation matrix)

defined by

PNx :=

{

(x0, x2, . . . , xN−2, x1, x3, . . . , xN−1)
T for even N ,

(x0, x2, . . . , xN−1, x1, x3, . . . , xN−2)
T for odd N

with x = (xj)
N−1
j=0 ∈ RN . Note that P−1

N = PT
N is the ⌈N/2⌉–stride permutation

matrix (or perfect shuffle matrix). First we recall intertwining relations of Hartley

matrices. The following lemma improves a corresponding result of [19].

Lemma 5.1. Let N ≥ 2 be an integer. The Hartley matrices (2.2) satisfy the

following intertwining relations

(5.1)
HII

N = T ′
NHI

N = HIV
N TN , HIII

N = HI
NT ′

N = TNHIV
N ,

HIV
N = T ′

NHI
NTN = TNHI

NT ′
N = HII

NTN = TNHIII
N

with the symmetric orthogonal twiddle matrices

T ′
N := diag

(
cos
(

πj
N

))N−1

j=0
+
[

diag
(
sin
(

πj
N

))N−1

j=0

]

J ′
N ,

TN := diag
(

cos
(

(2j+1)π
2N

))N−1

j=0
+

[

diag
(

sin
(

(2j+1)π
2N

))N−1

j=0

]

JN .

Proof. Obviously, we have T ′
N = (T ′

N)T and TN = (TN )T , since (sin(πj/N))N−1
j=0

is J ′
N–even and (sin((2j + 1)π/(2N)))N−1

j=0 is JN–even. Finally by direct computation

we see that

T ′
N (T ′

N )T = diag
(
cos2

(
πj
N

))N−1

j=0
+ diag

(
sin2

(
πj
N

))N−1

j=0
= IN ,

since

[

diag (cos (πj/N))
N−1
j=0

]

J ′
N

[

diag
(
sin
(

πj
N

))N−1

j=0

]

+
[

diag
(
sin
(

πj
N

))N−1

j=0

]

J ′
N

[

diag
(
cos
(

πj
N

))N−1

j=0

]

=

[

0 ⊕ diag
(

sin
(

πj
N

)
cos
(

π(N−j)
N

)

+ sin
(

π(N−j)
N

)

cos
(

πj
N

))N−1

j=1

]

J ′
N
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and by well–known trigonometric formulae,

sin
(

πj
N

)
cos
(

π(N−j)
N

)

+ sin
(

π(N−j)
N

)

cos
(

πj
N

)
=

sin
(

πj
N + π(N−j)

N

)

= sin(π) = 0, (j = 1, . . . , N − 1).

In a similar way, we have TN (TN )T = IN . Using (2.2) and the basic properties

of the cas–function (2.3), we obtain HII
N = T ′

NHI
N and HIV

N = TNHIII
N . Hence by

transposing, we have HIII
N = HI

NT ′
N , HIV

N = HII
NTN and this completes the proof.

Remark 5.2. The matrices TN and T ′
N are cross–shaped, since their non–

vanishing entries lie on a cross. The central entry of the cross of T ′
N with even N and

of TN with odd N is equal to 1. In the other cases, this central element simply does not

exist. After suitable permutations, the matrices T ′
N and TN are direct sums of 1 and

of rotation–reflection matrices of order 2 (with angles πj/N (j = 1, . . . , ⌊(N − 1)/2⌋)
and (2j + 1)π/(2N) (j = 0, . . . , ⌊(N − 2)/2⌋), respectively). Therefore, the matrices

TN and T ′
N are called twiddle matrices.

In the following we use Lemma 5.1 for the construction of fast and numerically

stable algorithms for DHT–X(N) with X ∈ {II, III, IV}. Fast algorithms which use

pre- and postprocessing (with multiplication of T ′
N and TN , respectively) are designed

only for DHT–I(N). Let us recall an orthogonal factorization of HI
N which holds for

even N ≥ 4 and is similar to the one presented in [5].

Lemma 5.3. Let N ≥ 4 be an even integer. The Hartley matrix HI
N can be

factored in the form

(5.2) HI
N = PT

N (I2 ⊗ HI
N/2) (IN/2 ⊕ T ′

N/2) (HI
2 ⊗ IN/2).

Proof. We show (5.2) by using a divide–and–conquer technique. First we permute

the rows of HI
N according to the permutation matrix PN and we write the result as

a block matrix

PN HI
N = 1√

N






(

cas
(

4πjk
N

))N/2−1

j,k=0

(

cas
(

4πj(N/2+k)
N

))N/2−1

j,k=0
(

cas
(

2π(2j+1)k
N

))N/2−1

j,k=0

(

cas
(

2π(2j+1)(N/2+k)
N

))N/2−1

j,k=0




 .
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By using (2.2), (2.3), and (5.1) we write the latter in a more informative way:

PNHI
N = 1√

2

(

HI
N/2 HI

N/2

HIII
N/2 −HIII

N/2

)

= 1√
2

(

HI
N/2 HI

N/2

HI
N/2T

′
N/2 −HI

N/2T
′
N/2

)

= 1√
2
(I1 ⊗ HI

N/2)

(

IN/2 IN/2

T ′
N/2 −T ′

N/2

)

= 1√
2
(I1 ⊗ HI

N/2) (IN/2 ⊕ T ′
N/2)

(

IN/2 IN/2

IN/2 −IN/2

)

(5.3)

= (I1 ⊗ HI
N/2) (IN/2 ⊕ T ′

N/2) (HI
2 ⊗ IN/2).

The latter concludes the proof.

By transposing (5.2), we obtain an alternative orthogonal factorization

(5.4) HI
N = (HI

2 ⊗ IN/2) (IN/2 ⊕ T ′
N/2) (I2 ⊗ HI

N/2)PN .

Example 5.4. For N = 4 we observe that PT
4 = P4 and therefore, by Lemma

5.3, we have

2 HI
4 =









1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1









= P4 (I2 ⊗
(

1 1

1 −1

)

) (

(

1 1

1 −1

)

⊗ I2).

For N = 8, Lemma 5.3 implies that

√
2 HI

8 = PT
8 (I2 ⊗ HI

4) (I4 ⊕ T ′
4) (

(

1 1

1 −1

)

⊗ I4)

with

T ′
4 =









1 0 0 0

0
√

2/2 0
√

2/2

0 0 1 0

0
√

2/2 0 −
√

2/2









.

By means of the above factorization of 2 HI
4, we get the explicit factorization of

√
8 HI

8

as

B8 (I4 ⊗
(

1 1

1 −1

)

) (I2 ⊗
(

1 1

1 −1

)

⊗ I2) (I4 ⊕ T ′
4) (

(

1 1

1 −1

)

⊗ I4).
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Algorithm 5.5. (cas–I(x, N))

Input : N = 2t (t ≥ 1), x ∈ RN .

0. If t ≥ 3, then precompute the nontrivial

entries of T ′
n, n = 2s, (s = 2, . . . , t − 1), i.e.,

cos(πj/N), (j = 1, . . . , N/2 − 1).

1. If t = 1, then

y :=

(

1 1

1 −1

)

x.

2. If t = 2, then

(uj)
3
j=0 := (

(

1 1

1 −1

)

⊗ I2)x,

v′ := cas − I((uj)
1
j=0, 2),

v′′ := cas − I((uj)
3
j=2, 2),

y := P4

(

v′

v′′

)

.

3. If t ≥ 3, then

(uj)
N−1
j=0 := (

(

1 1

1 −1

)

⊗ IN/2)x,

(
u′

j

)N−1

j=N/2
:= T ′

N/2 (uj)
N−1
j=N/2 ,

v′ := cas − I((uj)
N/2−1
j=0 , N/2),

v′′ := cas − I((u′
j)

N−1
j=N/2, N/2),

y := PT
N

(

v′

v′′

)

.

Output : y =
√

N HI
Nx.

Note that B8 = PT
8 (I2 ⊗ P4) coincides with the classical bit reversal matrix of

order 8 (see [39], pp. 36–43). If we compute
√

8HI
8x for an arbitrary x ∈ R8, then the

algorithm based on the above factorization requires only 26 additions and 4 multiplica-

tions. Further we observe that only 12 butterfly operations and one rotation–reflection

are used.

Let N = 2t, (t ≥ 1) be a power of 2. Based on Lemma 5.3, we introduce a recursive

procedure which is named cas–I(x, N). The other algorithms called cas–II(x, N), cas–

III(x, N), and cas–IV(x, N) are variations of cas–I(x, N) via Lemma 5.1. In order to

reduce the number of multiplications, we move the factor 1/
√

2, which appears in each

application of Lemma 5.3 in the term HI
2 (see (5.3)), to the end of the calculation: in

such a way, with given x ∈ RN , we compute y :=
√

NHX
N x for X ∈ {I, II, III, IV}.

By a final scaling defined as z := 1√
N

y, we obtain the transformed vector z = HX
N x.
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Applying Lemma 5.1, we devise the following algorithms for computing y :=√
N HX

N x (X ∈ {II, III, IV}) with arbitrary x ∈ RN .

Algorithm 5.6. (cas–II(x, N))

Input : N = 2t (t ≥ 1), x ∈ RN .

0. If t ≥ 2, then precompute the nontrivial

entries of T ′
n, n = 2s, (s = 2, . . . , t), i.e.,

cos(πj/N), (j = 1, . . . , N/2 − 1).

1. If t = 1, then

y :=

(

1 1

1 −1

)

x.

2. If t ≥ 2, then

u := cas − I(x, N),

y := T ′
Nu.

Output : y =
√

N HII
Nx.

Algorithm 5.7. (cas–III(x, N))

Input : N = 2t (t ≥ 1), x ∈ RN .

0. If t ≥ 2, then precompute the nontrivial

entries of T ′
n, n = 2s, (s = 2, . . . , t), i.e.,

cos(πj/N), (j = 1, . . . , N/2 − 1).

1. If t = 1, then

y :=

(

1 1

1 −1

)

x.

2. If t ≥ 2, then

u := T ′
Nx,

y := cas − I(u, N).

Output : y =
√

N HIII
N x.
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Algorithm 5.8. (cas–IV(x, N))

Input : N = 2t (t ≥ 1), x ∈ RN .

0. If t ≥ 2, then precompute the nontrivial

entries of T ′
n, n = 2s, (s = 2, . . . , t), and

TN , i.e., cos(πj/N), (j = 1, . . . , N/2 − 1) and

cos((2j + 1)π/N), (j = 1, . . . , N/2 − 1).

1. If t = 1, then

y :=
√

2x.

2. If t ≥ 2, then

u := T ′
Nx,

v := cas − I(u, N),

y := TNv.

Output : y =
√

N HIV
N x.

Algorithms 5.5 – 5.8 are written in a short recursive form: this means that step

0 will be performed only once, at first (i.e. non recursive) call of cas–X. In such

algorithms we only use butterfly operations, rotation–reflections, and permutations.

The number of arithmetic operations required for carrying out a computation is called

arithmetic cost. Note that multiplications by 2k for some integer k and permutations

are not counted. The aim of the rest of the section is the determination of the

arithmetic costs of these fast DHT–X(N) with X ∈ {I, II, III, IV}. For an arbitrary

real matrix AN of order N , let α(AN ) and µ(AN ) denote the number of additions and

multiplications for computing ANx with any x ∈ RN , respectively. Analogously, the

number of additions and multiplications for computing of a fast DHT–X(N) algorithm

is denoted by α(DHT − X, N) and µ(DHT − X, N), respectively.

Here we determine the arithmetic cost for computing y =
√

N HX
N x with an

arbitrary input vector x ∈ RN .

Theorem 5.9. Let N = 2t (t ≥ 2) be given. The arithmetic cost of the fast

DHT–I(N) implemented by Algorithm 5.5 is described as follows

α(DHT − I, N) = 3
2 N log2(N) − 3

2 N + 2,

µ(DHT − I, N) = N log2(N) − 3 N + 4.

Proof. For N = 2t (t ≥ 3), by Algorithm 5.5 (or equivalently, by Lemma 5.3),

we obtain the recursive relation

α(DHT − I, N) = 2 α(DHT − I, N/2) + α(T ′
N/2) + N,

µ(DHT − I, N) = µ(DHT − I, N/2) + µ(T ′
N/2),
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where, by definition of the twiddle matrix T ′
N in Lemma 5.1, we have α(T ′

N/2) =

N/2 − 2 and µ(T ′
N/2) = 2(N/2 − 2) = N − 4. Thus we get the non–homogeneous

linear (in the variable t) difference equations of order 1

α(DHT − I, 2t) = 2 α(DHT − I, 2t−1) + 3 × 2t−1 − 2,

µ(DHT − I, 2t) = µ(DHT − I, 2t−1) + 2t − 4.

Solving the former difference equations under the initial conditions (see Example 5.4)

α(DHT − I, 4) = 8, µ(DHT − I, 4) = 0,

we deduce that

α(DHT − I, 2t) = 3 t 2t−1 − 3 × 2t−1 + 2,

µ(DHT − I, 2t) = t 2t − 3 × 2t + 4

and this completes the proof.

Corollary 5.10. Let N = 2t (t ≥ 2) be given. The arithmetic costs of the fast

DHT–X(N), X ∈ {II, III, IV}, implemented by Algorithms 5.6, 5.7, and 5.8 respec-

tively, are described as follows

α(DHT − II, N) = α(DHT − III, N) = 3
2 N log2(N) − 1

2 N,

µ(DHT − II, N) = µ(DHT − III, N) = N log2(N) − N,

α(DHT − IV, N) = 3
2 N log2(N) + 1

2 N, µ(DHT − IV, N) = N log2(N) + N.

Proof. We apply Theorem 5.9 and we use the arithmetic costs of products with

the twiddle matrices T ′
N and TN which, by their definition in Lemma 5.1, are given

by

α(T ′
N ) = N − 2, µ(T ′

N ) = 2 N − 4, α(TN ) = N, µ(TN ) = 2 N.

This completes the proof.

Remark 5.11. In [5], the authors provide further (substantially equivalent)

factorizations of HII
N , HIII

N , and HIV
N for N ≥ 4. For example

HII
N = PT

N (I2 ⊗ HII
N/2) (IN/2 ⊕ TN/2) (HII

2 ⊗ IN/2).

By making recourse to the factorizations in the case of N = 2t (t ≥ 2), we can obtain

corresponding fast DHT–X(N) algorithms with X ∈ {II, III, IV} whose arithmetic

costs are similar to those reported in Corollary 5.10.

A fast DHT algorithm is understood in the best way by interpreting it as the

application of an explicit factorization of the corresponding Hartley matrix. We now
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present a factorization of HI
N with N = 2t (t ≥ 3) into a product of sparse, orthogonal

matrices. The considered factorization of of HI
N and Lemma 5.1 directly lead to direct

DHT–X(N) algorithms with X ∈ {I, II, III, IV}, which may be preferred on special

platforms. Note that these direct formulations coincide with the recursive ones since

they just arise from the explicit resolution of the recursions.

Let us consider HI
N for N = 2t (t ≥ 3). Further let Ns := 2t−s (s = 0, . . . , t− 1).

In the first factorization step, by Lemma 5.3, the matrix
√

2 HI
N is split in I2 ⊗ HI

N1

by

√
2HI

N = PT
N (I2 ⊗ HI

N1
) (T

(1)
N A

(1)
N )

with

A
(1)
N :=

(

1 1

1 −1

)

⊗ IN1 , T
(1)
N := IN1 ⊕ T ′

N1
.

In the second step we apply Lemma 5.3 to
√

2HI
N1

and consequently we have

2 HI
N = PT

N (I2 ⊗ PT
N1

) (I4 ⊗ HI
N2

) (T
(2)
N A

(2)
N ) (T

(1)
N A

(1)
N )

with

A
(2)
N := I2 ⊗ A

(1)
N1

, T
(2)
N := I2 ⊗ T

(1)
N1

.

In the case N2 > 2 we continue the procedure. Finally, after t − 1 steps, we obtain

the factorization

(5.5) 2t/2 HI
N = BN A

(t)
N A

(t−1)
N (T

(t−2)
N A

(t−2)
N ) · · · (T

(1)
N A

(1)
N ),

where

BN := PT
N (I2 ⊗ PT

N1
) · · · (INt−s

⊗ PT
Ns

) · · · (IN2 ⊗ PT
4 )

is the bit reversal matrix of order N (see [39], pp. 36–43),

A
(s)
N := I2 ⊗ A

(s−1)
N1

= INt+1−s
⊗ A

(1)
Ns−1

(s = 2, . . . , t)

are modified addition matrices, and

T
(s)
N := I2 ⊗ T

(1)
N1

= INt+1−s
⊗ T

(1)
Ns−1

(s = 2, . . . , t − 2)

are modified twiddle matrices. Note that (1/
√

2)A
(s)
N (s = 1, . . . , t) and T

(s)
N (s =

1, . . . , t − 2) are orthogonal. A
(s)
N is called almost orthogonal, since it is a scaled

orthogonal matrix. Furthermore, these matrices are sparse in the special sense that

every row and column contains at most 2 nonzero entries. We summarize the previous

analysis in the following theorem, whose proof follows directly from (5.5) and Lemma

5.1.



48 ANTONIO ARICO, STEFANO SERRA-CAPIZZANO, AND MANFRED TASCHE

Theorem 5.12. Let N = 2t (t ≥ 3) be given. Then the matrices HX
N with X ∈

{I, II, III, IV} can be factorized into products of sparse, almost orthogonal matrices

√
N HI

N = BN A
(t)
N A

(t−1)
N (T

(t−2)
N A

(t−2)
N ) · · · (T

(1)
N A

(1)
N ) ,

√
N HII

N = T ′
N BN A

(t)
N A

(t−1)
N (T

(t−2)
N A

(t−2)
N ) · · · (T

(1)
N A

(1)
N ) ,(5.6)

√
N HIII

N = BN A
(t)
N A

(t−1)
N (T

(t−2)
N A

(t−2)
N ) · · · (T

(1)
N A

(1)
N )T ′

N ,
√

N HIV
N = TN BN A

(t)
N A

(t−1)
N (T

(t−2)
N A

(t−2)
N ) · · · (T

(1)
N A

(1)
N )T ′

N .

6. Numerical stability of fast DHT algorithms. In the following we use

Wilkinson’s standard model for the binary floating point arithmetic for real numbers

(see [21], p. 44). If x ∈ R is represented by the floating point number x̂ = fl(x), then

fl(x) = x(1 + δ) with |δ| ≤ u, where u denotes the unit roundoff or machine precision

as long as we disregard underflow and overflow. For arbitrary floating point numbers

x0, x1 and any arithmetical operation ⊙ ∈ {+, −, ×, /}, the exact value y = x0 ⊙ x1

and the computed value ŷ = fl(x0 ⊙ x1) are related by

(6.1) fl(x0 ⊙ x1) = (x0 ⊙ x1)(1 + δ⊙) (|δ⊙| ≤ u).

In the IEEE single precision arithmetic (24 bits for the mantissa including 1 sign bit,

8 bits for the exponent), we have u = 2−24 ≈ 5.96 · 10−8. Concerning the double

precision arithmetic (53 bits for the mantissa including 1 sign bit, 11 bits for the

exponent), we find u = 2−53 ≈ 1.11 · 10−16 (see [21], p. 45).

The total roundoff error in the result of an algorithm is composed of a number

of such errors when the input data are represented exactly. Otherwise we have also

to add the inherent error: in our case, the orthogonality of the Hartley transforms

guarantees that the inherent error is modest even for large length N (well conditioned

problem) and then we can restrict our attention to the errors described in (6.1). To

make clear the origin of the relative errors δ⊙k , we use a superscript for specifying

the operation ⊙ and a subscript for denoting the operation step k. In this section we

show that under very mild assumptions, our fast DHT algorithms possess a remarkable

numerical stability and this is of interest since the problem is well conditioned.

First we consider Algorithm 5.5 for DHT–I(N) with N = 2t (t ≥ 3) which is

equivalent to the factorization formula (5.6) of
√

N HI
N . Our considerations are now

based on the DHT–I(N) procedure in its direct form outlined below:

For s = 1 to t − 2 compute

(6.2) x(2s−1) := A
(s)
N x(2s−2), x(2s) := T

(s)
N x(2s−1) (x(0) := x)

and

x(2t−3) := A
(t−1)
N x(2t−4), x(2t−2) := A

(t)
N x(2t−3),(6.3)

x(2t−1) := BNx(2t−2).
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Then y =
√

N HI
Nx = x(2t−1) is the result of our fast DHT–I(N) Algorithm 5.5. By

final scaling we obtain the wanted vector

z = HI
Nx = 1√

N
x(2t−1).

The roundoff errors of the considered Algorithm 5.5 are caused by the modified addi-

tion matrices A
(s)
N (s = 1, . . . , t), the modified twiddle matrices T

(s)
N (s = 1, . . . , t−2),

and the final scaling. The matrices A
(s)
N and T

(s)
N possess a simple structure. After

suitable permutations, every of such matrices is block diagonal with block order at

most 2. All blocks of order 1 coincide with 1, which correspond to identities and

therefore do not produce roundoff errors. Every block of order 2 is either a butterfly

matrix
(

1 1

1 −1

)

or a rotation–reflection matrix
(

a0 a1

a1 −a0

)

with a0 = cos(2−sπj), a1 = sin(2−sπj), (s = 2, . . . , t − 1; j = 1, . . . , 2s−1 − 1). The

following result [28] is of interest for our analysis.

Lemma 6.1. Let x0, x1 be arbitrary real floating point numbers.

1. For the butterfly operation, y0 := x0 +x1, y1 := x0−x1 with ŷ0 := fl(x0 +x1),

ŷ1 := fl(x0 − x1), the roundoff error can be estimated as

(ŷ0 − y0)
2 + (ŷ1 − y1)

2 ≤ 2 u2 (x2
0 + x2

1).

2. Let s ≥ 2 be a given integer. If a0 = cos(2−sπj) and a1 = sin(2−sπj),

(j = 1, . . . , 2s−1−1) are precomputed by âk = ak +∆ak with |∆ak| ≤ c u (k =

0, 1), then for the rotation–reflection y0 := a0x0 + a1x1, y1 := a1x0 − a0x1

with ŷ0 := fl(a0x0 + a1x1), ŷ1 := fl(a1x0 − a0x1), the roundoff error can be

estimated as

(ŷ0 − y0)
2 + (ŷ1 − y1)

2 ≤
(

4
3

√
3 + c

√
2 + O(u)

)2
u2 (x2

0 + x2
1).

We consider arbitrary input vectors x ∈ RN , where all components of x are

floating point numbers. In this way we neglect the inherent error and we essentially

consider only the algorithmic one. Let y =
√

N HX
N x ∈ RN with X ∈ {I, II, III, IV}

such that z = 1√
N

y is the exact transformed vector. Further let ŷ the output vector

computed by using Algorithms 5.5, 5.6, 5.7, and 5.8, respectively, using a binary

floating point arithmetic with unit roundoff u. Finally, let ẑ := fl
(

1√
N

y
)

. Since HX
N

is invertible, ẑ can be represented in the form ẑ = HX
N (x + ∆x) with ∆x ∈ RN . An
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algorithm for computing HX
N x is called normwise backward stable (see [21], p. 142),

if there exists a positive constant kN with kNu ≪ 1 such that

(6.4) ‖∆x‖2 ≤
(
kN u + O(u2)

)
‖x‖2

for all input vectors x. Thus the constant kN measures the numerical stability of the

algorithm. Since HX
N is orthogonal, we conclude that ‖∆x‖2 = ‖HX

N (∆x)‖2 = ‖ẑ−z‖2

and ‖x‖2 = ‖HX
N x‖2 = ‖z‖2. Hence, if (6.4) is satisfied, then we have normwise

forward stability as well, i.e.

‖ẑ− z‖2 ≤
(
kNu + O(u2)

)
‖z‖2.

Let N = 2t (t ≥ 3) be given. We now look closer at the computational steps in our

recursive DHT–I(N) Algorithm 5.5 which is equivalent to its direct version (6.2) –

(6.3). For every s = 2, . . . , t − 1, all values

(6.5) cos(2−sπj) (j = 1, . . . , 2s−1 − 1)

needed in the twiddle matrix T ′
2s are precomputed. Note that

sin(2−sπj) = cos(2−sπ(2s−1 − j)) (j = 1, . . . , 2s−1 − 1).

If cosine is internally computed with high precision and all values (6.5) afterwards are

rounded to the next machine precision, then we obtain a very accurate approximation

of the quantities (6.5) with an error constant c = 1/2 (see Lemma 6.1, item 2). In the

following, we use the matrix T̂
(s)
N (s = 1, . . . , t−2) with the precomputed entries (6.5)

instead of the exact modified twiddle matrices T
(s)
N . Set x̂(0) = x(0) = x. Then the

vectors computed in the direct DHT–I(N) algorithm (6.2) – (6.3), denoted by x̂(r)

(r = 1, . . . , 2t − 1), satisfy the following relationships:

x̂(2s−1) := fl
(

A
(s)
N x̂(2s−2)

)

(s = 1, . . . , t − 2),

x̂(2s) := fl
(

T̂
(s)
N x̂(2s−1)

)

(s = 1, . . . , t − 2),

x̂(2t−3) := fl
(

A
(t−1)
N x̂(2t−4)

)

,

x̂(2t−2) := fl
(

A
(t)
N x̂(2t−3)

)

,

x̂(2t−1) := BN x̂(2t−2).

Further we introduce (implicitly) the error vectors e(r) ∈ RN (r = 1, . . . , 2t − 1) by

x̂(2s−1) = A
(s)
N x̂(2s−2) + e(2s−1) (s = 1, . . . , t − 2),

x̂(2s) = T
(s)
N x̂(2s−1) + e(2s) (s = 1, . . . , t − 2),

x̂(2t−3) = A
(t−1)
N x̂(2t−4) + e(2t−3),(6.6)

x̂(2t−2) = A
(t)
N x̂(2t−3) + e(2t−2),

x̂(2t−1) = BN x̂(2t−2) + e(2t−1).
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Note that e(r) (r = 1, . . . , 2t−1) describes the precomputation error and the roundoff

error at the r-th step in DHT–I(N) procedure. Since BN is the bit reversal matrix,

we have e(2t−1) = o. The matrix vector products A
(s)
N x̂(2s−2) (s = 1, . . . , t − 1), and

A
(t)
N x̂(2t−3) involve only butterfly operations and consequently by Lemma 6.1, item 1,

we have

‖e(2s−1)‖2 ≤
√

2u ‖x̂(2s−2)‖2 (s = 1, . . . , t − 1),(6.7)

‖e(2t−2)‖2 ≤
√

2u ‖x̂(2t−3)‖2 .

Every matrix vector product T
(s)
N x̂(2s−1) (s = 1, . . . , t − 2) consists of identities and

rotation–reflections and then by Lemma 6.1, item 2, we deduce the estimate

(6.8) ‖e(2s)‖2 ≤
(

4
3

√
3 + 1

2

√
2 + O(u)

)
u ‖x̂(2s−1)‖2 , (s = 1, . . . , t − 2).

Finally, we scale the result of our fast DHT–I(N) algorithm by the relation z =

2−t/2 x(2t−1). Let ẑ = fl
(
2−t/2 x̂(2t−1)

)
. For even t ≥ 3, the latter scaling by a power

of 2 does not lead to any additional roundoff error and hence

‖ẑ− z‖2 = 2−t/2 ‖x̂(2t−1) − x(2t−1)‖2 = 2−t/2 ‖x̂(2t−2) − x(2t−2)‖2 .

For odd t ≥ 3, we precompute fl(2−t/2) as 2−(t+1)/2 fl
(√

2
)

with |fl
(√

2
)
−

√
2| ≤ u.

Then by (6.1), for every j = 0, . . . , N − 1, we obtain

ẑj = 2−(t+1)/2 fl(
√

2) x̂(2t−1)(1 + δ×j )

with |δ×j | ≤ u and the latter implies that

‖ẑ − 2−t/2x(2t−1)‖2 ≤ 2−t/2 ‖x(2t−1)‖2 u
(

1 +
√

2
2 + O(u)

)

.

Hence by triangle inequality it follows that

‖ẑ− z‖2 ≤ 1√
N
‖x(2t−1)‖2 u

(

1 +
√

2
2 + O(u)

)

+ 1√
N
‖x̂(2t−1) − x(2t−1)‖2

= 1√
N
‖x(2t−1)‖2 u

(

1 +
√

2
2 + O(u)

)

+ 1√
N
‖x̂(2t−1) − x(2t−1)‖2(6.9)

which is true for even t ≥ 3 too.

Now we are ready for estimating the total roundoff error ‖ẑ−z‖2 of the presented

fast DHT–I(N) algorithm under the assumption that
√

2 and the cosine values (6.5)

are precomputed in the best possible way.

Theorem 6.2. Let N = 2t (t ≥ 3) be given. Assume that
√

2 and the values (6.5)

are precomputed with an absolute error bound of u and u/2, respectively. Then the

fast DHT–I(N) Algorithm 5.5 (with final scaling) is normwise backward stable with

the constant

kN =
(

4
3

√
3 + 3

2

√
2
)

(log2(N) − 1) ≈ 4.430721 (log2(N) − 1).
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Proof. 1. First we estimate the roundoff error ‖x̂(2t−1)−x(2t−1)‖2. Applying (6.6)

and (6.2) – (6.3) repeatedly, we find that

x̂(2t−1) = x(2t−1) + BNA
(t)
N A

(t−1)
N T

(t−2)
N · · ·T (2)

N A
(2)
N T

(1)
N e(1)

+ BNA
(t)
N A

(t−1)
N T

(t−2)
N · · ·T (2)

N A
(2)
N e(2) + · · ·(6.10)

+ BNA
(t)
N A

(t−1)
N T

(t−2)
N e(2t−5) + BNA

(t)
N A

(t−1)
N e(2t−4)

+ BNA
(t)
N e(2t−3) + BNe(2t−2).

The matrices 1√
2
A

(s)
N , (s = 1, . . . , t) and T

(s)
N , (s = 1, . . . , t − 2) are orthogonal and

as a consequence all matrices have the spectral norm equal to 1, i.e., ‖A(s)
N ‖2 =

√
2,

(s = 1, . . . , t) and ‖T (s)
N ‖2 = 1, (s = 1, . . . , t − 2). Then by (6.6) we deduce the

estimates

‖x̂(2s−1)‖2 ≤
√

2 ‖x̂(2s−2)‖2 + ‖e(2s−1)‖2 (s = 1, . . . , t − 1),

‖x̂(2s)‖2 ≤ ‖x̂(2s−1)‖2 + ‖e(2s)‖2 (s = 1, . . . , t − 2),

‖x̂(2t−1)‖2 = ‖x̂(2t−2)‖2 ≤
√

2 ‖x̂(2t−3)‖2 + ‖e(2t−2)‖2.

Thus by (6.7) – (6.8) we infer that

‖x̂(2s−1)‖2 ≤ (
√

2 + O(u)) ‖x̂(2s−2)‖2 (s = 1, . . . , t − 1),

‖x̂(2s)‖2 ≤ (1 + O(u)) ‖x̂(2s−1)‖2 (s = 1, . . . , t − 2),

‖x̂(2t−1)‖2 = ‖x̂(2t−2)‖2 ≤ (
√

2 + O(u)) ‖x̂(2t−3)‖2.

Since x̂(0) = x, we have

‖x̂(s)‖2 ≤ (2⌈s/2⌉ + O(u)) ‖x‖2 (s = 1, . . . , 2t − 3),(6.11)

‖x̂(2t−1)‖2 = ‖x̂(2t−2)‖2 ≤ (2t/2 + O(u)) ‖x‖2.

From (6.7) – (6.8) and (6.11), it follows that

‖e(2s−1)‖2 ≤ (2(s+1)/2 + O(u))u ‖x‖2 (s = 1, . . . , t − 1),

‖e(2s)‖2 ≤ 2s/2
(

4
3

√
3 + 1

2

√
2 + O(u)

)
u ‖x‖2 (s = 1, . . . , t − 2),(6.12)

‖e(2t−2)‖2 ≤
(

2s/2 + O(u)
)

u ‖x‖2.

2. By (6.10) we directly find

‖x̂(2t−1) − x(2t−1)‖2 = ‖A(t)
N ‖2 ‖A(t−1)

N ‖2 · · · ‖A(2)
N ‖2 ‖e(1)‖2

+ ‖A(t)
N ‖2 ‖A(t−1)

N ‖2 · · · ‖A(2)
N ‖2 ‖e(2)‖2 + · · ·

+ ‖A(t)
N ‖2 ‖A(t−1)

N ‖2 ‖e(2t−5)‖2 + ‖A(t)
N ‖2 ‖A(t−1)

N ‖2 ‖e(2t−4)‖2

+ ‖A(t)
N ‖2 ‖e(2t−3)‖2 + ‖e(2t−2)‖2.

Hence (6.12) implies the conclusion

(6.13) ‖x̂(2t−1) − x(2t−1)‖2 ≤ 2t/2
[(

4
3

√
3 + 3

2

√
2
)
(t − 2) +

√
2 + 1 + O(u)

]
u ‖x‖2.
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3. For the final scaling described by z = 2−t/2x(2t−1) we set ẑ = fl
(
2−t/2x̂(2t−1)

)
.

By using (6.9) we obtain the final result

‖ẑ− z‖2 ≤
[(

4
3

√
3 + 3

2

√
2
)
(t − 1) + O(u)

]
u ‖x‖2

and the theorem is proven.

Corollary 6.3. Let N = 2t (t ≥ 3) be given. Assume that
√

2 and the values

(6.5) are precomputed with an absolute error bound of u and u/2, respectively. Then

the fast DHT–II(N) Algorithm 5.6 and the fast DHT–III(N) Algorithm 5.7 (with final

scaling) are normwise backward stable with the constant

kN =
(

4
3

√
3 + 3

2

√
2
)
log2(N) −

√
2 ≈ 4.430721 log2(N) − 1.414214.

Proof. We apply mainly the new result (6.13) from the proof of Theorem 6.2.

Taking into account the notations of Algorithm 5.6, we consider the exact vectors

u =
√

N HI
Nx, y = T ′

Nu, z = 1√
N

y = HII
Nx, and the corresponding computed vectors

û, ŷ := fl(T̂ ′
N û), ẑ := fl( 1√

N
ŷ). We introduce the error vectors e(1), e(2) through the

relations

û = u + e(1), ŷ = T ′
N û + e(2)

such that

ŷ = T ′
Nu + T ′

Ne(1) + e(2) = y + T ′
Ne(1) + e(2).

Since T ′
N is orthogonal, we get ‖T ′

N‖2 = 1 and hence by triangle inequality

(6.14) ‖ŷ − y‖2 ≤ ‖e(1)‖2 + ‖e(2)‖2 .

By (6.13) we see that

(6.15) ‖e(1)‖2 ≤
√

N
[(

4
3

√
3 + 3

2

√
2
)
(t − 2) +

√
2 + 1 + O(u)

]
u ‖x‖2 .

By virtue of Lemma 6.1, item 2, it follows that

‖e(2)‖2 ≤
(

4
3

√
3 + 1

2

√
2 + O(u)

)
u ‖û‖2 ,

since, after suitable permutations, T ′
N is the direct sum of one identity matrix and

N/2 − 1 rotation–reflection matrices of order 2. Note that by (6.15)

‖û‖2 ≤ ‖u‖2 + ‖e(1)‖2 = ‖
√

N HI
Nx‖2 + ‖e(1)‖2 ≤ (

√
N + O(u)) ‖x‖2

and consequently

(6.16) ‖e(2)‖2 ≤
√

N
(

4
3

√
3 + 1

2

√
2 + O(u)

)
u ‖x‖2 .
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Then (6.14) – (6.16) imply that

‖ŷ − y‖2 ≤
√

N
[(

4
3

√
3 + 3

2

√
2
)
(t − 1) + 1 + O(u)

]
u ‖x‖2 .

Note that by (6.16) we have

‖ŷ‖2 = ‖T ′
N‖2 ‖û‖2 + ‖e(2)‖2

≤ ‖û‖2 + ‖e(2)‖2

≤ (
√

N + O(u)) ‖x‖2.

By recalling (6.9), for the final scaling we infer that

‖ẑ − z‖2 ≤ 1√
N
‖ŷ‖2 u

(

1 +
√

2
2 + O(u)

)

+ 1√
N
‖ŷ − y‖2

≤
[(

4
3

√
3 + 3

2

√
2
)
t −

√
2 + O(u)

]
u ‖x‖2.

The proof for Algorithm 5.7 is totally similar and is omitted here.

Corollary 6.4. Let N = 2t (t ≥ 3) be given. Assume that
√

2 is precom-

puted with an absolute error bound of u and the values cos(2−sπj) (s = 1, . . . , t; j =

1, . . . , 2s−1 − 1) and cos(2−t−1π(2j + 1)) (j = 0, . . . , 2t−1 − 1) are precomputed with

an absolute error bound of u/2. Then the fast DHT–IV(N) Algorithm 5.8 (with final

scaling) is normwise backward stable with the constant

kN =
(

4
3

√
3 + 3

2

√
2
)
log2(N) + 1 ≈ 4.430721 log2(N) + 1.

Proof. By using the notations of Algorithm 5.8, we consider the exact vectors

u = T ′
Nx, v =

√
N HI

Nu, y = TNv, z = 1√
N

y = HIV
N x, and the corresponding

computed vectors û := fl(T̂ ′
N x̂), v̂, ŷ := fl(T̂N v̂), ẑ := fl( 1√

N
ŷ). We introduce the

error vectors e(1), e(2), e(3) via the identities

û = T ′
Nx + e(1), v̂ =

√
N HI

N û + e(2), ŷ = TN v̂ + e(3)

and hence by Lemma 5.1

ŷ =
√

N TNHI
NT ′

Nx +
√

N TNHI
Ne(1) + TNe(2) + e(3)

= y +
√

N TNHI
Ne(1) + TNe(2) + e(3).

Then, by triangle inequality and by orthogonality of HI
N and TN , we find

‖ŷ − y‖2 ≤ ‖
√

N TNHI
Ne(1)‖2 + ‖TNe(2)‖2 + ‖e(3)‖2

≤
√

N ‖e(1)‖2 + ‖e(2)‖2 + ‖e(3)‖2 .(6.17)

By (6.13) we see that

‖e(2)‖2 ≤
√

N
[(

4
3

√
3 + 3

2

√
2
)
(t − 2) +

√
2 + 1 + O(u)

]
u ‖û‖2.
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From Lemma 6.1, item 2, we deduce the following relations

‖e(1)‖2 ≤
(

4
3

√
3 + 1

2

√
2 + O(u)

)
u ‖x‖2 ,(6.18)

‖e(3)‖2 ≤
(

4
3

√
3 + 1

2

√
2 + O(u)

)
u ‖v̂‖2 .

Since

‖û‖2 ≤ ‖x‖2 + ‖e(1)‖2 ≤ (1 + O(u)) ‖x‖2 ,

we infer

(6.19) ‖e(2)‖2 ≤
√

N
[(

4
3

√
3 + 3

2

√
2
)
(t − 2) +

√
2 + 1 + O(u)

]
u ‖x‖2

and then we have the estimate

‖v̂‖2 ≤ ‖
√

N HI
N û‖2 + ‖e(2)‖2 =

√
N ‖û‖2 + ‖e(2)‖2

≤ (
√

N + O(u))‖x‖2.

The latter implies that

‖e(3)‖2 ≤
√

N
(

4
3

√
3 + 1

2

√
2 + O(u)

)
u ‖x‖2,(6.20)

‖ŷ‖2 ≤ ‖TN v̂‖2 + ‖e(3)‖2 = ‖v̂‖2 + ‖e(3)‖2

≤
(√

N + O(u)
)

‖x‖2 .(6.21)

Then (6.17) – (6.20) imply that

‖ŷ − y‖2 ≤
√

N
[(

4
3

√
3 + 3

2

√
2
)
t −

√
2 + 1 + O(u)

]
u ‖x‖2 .

By recalling (6.9) and using (6.21), for the final scaling we obtain the estimate

‖ẑ − z‖2 ≤ 1√
N
‖ŷ‖2 u

(

1 +
√

2
2 + O(u)

)

+ 1√
N
‖ŷ − y‖2

≤
[(

4
3

√
3 + 3

2

√
2
)
t + 1 + O(u)

]
u ‖x‖2 .

This completes the proof.

7. Optimal Frobenius approximation of Toeplitz matrices. In this section

we consider the approximation of Toeplitz structures by matrices in the four Hartley

matrix algebras described in Section 4. Since all the matrices of a Hartley matrix

algebra are inherently real symmetric, we restrict our attention to real symmetric

Toeplitz matrices. More precisely, we consider symmetric Toeplitz matrices TN (f)

generated by a Lebesgue integrable even function f : (−π, π] → R in the sense that

the entries of TN(f) along the k-th diagonal are given by the k-th Fourier coefficient

tk of f :

(7.1) [TN (f)]i,j = t|i−j|, tk = 1
2π

∫ π

−π
f(x)e−ikx dx = 1

π

∫ π

0
f(x) cos(kx) dx (k ∈ Z).
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Then the function f is called symbol or generating function of TN (f).

Let UN be given unitary matrices for all orders N ∈ N and U∗
N := U

T

N their com-

plex conjugates, where the case UN = HX
N with X ∈ {I, II, III, IV} is of special

interest. By Diag(UN ) := {A ∈ CN×N : U∗
NAUN diagonal} we denote the matrix

algebra related to UN . Now we introduce the operator PUN
: CN×N → Diag (UN )

by PUN
(A) = Ã for any A ∈ CN×N , where Ã ∈ Diag(UN) minimizes the quadratic

functional

FA(X) := 〈A − X, A − X〉 = ‖A − X‖2
F (X ∈ Diag(UN ))

in the Frobenius norm (associated to the Frobenius inner product (4.1)). In this way,

PUN
(TN (f)) is that matrix where the functional FTN (f) attains its minimum value.

Then PUN
(TN (f)) is called the optimal preconditioner of the Toeplitz matrix TN (f)

in Diag(UN ) (see e.g. [9] or [27], pp. 80–88). In the following we will consider two

directions. The first is algebraic and concerns the explicit construction of PUN
(TN (f))

in the four Hartley matrix algebras (see Subsection 7.1). The second direction is more

analytic and concerns the approximation properties of {PUN
(TN (f))}N with respect

to {TN(f)}N and its consequences in terms of the PCG method (see Subsection 7.2).

7.1. Explicit formulas for optimal preconditioners. The procedure for

computing the Frobenius optimal approximation of a given symmetric Toeplitz matrix

with real Fourier coefficients tj = t|j| (j ∈ Z) can be obtained by a simple minimiza-

tion of the quadratic functional FTN (f)(X) = ‖TN(f)− X‖2
F over all the matrices X

belonging to the algebra under consideration. In the case of the algebra of symmetric

circulants, this leads to average formula for the T. Chan optimal preconditioner (see

[10] or [27], pp. 56–61) described by PF I
N

(TN (f)) = circ(a) where a = (ai)
N−1
i=0 is

JN–even and

ai = 1
N ((N − i)ti + itN−i) (i = 0, . . . , ⌊N/2⌋).

Therefore the arithmetic cost for determining the optimal preconditioner is propor-

tional to the size N .

The same idea and the same kind of results hold for the case of Hartley matrix al-

gebras for which the expression of the vectors a = (ai)
N−1
i=0 and b = (bi)

N−1
i=0 can be

resumed as follows:

(7.2)

a0 = t0,

ai = 1
N ((N − i)ti + i(−1)tX [0]tN−i) (i = 1, . . . , ⌊(N − tX [0])/2⌋),

b0 = 0,

bi = 1
N (ti − (−1)tX [0]tN−i)(1 − tX [1]) (i = 1, . . . , ⌊(N − 1 + tX [0])/2⌋).

Here, with reference to Table 2 and Table 4.11 (where more information on the four

Hartley matrix algebras are compactly reported), we have the J ′
N–even vector a =
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HI
Nx+ and the J ′

N–odd vector b = HI
Nx− in the case of the Hartley matrix algebras

of type I and III, while we have the J ′′
N–odd vector a = HII

Nx+ and J ′′
N–even vector

b = HII
Nx− in the case of the Hartley matrix algebras of type II and IV. Then the

optimal preconditioner of the symmetric Toeplitz matrix TN (f) reads as follows

PHX

N

(TN (f)) =







circ(a) − J ′
Ncirc(b) for X = I,

scirc(a) + J ′′
N scirc(b) for X = II,

circ(a) − JNcirc(b) for X = III,

scirc(a) + JN scirc(b) for X = IV.

Note that PHI
N

(TN (f)) can be found in [4] and [27], p. 87.

7.2. Approximation results for optimal preconditioners. We start by re-

calling some useful facts on PUN
.

Lemma 7.1. [14, 34] Let UN ∈ CN×N be an unitary matrix. Then for arbitrary

A, B ∈ CN×N , the operator PUN
has the following properties:

1. PUN
(A) = UNσ(U∗

NAUN )U∗
N , where σ(X) is the diagonal matrix having

(X)i,i as diagonal elements.

2. PUN
(αA + βB) = αPUN

(A) + βPUN
(B) for all α, β ∈ C.

3. PUN
(A∗) = (PUN

(A))
∗
.

4. tr(PUN
(A)) = tr(A).

5. ‖PUN
‖ = 1 with the operator 2–norm ‖ · ‖.

6. ‖PUN
‖ = 1 with the operator Frobenius norm ‖ · ‖.

7. ‖A − PUN
(A)‖2

F = ‖A‖2
F − ‖PUN

(A)‖2
F (law of Pythagoras).

8. If UN = UN1 ⊗ · · · ⊗ UNm
with unitary matrices UNh

(h = 1, . . . , m) and

AN = AN1 ⊗ · · · ⊗ ANm
, then PUN

(AN ) = PUN1
(AN1) ⊗ · · · ⊗ PUNm

(ANm
).

In order to properly state the “matrix approximation results”, we introduce the

following concepts of “matrix convergence”. We consider the sequence of matrix

algebras {Diag(UN )}N of increasing N with the associated operators PUN
. We say

that {PUN
(TN (f))}N converges strongly to {TN(f)}N for N → ∞, if for any ǫ > 0,

there exists an index N̄ such that for all N ≥ N̄ , TN(f)−PUN
(TN (f)) has eigenvalues

in (−ǫ, ǫ) except for a constant number Mǫ of outliers (proper clustering at zero).

Further we say that {PUN
(TN (f))}N converges weakly to {TN(f)}N for N → ∞, if

for any ǫ > 0, there exists an index N̄ such that for all N ≥ N̄ , TN (f)−PUN
(TN (f))

has eigenvalues in (−ǫ, ǫ) except for Mǫ = o(N) outliers (general clustering at zero).

Furthermore, the convergence of {PUN
(TN (f))}N to {TN(f)}N for N → ∞ is called

kN–weak, if Mǫ = O(kN ) and kN = o(N) for N → ∞. For brevity, we will omit to

write “for N → ∞” when referring to matrix convergence.

In the case where we observe strong convergence, we say that the convergence

is also uniform, if the number Mǫ does not depend on ǫ. In the case where there is
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strong convergence (strong or proper clustering in an alternative very popular ter-

minology) and the function f is strictly positive, we have a superlinear convergence

of the related PCG methods having {PUN
(TN(f))}N as preconditioner, but we may

have a sublinear behaviour, if the weak (or general) convergence case occurs. More-

over, if the convergence is also uniform, that is Mǫ does not depend on ǫ, the number

of iterations initially decreases as the order N increases and then it stabilizes to a

constant value. Therefore the associated PCG method is comparable with the one

devised in [32].

The following Lemma 7.2 due to E. Tyrtyshnikov provides a criterion to establish

if convergence occurs, while Theorems 7.3, 7.4, and 7.5 reduce the analysis concerning

the matrix approximation of Toeplitz matrices TN (f) from the case of continuous 2π–

periodic symbols to the case of three trigonometric polynomials.

Lemma 7.2. [38] For all N ∈ N, let hermitian matrices AN , BN ∈ CN×N be

given. If ‖AN − BN‖2
F = O(1) for N → ∞, then the sequence {AN}N converges

strongly to {BN}N . If ‖AN − BN‖2
F = o(N) for N → ∞, then the convergence is

weak.

Theorem 7.3. [34] Let p be a trigonometric polynomial of fixed degree (indepen-

dent of N). If there exists an ordering of the eigenvalues λj (j = 0, . . . , N − 1) of

PUN
(TN (g)) such that

(7.3) lim sup
N→∞

N · max
j=0,...,N−1

|λj − g(2πj/N)| < ∞

for g ∈ {1, sin(x), cos(x)} (trigonometric Korovkin test), then {PUN
(TN (p))}N con-

verges strongly to {TN(p)}N .

Moreover, if p is also even and if there exists an ordering of the eigenvalues λj

(j = 0, . . . , N−1) of PUN
(TN(g)) such that (7.3) is fulfilled for g ∈ {1, cos(x), cos(2x)}

(even trigonometric Korovkin test), then {PUN
(TN (p))}N converges strongly to

{TN(p )}N .

Theorem 7.4. Let f : R → R be a 2π–periodic continuous function. If

{PUN
(TN (p))}N converges strongly to {TN(p)}N for all the trigonometric polynomi-

als p of fixed degree (independent of N), then {PUN
(TN (f))}N converges strongly to

{TN(f)}N .

Moreover, if f is also even and if {PUN
(TN (p))}N converges strongly to {TN(p)}N

for all the even trigonometric polynomials p of fixed degree (independent of N), then

the sequence {PUN
(TN (f))}N converges strongly to {TN(f)}N .

Proof. The proof of the first part can be found in Theorem 3.1 of [34]. The

proof of the second part is a simple variation of the first one. The key is that the

trigonometric polynomial of best L∞ approximation of a 2π–periodic continuous real–

valued even function is a cosine polynomial, i.e. an even trigonometric polynomial

(for this result see the elegant argument used in [23], p. 13).
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Theorem 7.5. Let f : R → R be a 2π–periodic continuous function and let

kN = o(N) for N → ∞. If {PUN
(TN (p))}N converges kN -weakly to {TN(p)}N for all

the trigonometric polynomials p of fixed degree (independent of N), then the sequence

{PUN
(TN (f))}N converges kN–weakly to {TN(f)}N .

Moreover, if f is also even and if {PUN
(TN (p))}N converges kN–weakly to {TN(p)}N

for all the even trigonometric polynomials p of fixed degree (independent of N), then

{PUN
(TN (f))}N converges kN–weakly to {TN(f)}N .

Proof. This is a variation of Theorem 3.2 in [34]. For the sake of completeness we

report the whole proof. Let pk be the trigonometric polynomial having degree k of best

approximation of f in supremum norm [23]. For any ǫ > 0, fix the integer M such that

‖f −pM‖∞ < ǫ/3. Then, by using a theorem of G. Szegö (see [18], p. 64) and Lemma

7.1, item 5, we have ‖TN(f)−TN(pM )‖2 < ǫ/3 and ‖PUN
(TN (f))−PUN

(TN(pM ))‖2 <

ǫ/3. Therefore, from the identity

TN(f) − PUN
(TN (f)) = TN (f) − TN (pM ) −

(
PUN

(TN (f)) − PUN
(TN (pM ))

)

+ TN(pM ) − PUN
(TN (pM ))

we have that, except for a term of norm bounded by 2ǫ/3, the difference TN(f) −
PUN

(TN (f)) coincides with TN(pM ) − PUN
(TN(pM )). From the hypothesis of kN -

weak convergence, we may split the hermitian matrix TN(pM ) − PUN
(TN (pM )) into

two parts. The first part has a norm bounded by ǫ/3 and the second part has rank

bounded by a universal constant times kN . Therefore the claimed result is obtained,

by invoking Cauchy’s interlace theorem [40]. In the case, where f is also even, it is

enough to observe that the trigonometric polynomial pM in the latter argument can

be chosen even too (see again [23], p. 13).

Corollaries 7.6 and 7.7, trivial consequences of Theorems 7.4 and 7.5 respectively,

are particularly useful for deriving and analyzing good preconditioners for the PCG

method.

Corollary 7.6. If the assumptions of Theorem 7.4 are fulfilled and if f is also

positive, then for every ǫ > 0 and for all sufficiently large N , the matrix

(PUN
(TN (f)))−1TN(f)

has eigenvalues in (1 − ǫ, 1 + ǫ) except Mǫ = O(1) outliers, at most.

Corollary 7.7. If the assumptions of Theorem 7.5 are fulfilled and if f is also

positive, then for every ǫ > 0 and for all sufficiently large N , the matrix

(PUN
(TN (f)))−1TN(f)

has eigenvalues in (1 − ǫ, 1 + ǫ) except Mǫ = O(kN ) = o(N) outliers, at most.
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We are now ready for analyzing the approximation properties of the Hartley

matrix algebras with respect to Toeplitz structures.

Theorem 7.8. Let f : R → R be an even 2π–periodic continuous function.

Then for every X ∈ {I, II, III, IV} the following facts hold:

1. {PHX

N

(TN (f))}N converges strongly to {TN(f)}N .

2. If f is also positive, then for every ǫ > 0, the matrices

(PHX

N

(TN (f)))−1TN (f)

have eigenvalues in (1 − ǫ, 1 + ǫ) except Mǫ = O(1) outliers, at most.

Proof. By Theorem 7.4 we can reduce the proof of the first item to the con-

vergence of the sequence {PHX

N

(TN(p))}N to {TN(p)}N for every even trigonometric

polynomial p. Moreover, by invoking Theorem 7.3, the latter is true, if we prove that

(7.3) is fulfilled for g ∈ {1, cos(x), cos(2x)}, where the λj (j = 0, . . . , N − 1), are the

suitably ordered eigenvalues of PUN
(TN(g)). For g(x) ≡ 1 the desired result is trivial,

since TN(g) = IN and therefore PUN
(TN (g)) = IN . The only nontrivial calculation is

the explicit computation of the eigenvalues of PUN
(TN (g)) with g ∈ {cos(x), cos(2x)}.

Indeed, looking at (7.3), we are interested in the eigenvalues λj

(
PHX

N

(T (s))
)

of T (s) :=

TN(cos(s x)) (s = 1, 2; j = 0, . . .N − 1). The entries {t(s)k }k>0 of T (s) are given by

t
(s)
k = 1

2δs k and therefore the entries a
(s)
i , b

(s)
i of PHX

N

(T (s)), for i as in (7.2), are

identically zero except for a
(s)
s = N−s

2N and b
(s)
s = 1

2N (1− tX [1]). For instance, for T (1)

we have PHX

N

(T (1)) = HX
N diag(

√
Nx) [HX

N ]−1 with x = x+ + x− and

a(1) = N−1
2N







0
1
0
...
0

(−1)t
X [0]







= H
I+tX [0]
N x+,b(1) = 1−tX [1]

2N







0
1
0
...
0

(−1)1+t
X [0]







= H
I+tX [0]
N x−,

while for T (2) we find

a(2) = N−1
2N









0
0
1
0
...
0

(−1)t
X [0]

0









= H
I+tX [0]
N x+,b(2) = 1−tX [1]

2N









0
0
1
0
...
0

(−1)1+t
X [0]

0









= H
I+tX [0]
N x−.

In general, for j = 0, . . . , N − 1, we find

λj

(
PHX

N

(T (s))
)

= (
√

Nx)j =
(√

NH
I+2tX [0]
N (a(s) + b(s))

)

j

=
(√

NH
I+2tX [0]
N a(s)

)

j
+ (1 − tX [1])O( 1

N )

since b(s) is infinitesimal and indeed, for j = 0, . . . , N − 1, we have

|(
√

NH
I+2tX [0]
N b(s))j | = |cas(·)b(s)

s ± cas(·)b(s)
N−s| 6 (1 − tX [1])

√
2

N
.
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Since tI+2tX [0][0] = 0 and tI+2tX [0][1] = tX [0], the Hartley matrix H
I+2tX [0]
N (from the

representation in a(s) to the representation in λ) is

H
I+2tX [0]
N = 1√

N

(

cas
(

π(2i+tX [0])j
N

))N−1

i,j=0
.

For j = 0, . . . , N − 1, we deduce

(√
NH

I+2tX [0]
N a(s)

)

j
= N−s

2N

[

cas
(

π (2j+tX [0]) s
N

)

+ (−1)tX [0]cas
(

π (2j+tX [0]) (N−s)
N

)]

= N−s
N cos

(

sπ (2j+tX [0])
N

)

and as a consequence

λj

(
PHX

N

(T (s))
)

= N−s
N cos

(

sπ (2j+tX [0])
N

)

+ (1 − tX [1])O
(

1
N

)

where, more precisely, the term O(N−1) has the form

1
N sin

(

sπ (2j+tX [0])
N

)

.

In conclusion, for j = 0, . . . , N − 1

λj

(
PHX

N

(T (s))
)

= N−s
N cos

(

sπ (2j+tX [0])
N

)

︸ ︷︷ ︸

what we wanted

+
(1 − tX [1])

N
sin
(

s
π (2j + tX [0])

N

)

.

Hence, setting

φX
i (x) = 1√

N
cas
(

2i+tX [1]
2 x

)

, xX
j = (2j+tX [0])π

N ,

we find that HX
N is a Gram matrix of the form HX

N =
(
φX

i (xX
j )
)N−1

i,j=0
. Therefore we

have compactly proved

λj

(
PHX

N

(T (s))
)

= N−s
N cos

(
s xX

j

)
+ (1 − tX [1])O( 1

N )

which clearly implies (7.3) with g ∈ {1, cos(x), cos(2x)}. Furthermore the proof of the

second item is a direct consequence of the first part and of Corollary 7.6.

Finally mention has to be made to the case of complex–valued even symbols. In

this setting it is easy to prove that TN (f) has complex entries: however it is easy to

see that the sequence {TN(|f |2)}N converges strongly to {T ∗
N(f)TN(f)}N for N → ∞

and, by the previous results, {PUN
(TN (|f |2))}N converges strongly to {TN(|f |2)}N for

N → ∞ since |f |2 is continuous real–valued and even. Therefore with an additional

little effort it can be proven that both {PUN
(TN (|f |2))}N and {PUN

(T ∗
N(f)TN (f))}N

converges strongly to {T ∗
N(f)TN (f)}N for N → ∞ for f simply continuous. We notice

that the latter claim extends a result by Potts and Steidl where the assumption was

stronger and concerned the Wiener class (see [29]). However we should also notice

that, in this context, unless one has the normal equation system to solve, a better

idea is to use first a preconditioner (for instance in the circulant algebra) and then to

pass to the normal equations for the preconditioned system.
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8. Multilevel Toeplitz matrices. By following the notations of E. Tyrtysh-

nikov, a multilevel Toeplitz matrix of level m and dimension N1 × · · · ×Nm is defined

as the matrix generated by the Fourier coefficients of a m–variate Lebesgue inte-

grable function f : (−π, π]m → R according to the law given in equations (6.1) at

p. 23 of [38]. In our context, according to the one–level case, we are interested in

multilevel Toeplitz matrices which are symmetric at every level. Therefore we have

f(x1, . . . , xm) = f(|x1|, . . . , |xm|) on (−π, π]m and then the Fourier coefficients form-

ing the symmetric m–level Toeplitz matrix TN (f) fulfil

tj = t|j| (j := (j1, . . . , jm) ∈ {1 − N1, . . . , N1 − 1} × · · · × {1 − Nm, . . . , Nm − 1})

with |j| := (|j1|, . . . , |jm|). Similarly, for given unitary matrices UNh
(h = 1, . . . , m)

related to transforms of one–level algebras, the corresponding m–level matrix algebra

is defined as the set of all matrices simultaneously diagonalized by means of the

following Kronecker product

(8.1) UN = UN1 ⊗ · · · ⊗ UNm
(N := (N1, . . . , Nm)).

For instance the m–level Hartley matrix algebra of type I is defined as in (8.1) with

UNh
= HI

Nh
(h = 1, . . . , m). As in the one–level case, the analysis is done in two

directions, first the study of the algebraic and computational features of optimal

preconditioners and then approximation properties.

8.1. Explicit formulas for optimal preconditioners in the multilevel

case. Concerning the multilevel case we have a canonical way for giving an explicit

formula for the optimal preconditioner. The idea is purely algebraic and is based on

the multi–index notation (while does not refer explicitly to the symbol). Indeed if

m ≥ 2 and N = (N1, . . . , Nm) is a multi–index, then a corresponding real m–level

Toeplitz matrix TN (with m levels of symmetry) can be described recursively as

TN =













t̃0 t̃1 · · · t̃N1−2 t̃N1−1

t̃1
. . .

. . . t̃N1−2

...
. . .

. . .
...

t̃N1−2
. . .

. . . t̃1

t̃N1−1 t̃N1−2 · · · t̃1 t̃0













where every t̃j is a real (m−1)–level Toeplitz matrix (with m−1 levels of symmetry)

and a real one–level matrix with one level of symmetry is a standard real symmetric

matrix. Correspondingly, let tj := tXj be the optimal preconditioner of level m− 1 of

the single block t̃j (with respect to the (m−1)-level Hartley matrix algebra of type X),

then the optimal preconditioner of TN (with respect to the m–level Hartley matrix
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algebra of type X) is obtained by applying formally the rule (7.2) to the matrix

ZN =













t0 t1 · · · tN1−2 tN1−1

t1
. . .

. . . tN1−2

...
. . .

. . .
...

tN1−2
. . .

. . . t1

tN1−1 tN1−2 · · · t1 t0













.

8.2. Approximation results for optimal preconditioners in the multi-

level case. We are interested in extending the results proven in the Section 7.2 to m

dimensions. In fact, we analyze what is necessary to have and, especially, what is kept

when we switch from one dimension to m dimensions. Surprisingly enough, we find

that all the used tools hold or have a version in m dimensions: for instance Lemma

7.2, Theorems 7.4, 7.5, and Corollaries 7.6, 7.7 contain statements not depending on

the structure of the matrices and item 7 of Lemma 7.1 is valid for any matrix algebra

and so for multilevel matrix algebras as well (recall that UN in (8.1) is unitary).

The only inherently one–level result is Theorem 7.3 for which we state the following

m-dimensional version.

Theorem 8.1. [34] Let p be an m–variate trigonometric polynomial of fixed

degree (independent of the multi–index N = (N1, . . . , Nm)). Further let

(8.2) kN :=
(∏m

j=1 Nj

)(∑m
j=1 N−1

j

)
.

and j/N := (j1/N1, . . . , jm/Nm) for j = (j1, . . . , jm). If there exists an ordering of

the eigenvalues λj (with j = (j1, . . . , jm) and jk = 0, . . . , Nk − 1 for k = 1, . . . , m) of

PUN
(TN (g)) such that for every k = 1, . . . , m it holds

(8.3) lim sup
Nk→∞

Nk · max
j = (j1, . . . , jm),

jq = 0, . . . , Nq − 1,

1 ≤ q ≤ m

|λj − g(2πj/N)| < ∞,

for g ∈ {1, sin(x1), cos(x1), . . . , sin(xm), cos(xm)}, then {PUN
(TN(p))}N converges

kN–weakly to {TN(p)}N (m–level trigonometric Korovkin test).

Moreover, if p is also even with respect to every variable, i.e. p(x1, . . . , xm) =

p(|x1|, . . . , |xm|), and if there exists an ordering of the eigenvalues λj (j = (j1, . . . , jm)

(jk = 1, . . . , Nk; 1 ≤ k ≤ m)) of PUN
(TN (g)) such that for every k = 1, . . . , m the

condition (8.3) is fulfilled for

g ∈ {1, cos(x1), cos(2x1), . . . , cos(xm), cos(2xm)},

then {PUN
(TN (p))}N converges kN–weakly to {TN(p)}N (m–level even trigonometric

Korovkin test).
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Therefore, we instantly deduce the validity in m dimensions of a generalization

of Theorem 7.8.

Theorem 8.2. Let f : Rm → R be an m–variate even 2π–periodic continuous

function. Let N = (N1, . . . , Nm) with m ≥ 2 be a multi-index and let kN be defined

by (8.2). Then for every X ∈ {I, II, III, IV} the following facts hold:

1. {PHX

N

(TN (f))}N and {PF X

N

(TN (f))}N converges kN–weakly to {TN(f)}N .

2. If f is also positive, then for every ǫ > 0, the matrices

(PHX

N

(TN (f)))−1TN (f)

have eigenvalues in (1 − ǫ, 1 + ǫ) except Mǫ = O(kN ) outliers, at most.

Proof. By Theorem 7.5 we can reduce the proof of the first item to the kN -weak

convergence of the sequence {PHX

N

(TN (p))}N to {TN(p)}N for every even trigonomet-

ric polynomial p. Furthermore, by Theorem 8.1, the latter is true if we prove that the

conditions (8.3) are fulfilled for every k = 1, . . . , m and for g ∈ {1, cos(x1), cos(2x1),

. . . , cos(xm), cos(2xm)}, where λj (j = 0, . . . , N1N2 . . . Nm − 1) are suitably ordered

eigenvalues of PUN
(TN(g)). For g(x) ≡ 1, the desired result is trivial, since TN(g) =

IN and therefore PUN
(TN (g)) = IN . Now it is enough to observe that TN (cos(jxk)) =

IN1 ⊗ · · · ⊗ INk−1
⊗ TNk

(cos(jxk)) ⊗ INk+1
⊗ · · · ⊗ INm

(j = 1, 2; k = 1, . . . , m), and

therefore by (8.1) and Lemma 7.1, item 8, we have

PUN
(TN (cos(jxk))) = IN1 ⊗ · · · ⊗ INk−1

⊗PUN
k
(TNk

(cos(jxk))) ⊗ INk+1
⊗ · · · ⊗ INm

.

The above identities imply that (7.3) in the one–dimensional case are sufficient to

conclude that the conditions (8.3) are fulfilled (and the first item is proven). Finally

the proof of the second item is a direct consequence of the first part and of Corollary

7.7.

We observe that the above results agree with a known fact in the two–level cir-

culant and τ cases (for the τ matrix algebras see [3]). Indeed only the weak con-

vergence has been proved because the number of the outliers is, in both cases, equal

to O(n1 + n2) [8, 12] even if the function f is a bivariate trigonometric polynomial.

More precisely, this means that the hypotheses of Theorem 7.4, regarding the strong

approximation in the polynomial case, are not fulfilled by the two-level circulant and

τ algebras and therefore strong convergence cannot be proved in the general case.

As a matter of fact, in [35] and [36] it has been proved that any sequence of pre-

conditioners belonging to “partially equimodular” algebras [36] cannot be superlinear

(i.e. the approximation cannot be strong) for sequence of multilevel Toeplitz matri-

ces generated by simple positive polynomials. Here, “partially equimodular” refers

to some very weak assumptions on UN that are instantly fulfilled by all the known

multilevel trigonometric matrix algebras (circulants and Hartley matrix algebras in-

cluded). Therefore the results reported in Theorem 8.2 which are not very satisfactory
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for large m are however asymptotically the best that we can obtain when dealing with

multilevel Toeplitz structures.

8.3. Numerical experiments. Here we just give a numerical evidence of the

strong clustering properties of Toeplitz matrices preconditioned by Hartley matrices:

more precisely we check it through the PCG algorithm when applied to symmetric

Toeplitz systems with the optimal preconditioners described in Section 7.

As an example, we choose as generating function f(x) = x2 + 1. Its Fourier

coefficients are t0 = 1 + π2/3 and tk = (−1)k · 2/k2 for k 6= 0. We tried the PCG

method for the coefficient matrix TN (f), N = 2p, p = 4, . . . , 9. The known data vector

is b chosen in such a way that the solution coincides with the vector (k−1 + 1)N+2
k=3 .

Below is our notation:

• TN,σ indicates the matrix TN = TN (f) cut in such a way that tk = 0 if

|k| > σ;

• ChanN indicates the optimal circulant preconditioner (the one introduced by

T. Chan) i.e. PF I
N

(TN(f));

• τN denotes the optimal preconditioner in the τ algebra.

log2(N) 4 5 6 7 8 9

ChanN 8 8 7 7 7 6

τN 6 6 5 5 5 4

PHI
N

(TN(f)) 9 8 7 7 7 6

PHII
N

(TN(f)) 9 8 7 7 7 6

PHIII
N

(TN(f)) 8 8 7 7 7 6

PHIV
N

(TN (f)) 8 8 7 7 6 6

TN,log2(N) 6 6 6 5 5 5

T
N,

l√
log2(N)

m 8 8 8 8 8 8

We stop the iterations, if ||r||2 6 10−9||b||2 with the usual residual r := b −
TN(f)x. It is interesting to observe that all the preconditioners are substantially

equivalent including the ones of band type with slowly increasing bandwidth: the τ

algebra optimal preconditioner and the band type preconditioner TN,log2(N) behave

slightly better than the others and this agrees with the analysis given in [33]. We

remark that the study of these almost negligible differences between the algebras in the

positive case is the subject of the paper [16]. Indeed in [33] it was proven that we have

not to expect big differences among the performances of the different preconditioners

when the continuous generating function is strictly positive, while, according to the

analysis in [13], the difference could be remarkable in the nonnegative case (i.e. when

the symbol has zeros): however, in the nonnegative case, again in [13], it is proven
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that the main ingredient for a fast convergence is not the chosen algebra but the

functional approximation process which defines the eigenvalues of the preconditioner.

Since the Frobenius optimal approximations are related to linear positive operators

(see [26]) and essentially to the Cesaro sum we observe a very slow convergence speed:

this observation tells one that other kind of preconditioners (of Strang-type mainly,

see the work by T. Kailath and V. Olshevsky [24, 25]) have to be preferred in the

nonnegative case. Finally, we observe that the clustering analysis in [25] can be

improved in the following two directions: the assumption on the Wiener class is

not necessary for T. Chan–type preconditioners since only continuity is essential (see

Theorem 7.8 and [34, 14] where the analysis is reduced to the Weierstrass theorem

through the Korovkin theorem); the assumption on the Wiener class can be replaced

by the hypothesis that the symbol belongs to the union of the Wiener class and the

Dini–Lipschitz class (see [33] where the analysis is reduced to the convergence of the

underlying approximation process trough the notion of “good algebras”). For the

definition of function spaces such as the Wiener algebra and the Dini–Lipschitz class

see e.g. [41].

9. Conclusions and remarks. We have analyzed the DHTs of types I – IV

and the related Hartley matrix algebras by proving representation formulas and or-

thogonal decompositions which involve circulants, skew–circulants and special flip-like

matrices. We have proven that any of these DHTs of length N = 2t can be factor-

ized by means of a divide–and–conquer strategy into a product of sparse, orthogonal

matrices where in this context sparse means at most two nonzero entries per row and

column. The sparsity joint with orthogonality of the matrix factors is a key property

which has been exploited for proving that these new algorithms have low arithmetic

costs equal to 5
2N log2(N) + O(N) arithmetic operations and an excellent normwise

numerical stability. Furthermore, we have considered the best Frobenius approxi-

mation of a given symmetric Toeplitz matrix generated by an Lebesgue integrable

symbol in the Hartley matrix algebra. We provided explicit formulas for computing

optimal preconditioners of symmetric Toeplitz matrices, where the arithmetic cost are

proportional to the size of the involved matrices. By using the matrix approximation

theory, in the one–level setting we proved the strong clustering at unity of the pre-

conditioned matrix sequences under the sole assumption of continuity and positivity

of the generating function. The multilevel case is inherently more difficult and this

agrees with the negative results obtained by the second author and E. Tyrtyshnikov.

Finally a future work (the preliminary results are very encouraging) should concern

a careful implementation of the fast DHT algorithms proposed in this paper in order

check how tight are the worst case bounds derived in Section 6 for the numerical

stability (see [1]).
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