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ON COMPLETENESS OF REASONING ABOUT PLANAR SPATIAL
RELATIONSHIPS IN PICTORIAL RETRIEVAL SYSTEMS∗

STEPHEN S.-T. YAU† AND QING-LONG ZHANG‡

Abstract. In this paper we consider the completeness problem of reasoning about planar spatial

relationships in pictorial retrieval systems. We define a large class of two-dimensional scenes, the

extended pseudo-symbolic pictures. The existing rule system R is proved to be complete for (ex-

tended) pseudo-symbolic pictures. We also introduce a new iconic indexing, the (extended) pseudo-

2D string representation, for them. The (extended) pseudo-2D string has the good properties of the

2D string. It is unambiguous, like the augmented 2D string, and has a compact form suitable for

image retrieval. We then present efficient algorithms to determine whether a given planar picture is

(extended) pseudo-symbolic or not, and if it is, these algorithms also return its (extended) pseudo-2D

string representation. Picture retrieval by (extended) pseudo-2D strings is also discussed.

1. Introduction. Image database systems have been much studied over the
past 20 years. One of the most important problems in the design of image database
systems is how images are stored in the image databases [5, 6, 9, 11, 12, 24]. While
the use of indexing to allow database accessing has been well established in traditional
database systems, content-based picture indexing techniques need to be developed for
facilitating pictorial information retrieval from a pictorial database.

Tanimoto [25] suggested the use of picture icons as picture indexes, thus intro-
ducing the concept of iconic indexing. Subsequently, Chang et al. [11] developed the
concept of iconic indexing by introducing the 2D string representation of the image.
The 2D string approach is based on the idea that the spatial knowledge contained
in a real picture can be suitably represented by a symbolic picture (i.e., a matrix of
symbols) where every symbol corresponds to a significant element of the image. The
position of a symbol in the grid corresponds to the position of the centroid of the rep-
resented significant element. Depending on the application, the significant elements
of the image can be pixels, lines, regions, and objects, etc. A 2D string representing
a symbolic picture is derived from the picture by orthogonally projecting its symbols
by columns and by rows. This approach gives an efficient and natural way to con-
struct iconic indexes for two-dimensional pictures. With the 2D string approach, the
problem of pictorial information retrieval for 2D pictures becomes a problem of 2D
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string subsequence matching [11, 21]. Since then, the 2D string approach has been
studied further in the literature (see, e.g., [2, 13, 26]). Some forms of extensions of the
2D string approach can be found in [7, 8, 10, 19, 20]. For three-dimensional pictures,
representations such as the octree [18, 22] were developed, and an extension of the
2D string to three dimensions was suggested in [12], and a unified approach to iconic
indexing for 2D and 3D pictures was then proposed by Costagliola et al. [14]. Other
methods on image representation and retrieval can be found in the literature (see,
e.g., [4, 16, 17]).

Sistla et al. [23] developed a rule system R for reasoning about spatial relation-
ships in picture retrieval systems. In their paper, a real picture is assumed to be
associated with some content-based meta-data about that picture, that is, informa-
tion about the objects in the picture, their properties, and the spatial or nonspatial
relationships among them. This meta-data information is generated and stored in
the database. Sistla et al. considered various spatial relationships: left-of, right-of,
in-front-of, behind, above, below, inside, outside, and overlaps. For the first time,
they presented a set of rules R that can be used to deduce new relationships from
a given set of relationships. These rules are sound, and R is complete for 3D pic-
tures. However, they presented a counterexample to show that R is incomplete for
2D pictures.

There are three obvious distinctions between the work of Sistla et al. [23] and
the work such as [11, 15, 16] on handling spatial relationships. First, the sets of
spatial operators are not identical. For example, the operators overlaps, inside, and
outside in [23] are not present in the other approaches. Second, the operators in [23]
are defined by absolute spatial relationships among objects, while the operators in
the other approaches are defined by relative spatial relationships among objects. For
example, consider two significant objects A and B in a real picture. Then the spatial
relationship “A is left of B” (written as “A left-of B”) in [11] means that the position
of the centroid of A is left of that of B (and we say “A left-of B” is relative), whereas
in [23] it means that A is absolutely left of B (and we say “A left-of B” is absolute).
Note that the operator left-of has the weaker meaning in [11] than in [23] in the sense
that “A left-of B” is true in [11] whenever it is true in [23], and “A left-of B” is
not necessarily true in [23] when it is true in [11]. Third, the approach to handling
spatial relationships in [23] is to construct rules that allow spatial relationships to be
deduced, but the other studies are based mostly on algorithms.

In this paper we address the completeness problem, proposed in [23], of reasoning
about planar spatial relationships in pictorial retrieval systems. We could have two
ways to attack this two-dimensional completeness problem. The first way is to add
some new deductive rules to the existing rule system R so as to make the extended
rule system complete for planar pictures that satisfy the connectedness property (this
property prevents an object in a picture from having disjoint parts). Because there
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might exist infinitely many types of counterexamples that make R incomplete, we
might need to add infinitely many new rules to R, but clearly this is inefficient and
impractical. Thus, more generally, we wish to ask: Does there exist an algorithm
such that the existing rule system R along with this algorithm is complete for planar
pictures? It seems to us that this algorithm should be inefficient (i.e., not polynomial-
time) if it exists. The second way is to find the set of all planar pictures for which
R is complete. More precisely, we wish to identify those properties P such that R
is complete for planar pictures that satisfy P . However, such a property P is likely
to be inefficiently decidable; that is, there might not exist an efficient algorithm to
determine whether a given planar picture satisfies the property P . Thus, we require
that these properties P be efficiently decidable. One can see that these two ways are
closely related. In this paper we consider the second way and present two efficiently
decidable properties (more precisely, classes of planar pictures): pseudo-symbolic pic-
tures and extended pseudo-symbolic pictures. The class of extended pseudo-symbolic
pictures extends the class of pseudo-symbolic pictures. The extended pseudo-symbolic
pictures represent a reasonably large class of planar pictures that have nice properties
as symbolic pictures, and are very useful for representing planar pictures in many
domain-dependent applications.

The rest of this paper is organized as follows. In Section 2, we present the defin-
itions of symbolic picture and 2D string [11]. We also include the system of rules R
[23] for two dimensions here. In Section 3, we modify the notion of symbolic pictures
to the notion of pseudo-symbolic pictures in our situation. We introduce pseudo-2D
strings, which in the form can be considered as a variation of the 2D string representa-
tion for symbolic pictures, to represent pseudo-symbolic pictures. The completeness
property of the existing rule system R for planar pseudo-symbolic pictures is also
shown in this section. In Section 4, we extend the notion of pseudo-symbolic pictures
to the notion of extended pseudo-symbolic pictures, and we introduce an “almost”
2D string representation, called the extended pseudo-2D string, to represent extended
pseudo-symbolic pictures. We then show the completeness property of the existing
rule system R for planar extended pseudo-symbolic pictures. In Section 5, we propose
efficient algorithms to determine whether a given planar picture is a pseudo-symbolic
(or an extended pseudo-symbolic) picture, and if it is, these algorithms also return its
corresponding pseudo-2D (or extended pseudo-2D) string representation. In Section
6, we discuss planar picture retrieval by (extended) pseudo-2D strings. Conclusions
are given in Section 7.

2. Definitions and Facts. We first recall the definitions of symbolic picture
and 2D string given in [11].

2.1. Symboic Pictures. We use <r and <a, respectively, to represent relative
and absolute spatial relationships involving left-of and below, as mentioned in the
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Introduction. For simplicity, sometimes we identify <r with <a and just use <.
However, the intended meaning will be clear from the context.

Definition 2.1. Given a set V of symbols, a symbolic picture f over V is an
m × n matrix, in which each slot of the matrix is assigned a (possibly empty) subset
of V .

Definition 2.2. A (reduced) 2D string (u, v) over V is defined as a pair of
strings

(x1y1x2y2 · · · yt−1xt, xp(1)z1xp(2)z2 · · · zt−1xp(t)),

where xi ∈ V and yi, zi are either <r or null symbols and p : {1, 2, . . . , t} −→
{1, 2, . . . , t} is a permutation function.

A 2D string representing a symbolic picture is derived from the picture by or-
thogonally projecting its symbols by columns and by rows. The symbol <r is used
to separate nonempty columns and rows. Empty columns and rows are ignored. Be-
cause of the possibility of multiple occurrences of a given symbol, this representation
may cause ambiguity when a symbolic picture is reconstructed from its 2D string
representation. The characterizations of ambiguous pictures under different 2D string
representations can be found in [11, 13]. The ambiguity problem for the whole class of
symbolic pictures can be solved by adding the permutation function to the 2D string
(augmented 2D string). The following definition of non-redundant 2D string is given
by Costagliola et al. [13].

Definition 2.3. Let f be a symbolic picture and (u′, v′) be its reduced 2D
string representation. Each substring between two consecutive <r’s, or before the
first or after the last <r’s of u′ (v′, respectively) is called a local substring of u′ (v′,
respectively). The non-redundant 2D string representation of f is a pair (u, v), where
u (v, respectively) is obtained from u′ (v′, respectively) by replacing multiple occur-
rences of a same symbol in each local substring of u′ (v′, respectively) by exactly one
occurrence of the symbol.

Figure 1 shows an image and the symbolic picture f representing it. The set of
symbols is V = {c, r, s, t}, where c, r, s, and t correspond to the objects circle,
rectangle, square, and right triangle, respectively. The symbolic picture f can be
represented by the 2D string (ct < cr < s, cc < rs < t), where p = 13452, by the
augmented 2D string (ct < cr < s, cc < rs < t, 13452), and by the non-redundant 2D
string (ct < cr < s, c < rs < t).

2.2. A System of Rules R. Now we first recall the semantic definitions of
absolute spatial relationships, introduced in [23], for two-dimensional pictures.

It is assumed that a 2-dimensional picture p consists of finitely many objects
and each object in p corresponds to a nonempty set of points in the 2-dimensional
Cartesian space, where each point is given by its two x- and y-coordinates. Let p be
a picture in which objects A and B are contained. Now we define when p satisfies the
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Fig. 1. An image and its symbolic representation.

following basic absolute spatial relationships: left-of, right-of, below, above, inside,
outside, and overlaps.

• p satisfies the relationship A left-of B, stating that A is to the left of B in the

picture p, iff the x-coordinate of each point in p(A) is less than the x-coordinate of

each point in p(B).

• p satisfies the relationship A below B, stating that A is below B in the picture p,

iff the y-coordinate of each point in p(A) is less than the y-coordinate of each point

in p(B).

• p satisfies the relationship A inside B, stating that A is inside B in the picture p,

iff p(A) ⊆ p(B).

• p satisfies the relationship A outside B, stating that A is outside B in the picture

p, iff p(A) ∩ p(B) = ∅.
• p satisfies the relationship A overlaps B, stating that A overlaps B in the picture

p, iff p(A) ∩ p(B) �= ∅.

The semantics of spatial relationship symbols right-of and above are defined sim-
ilarly. Notice that the relationship symbols right-of and above are duals of left-of and
below, respectively.

A finite set of spatial relationships F is said to be consistent if there exists a
picture satisfying all the relationships in F . A relationship r is said to be implied by
a finite set of spatial relationships F if every picture satisfying all the relationships in
F also satisfies the relationship r.

A deductive rule is in the following form

r :: r1, r2, . . . , rk

where r and ri (1 ≤ i ≤ k) are relationships and k ≥ 0. The relationship r and the list
of relationships r1, r2, . . . , rk are called the head and the body of the rule, respectively.
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A relationship r is said to be deducible in one step from a set of relationships F by
using a rule, if r is the head of the rule and each relationship in the body of the rule
is in F . Let R be a set of rules. A relationship r is said to be deducible from a
set of relationships F by using the rules in R, if r is in F , or there exists a finite
sequence of relationships r1, r2, . . . , rk (= r), such that r1 is deducible in one step
from F by using a rule in R, and for each 2 ≤ i ≤ k, ri is deducible in one step from
F ∪ {r1, r2, . . . , ri−1} by using a rule in R.

Now, a system of rules R, rules I–VIII, introduced in [23], is presented as follows.
I. (Transitivity of left-of, below, and inside) For each x ∈ {left-of, below, inside}, we have

A x C :: A x B, B x C

II. For each x ∈ {left-of, below}, we have

A x D :: A x B, B overlaps C, C x D

III. For each x ∈ {left-of, below, outside}, we have the following two types of rules.

(a) A x C :: A inside B, B x C

(b) A x C :: A x B, C inside B

IV. (Symmetry of overlaps and outside) For each x ∈ {overlaps, outside}, we have

A x B :: B x A

V. For each x ∈ {left-of, below}, we have

A outside B :: A x B

VI. A overlaps B :: A inside B

VII. A overlaps B :: C inside A, C overlaps B

VIII. A inside A ::

Notice that, in the above rules, we exclude the relationship symbols right-of and
above, since they are duals of left-of and below, respectively. They can be handled by
additional rules that simply relate them to their duals (see rules IX–X in [23]).

Unless it is otherwise stated, we will use R to represent the set of rules I–VIII
given above.

3. Pseudo-Symbolic Pictures. In this section we introduce the definition of
pseudo-symbolic picture based on the notion of symbolic picture. We consider the
following basic spatial relationship symbols: left-of, below, inside, outside, and over-
laps. We exclude the relationship symbols right-of and above, since they are duals of
left-of and below, respectively.

The concept of a local scene plays a key role in pseudo-symbolic pictures and
extended pseudo-symbolic pictures.

Definition 3.1. Given a set V of symbols, a local scene over V consists of
a subset U ⊆ V and a consistent set F of spatial relationships among symbols in
U satisfying that F contains only inside, outside, and overlaps relationships, but no
left-of or below relationships, and exactly one of “x outside y” and “x overlaps y” is
in F for any two distinct symbols x and y in U .
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A local scene can be encoded in a compact and minimal form, in which the spatial
relationships consist of only inside and overlaps. Since, for any two objects A and B,
exactly one of A overlaps B and A outside B holds, so A outside B can be implied
if A overlaps B is not given (note that we do not distinguish between CxD and
DxC for any objects C and D, and x ∈ {outside, overlaps}). Furthermore, F can
be reduced to a minimal set under the system of rules R (recall R is introduced in
Section 2). Consider, for example, a local scene that consists of U = {A, B, C, D} and
F = {A inside B, B inside C, A inside C, A overlaps B, B overlaps C, A overlaps C,

C overlaps D, A outside D, B outside D}. Then, this local scene can be encoded by
e = {A inside B, B inside C, C overlaps D}.

A pseudo-symbolic picture has the same form in matrix as a symbolic picture
except that there are inside, outside, and overlaps relationships, but no left-of or
below, among objects in each slot of the matrix.

Definition 3.2. Given a set V of symbols, a pseudo-symbolic picture (abbr. P-
symbolic picture) f over V is an m × n matrix, in which each slot of the matrix is
assigned a (possibly empty) local scene over V .

Intuitively, in a pseudo-symbolic picture f , each slot (namely, a local scene) can
be considered as a local significant and minimal unit in the sense that one object
can overlap with, or be inside, or be outside another object, but they cannot be
separately by either left-of or below relationships. Objects in one slot can always have
either left-of or below relationships with objects in another slot.

In general, a real picture is assumed to be associated with some content-based
meta-data about that picture, that is, information about the objects in the picture,
their properties, and the spatial or nonspatial relationships among them. Due to the
possibility of multiple occurrences of a given object, this meta-data representation
may cause ambiguity. Hence, to avoid ambiguity, we associate multiple occurrences
of the same object with different nonnegative integers starting at 0. Suppose, for
example, an object A appears in a picture four times. Then each occurrence of A can
be represented by A0 (or simply A), A1, A2, and A3, respectively.

Now we introduce a variation of the 2D string, called the pseudo-2D string, to
represent the pseudo-symbolic pictures. Let f be a pseudo-symbolic picture. We first
represent each nonblank slot by a super-symbol ei (i ≥ 0); that is, each ei points to
a local scene in the slot. The enumeration of the super-symbols is produced starting
in the down-left position, proceeding by columns and ending with the super-symbol
in the up-right position. Then f becomes a simple symbolic picture fs over the set
of super-symbols under the absolute spatial relationships “<a”, where each slot of fs

contains at most one super-symbol and different slots contain different super-symbols.
We call fs the reduced symbolic picture of f . As with 2D strings, the pseudo-2D string
of f is obtained by projecting the super-symbols of fs by columns and by rows.

Definition 3.3. Let f be a pseudo-symbolic picture over a set V of symbols,
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Fig. 2. An image, its pseudo-symbolic and reduced symbolic representations.

fs be the reduced symbolic picture of f , and (u, v) be the 2D string representation of
fs under the absolute spatial relationships “<a”. Then the pseudo-2D string (abbr.
P-2D string) representation of f is just the pair (u, v), where each super-symbol in u

or v points to a local scene over V .

Since, for a pseudo-2D string (u, v), super-symbols appearing in u (and v, resp.)
are distinct, the reduced symbolic picture fs can be uniquely reconstructed from the
2D string (u, v) (see [11]). Then the pseudo-symbolic picture f can be obtained from
fs by replacing each super-symbol in each nonblank slot of fs by its corresponding
local scene.

Figure 2 shows an image, the pseudo-symbolic picture g representing it, and the
reduced symbolic picture gs of g. The symbols c, r, s, and t and the set of symbols V

are the same as those in Section 2. Three occurrences of the circle (c) are represented
by c0 (simply c), c1, and c2, respectively. Two occurrences of the rectangle (r) are
represented by r0 (simply r) and r1, respectively. Two occurrences of the square (s)
are represented by s0 (simply s) and s1, respectively. Then, the pseudo-2D string
representation of g is (u, v) = (e0e1 < e2 < e3e4, e0e3 < e2e4 < e1), where
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e0, e1, e2, e3, and e4, respectively, point to the local scenes {c overlaps c1}, {s inside r},
{s1 outside t}, “c2”, and “r1”.

We can derive a consistent set F of spatial relationships from a pseudo-symbolic
picture f as follows: every relationship in each local scene is in F , a relationship A

left-of B (A below B, respectively) is in F if and only if j < l (i < k, respectively),
where A and B are in the (i, j)-slot and (k, l)-slot respectively. This set F is called the
derived set of spatial relationships associated with f . We say that the set of rules R
is complete for pseudo-symbolic pictures if it satisfies the following property for every
derived set F associated with pseudo-symbolic pictures: every relationship implied
by F is deducible from F by using the rules in R.

Theorem 3.4. The set of rules R is complete for planar pseudo-symbolic pic-
tures.

Proof. Let F be the derived set of spatial relationships associated with a pseudo-
symbolic picture f , and let r be a relationship implied by F . By the definition
of “implied by F ,” the pseudo-symbolic picture f particularly satisfies the spatial
relationship r, since f satisfies all the spatial relationships in F by the definition of
“the derived set.” Now we only need to verify that r is deducible from F by using the
rules in R for each case r = AxB, where A and B are two involved objects in f and
x ∈ {left-of, below, inside, outside, overlaps}.
Case I. Both A and B are in the same local scene.
By the definition of “the derived set”, F contains every spatial relationship in each
local scene of f . So r ∈ F and obviously r (= AxB) is deducible from F by using the
rules in R, where x ∈ {inside, outside, overlaps} (note that a local scene could not
have left-of or below relationships).
Case II. A and B are in different local scenes.
Observe that both A inside B and A overlaps B could not be satisfied in f , since A

and B are in different local scenes. Thus, the spatial relationship symbol x could not
be inside or overlaps.

Let A and B are in the (i, j)-slot and (k, l)-slot respectively.
For the case x = left-of (x = below, respectively), j < l (i < k, respectively)

holds, since A left-of B (A below B, respectively) is satisfied in f . So, A left-of B

(A below B, respectively) must be in F by the definition of “the derived set” and
then is obviously deducible from F by using the rules in R.

For the last case x = outside, obviously A outside B is always satisfied in f (i.e.,
the assumption is always true), since A and B are in two distinct local scenes. Observe
that at least one of the following four inequalities i < k, i > k, j < l, or j > l holds;
that is, at least one of the following four spatial relationships A below B, B below A,
A left-of B, or B left-of A is satisfied in f and is in F . So, r = A outside B can be
deduced from the above satisfied spatial relationship (i.e., F ) by using Rule V and
possibly Rule IV in R.
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This completes the proof of this theorem.

4. Extended Pseudo-Symbolic Pictures. In this section we introduce an
extension of pseudo-symbolic pictures, called extended pseudo-symbolic pictures.

Definition 4.1. A regular partition on an m × n matrix is a collection of sets
of slots T = {Tα | α ∈ I} such that
(1) for each set of slots Tα, there exist integers 1 ≤ i ≤ j ≤ m and 1 ≤ k ≤ l ≤ n

such that

Tα = {(x, y) | i ≤ x ≤ j, k ≤ y ≤ l},
where each pair (x, y) denotes the (x, y)-slot in the given m×n matrix. We call i, j, k,
and l, respectively, below-bound, above-bound, left-bound, and right-bound;
(2) for any two distinct subscripts α, β in I, Tα ∩ Tβ = ∅;
(3) ∪α∈ITα = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n};
(4) (minimality of rows and columns) for 1 ≤ i ≤ m and 1 ≤ j ≤ n, there exist
Tα1 with below-bound i, Tα2 with above-bound i, Tα3 with left-bound j, and Tα4 with
right-bound j.

An example for examining the concept of a regular partition is the bottom-left
figure in Figure 3, where each slot is assumed to be empty. It is a regular partition
on a 4 × 4 matrix.

Definition 4.2. Given a set V of symbols, an extended pseudo-symbolic picture
(abbr. EP-symbolic picture) f over V is a regular partition on an m × n matrix T
= {Tα | α ∈ I}, in which each Tα is assigned a (possibly empty) local scene over V

such that T satisfies the following property, called the minimality condition of rows
and columns: for any 1 ≤ i ≤ m and 1 ≤ j ≤ n, there exist Tα1 with below-bound i,
Tα2 with above-bound i, Tα3 with left-bound j, and Tα4 with right-bound j such that
each of them is assigned a nonempty local scene.

The minimality condition of rows and columns is necessary for compactness of an
extended pseudo-symbolic picture f . The reason is as follows: suppose each nonempty
Tα (namely, Tα is assigned a nonempty local scene) does not have the below-bound
i. Then every nonempty Tα across the ith row must have the below-bound l, where
1 ≤ l < i. An (m − 1) × n matrix can be formed from the original m × n matrix
by removing the ith row and still preserves the same left-of and below relationships
among nonempty Tα’s as the original matrix does. Similar arguments can be applied
for the other three cases.

The minimality condition of rows and columns automatically satisfies the condi-
tion of nonempty rows and columns. That is, for 1 ≤ i ≤ m, there exist one integer
1 ≤ j ≤ n and one Tα ∈ T such that (i, j) ∈ Tα and Tα is assigned a nonempty local
scene; similarly, this is true for columns. Furthermore, the minimality condition of
rows and columns guarantees that there are no redundant rows or columns, that is,
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the numbers of rows and columns are minimal, respectively.
As with the minimality condition of rows and columns in Definition 4.2, minimal-

ity of rows and columns in Definition 4.1 is necessary for compactness of a regular
partition T without being assigned local scenes, and it guarantees that there are no
redundant rows or columns. It is easy to see that the minimality condition of rows and
columns in Definition 4.2 implies minimality of rows and columns in Definition 4.1,
but not reversely (Observe that any regular partition T = {Tα | α ∈ I}, in which
every Tα is assigned an empty local scene, does not satisfy the minimality condition
of rows and columns in Definition 4.2).

Now, we introduce the extended pseudo-2D string to represent the extended
pseudo-symbolic pictures. Let f be an extended pseudo-symbolic picture and T
= {Tα | α ∈ I} be its regular partition on an m × n matrix. We first represent
each Tα assigned with a nonempty local scene by a super-symbol ei (i ≥ 0). Then f

will become a symbolic picture fs over the set of super-symbols under the absolute
spatial relationships “<a” if, for each Tα ∈ T associated with a super-symbol e (pos-
sibly blank if Tα is assigned an empty local scene), every slot (i, j) ∈ Tα is assigned
the super-symbol e (possibly blank). Each slot in fs contains at most one super-
symbol. We call fs the reduced symbolic picture of f . The extended pseudo-2D string
representation of f is just the non-redundant 2D string of fs.

Definition 4.3. Let f be an extended pseudo-symbolic picture over a set V of
symbols, fs be the reduced symbolic picture of f , and (u, v) be the non-redundant 2D
string representation of fs under the absolute spatial relationships “<a”. Then the
extended pseudo-2D string (abbr. EP-2D string) representation of f is just the pair
(u, v), where each super-symbol in u or v points to a local scene over V .

Although the extended pseudo-2D string representation (u, v) of f looks like a
2D string, it is not really a 2D string in the sense that if one super-symbol e takes
across the ith and jth columns, then u contains the substring e < e, but e < e does
not mean that e left-of e holds as in the usual 2D string representation. Similarly,
this is true for v when one super-symbol takes across different rows. However, for
distinct super-symbols d and e, d < e in u (v, respectively) means that d left-of e

(d below e, respectively) holds as in the usual 2D string representation. Certainly, <

here represents absolute spatial relationship, while it represents relative spatial rela-
tionship in the usual 2D string representation, as mentioned in Section 1. Therefore,
the extended pseudo-2D string can be considered as an “almost” 2D string.

Given an extended pseudo-2D string (u, v), we can, easily and uniquely, recon-
struct an extended pseudo-symbolic picture f from it. In fact, for each super-symbol
e, we can determine its left-bound and right-bound, and its below-bound and above-
bound by checking the continuous occurrences of e in u and v, respectively. Then
the regular partition T = {Tα | α ∈ I} on an m × n matrix can be formed, where m

and n are one more than the numbers of < in u and v, respectively. The extended
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Fig. 3. An image, its extended pseudo-symbolic and reduced symbolic representations.

pseudo-symbolic picture f is obtained from T by replacing each super-symbol by its
corresponding local scene.

Figure 3 shows an image, the extended pseudo-symbolic picture h representing it,
and the reduced symbolic picture hs of h. The symbols c, r, s, and t and the set of
symbols V are the same as those in Section 2. Then, the extended pseudo-2D string
representation of h is (u, v) = (e0e1 < e1e2 < e3 < e4, e0 < e2e3 < e1e3 < e1e4),
where e0, e1, e2, e3, and e4, respectively, point to the local scenes “c”, {s inside r},
“s1”, “t”, and {c1 overlaps c2}.

We can derive a consistent set F of spatial relationships from an extended pseudo-
symbolic picture f as follows: every relationship in each local scene is in F , a rela-
tionship A left-of B (A below B, respectively) is in F if and only if j < l (i < k,

respectively), where A and B are in the local scenes Tp and Tq respectively, and Tp

has the right-bound j and above-bound i, and Tq has the left-bound l and below-
bound k. This set F is called the derived set of spatial relationships associated with
f . We say that the set of rules R is complete for extended pseudo-symbolic pictures
if it satisfies the following property for every derived set F associated with extended
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pseudo-symbolic pictures: every relationship implied by F is deducible from F by
using the rules in R.

Now we can use similar argument as in Theorem 3.4 to prove the following theo-
rem.

Theorem 4.4. The set of rules R is complete for planar extended pseudo-
symbolic pictures.

Proof. Let F be the derived set of spatial relationships associated with an ex-
tended pseudo-symbolic picture f , and let r be a relationship implied by F . By the
definition of “implied by F ,” the extended pseudo-symbolic picture f particularly
satisfies the spatial relationship r, since f satisfies all the spatial relationships in F

by the definition of “the derived set.” Now we only need to verify that r is deducible
from F by using the rules in R for each case r = AxB, where A and B are two
involved objects in f and x ∈ {left-of, below, inside, outside, overlaps}.
Case I. Both A and B are in the same local scene.

By the definition of “the derived set”, F contains every spatial relationship in each
local scene of f . So r ∈ F and obviously r (= AxB) is deducible from F by using the
rules in R, where x ∈ {inside, outside, overlaps} (note that a local scene could not
have left-of or below relationships).

Case II. A and B are in different local scenes.

Observe that both A inside B and A overlaps B could not be satisfied in f , since A

and B are in different local scenes. Thus, the spatial relationship symbol x could not
be inside or overlaps.

Let A and B are in the local scenes Tp and Tq respectively, where Tp has the below-
bound ip, above-bound jp, left-bound kp, and right-bound lp respectively, and Tq has
the below-bound iq, above-bound jq, left-bound kq, and right-bound lq respectively.

For the case x = left-of (x = below, respectively), lp < kq (jp < iq, respectively)
holds, since A left-of B (A below B, respectively) is satisfied in f . So, A left-of B

(A below B, respectively) must be in F by the definition of “the derived set” and
then is obviously deducible from F by using the rules in R.

For the last case x = outside, obviously A outside B is always satisfied in f

(i.e., the assumption is always true), since A and B are in two distinct local scenes.
Observe that at least one of the following four inequalities jp < iq, ip > jq, lp < kq, or
kp > lq holds; that is, at least one of the following four spatial relationships A below B,
B below A, A left-of B, or B left-of A is satisfied in f and is in F . So, r = A outside B

can be deduced from the above satisfied spatial relationship (i.e., F ) by using Rule V
and possibly Rule IV in R.

This completes the proof of this theorem.

5. Decidability of (Extended) Pseudo-Symbolic Pictures. In this section
we consider the decidability problem for (extended) pseudo-symbolic pictures. That is,
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is there a decidable procedure to determine whether a given planar picture is (extended)
pseudo-symbolic? For a planar picture f , we assume all objects and spatial relation-
ships in f are given. We first give an efficient algorithm for the decidability problem of
pseudo-symbolic pictures, then modify it to an efficient algorithm for the decidability
problem of extended pseudo-symbolic pictures.

5.1. Algorithm for Deciding Pseudo-Symbolic Pictures. For a planar pic-
ture f , we will use Of and Rf to denote the sets of all objects and spatial relationships
in f , respectively.

1. Encode Local Scenes by Super-Symbols

For two distinct objects x, y in Of , we call x and y spatial-comparable if one of the
four spatial relationships, x left-of y, y left-of x, x below y, and y below x, holds,
and spatial-incomparable, otherwise. For each object x ∈ Of , let Ex be the set of
all objects in Of that are spatial-incomparable with x. Given a symbol x ∈ Of , if
{y}∪Ey = {x}∪Ex for each y ∈ Ex, then {x}∪Ex forms a local scene of f and can
be encoded by a super-symbol ei (i is a nonnegative integer beginning at 0). But if
{y}∪Ey 	= {x}∪Ex for some y ∈ Ex, then either {x}∪Ex or {y}∪Ey can never form
a local scene of f , and it can be easily seen that f is not (extended) pseudo-symbolic.

Since spatial-incomparability of any two objects in Of needs to be checked at
most once, and it takes only constant time to check whether two objects are spatial-
incomparable. Thus, the total time in Step (1) is at most O(n(n−1)/2) (i.e., O(n2)),
where n is the cardinality of Of .

2. Define left-of and below Relationships among Super-Symbols

Let Oe be the set of all objects in a local scene represented by a super-symbol e. For
two super-symbols ei and ej, we define ei left-of ej (resp. ei below ej) if Oi left-of Oj

(resp. Oi below Oj) for each Oi ∈ Oei and each Oj ∈ Oej . However, if there exist
O1, O2 in Oei , and O3, O4 in Oej such that either “O1 left-of O3 holds and O2 left-of
O4 does not hold” or “O1 below O3 holds and O2 below O4 does not hold” (called
the bad condition between the super-symbols ei and ej), occurs, then f can not be
(extended) pseudo-symbolic.

Let e0, e1, . . . , el−1 be all super-symbols of f , and let ni be the cardinality of
Oei , 0 ≤ i ≤ l − 1. For every pair ei and ej , to determine their left-of and below
relationships, we need to check left-of and below relationships between one object in
Oei and another object in Oej . The number of comparisons needed for this pair is at
most 2ninj . Hence, the total number of comparisons needed for Step (2) is at most

∑
0≤i<j≤l−1

2ninj ≤ (n0 + n1 + · · · + nl−1)2 = n2.

Therefore, the total time needed for Step (2) is at most O(n2).
Notice that, at the end of Step (2), for every pair of super-symbols ei and ej , one

of the four relationships, ei left-of ej , ej left-of ei, ei below ej , and ej below ei, holds,
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since both one object in Oei and another object in Oej are spatial-comparable.
3. Find Local Substrings of Super-Symbols

For two distinct super-symbols ei and ej , 0 ≤ i, j ≤ l − 1, we call ei and ej left-
of-comparable (resp. below-comparable) if either ei left-of ej (resp. ei below ej) or ej

left-of ei (resp. ej below ei) holds, and left-of-incomparable (resp. below-incomparable),
otherwise. For each super-symbol e, let Le (resp. Be) be the set of all super-symbols
ei, 0 ≤ i ≤ l − 1, that are left-of-incomparable (resp. below-incomparable) with e.
Given a super-symbol e, if {x} ∪ Lx = {e} ∪ Le (resp. {x} ∪ Bx = {e} ∪ Be) for
each x ∈ Le (resp. x ∈ Be), then we call {e} ∪ Le (resp. {e} ∪ Be) a local set
(or substring) of super-symbols with respect to left-of (resp. below) relationships. It
is easy to see that if f is pseudo-symbolic, both {e} ∪ Le and {e} ∪ Be form local
substrings for each super-symbol e; and if {x}∪Lx 	= {e}∪Le for some x ∈ Le (resp.
{x} ∪ Bx 	= {e} ∪ Be for some x ∈ Be), then {e} ∪ Le (resp. {e} ∪ Be) cannot form
a local substring and f can never be pseudo-symbolic.

As in Step (1), the total time in Step (3) is at most O(l2) and thus is bounded
by O(n2) (note that l ≤ n).
4. Produce the Pseudo-2D String Representation

Let L1, L2, . . . , Lp and B1, B2, . . . , Bq be all local substrings with respect to left-of
and below relationships, respectively. Observe that one super-symbol in Li and an-
other super-symbol in Lj are always left-of-comparable, and preserve the same left-of
relationships, that is, either “xi left-of xj holds for all xi ∈ Li and xj ∈ Lj” or
“xj left-of xi holds for all xi ∈ Li and xj ∈ Lj” occurs. Hence, we can define the
left-of relationships among the L1, L2, . . . , Lp, and call Li left-of Lj if there exist
xi ∈ Li and xj ∈ Lj such that xi left-of xj . Clearly, Li left-of Lj if and only if xi

left-of xj for all xi ∈ Li and xj ∈ Lj . Thus, there is a natural left-of relationship
between any two distinct local substrings Li and Lj ; that is, {L1, L2, . . . , Lp} forms
a linear order with respect to the left-of relationship. Similarly, we can define the nat-
ural below relationships among the B1, B2, . . . , Bq, and verify that {B1, B2, . . . , Bq}
forms a linear order with respect to the below relationship. Now, we may apply
any existing order-sorting algorithms, such as Quicksort (see, e.g., [1, 3]), to sort
{L1, L2, . . . , Lp} and {B1, B2, . . . , Bq} with respect to left-of and below relationships,
respectively. Let u and v represent the sorted orders of the two sets {L1, L2, . . . , Lp}
and {B1, B2, . . . , Bq}, respectively. Then the pseudo-2D string representation of f

can be obtained from (u, v) by replacing the Li’s and Bj ’s by their represented local
substrings of super-symbols.

Since any order-sorting algorithm has the time complexity of at most order 2 in
the size of the sequence in the worst case, the total time spent in the last step (4) is
at most O(p2 + q2), bounded by O(n2).

Therefore, the presented algorithm has the time complexity O(n2), where n is the
number of all involved objects in a picture. The correctness of the algorithm can be
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easily verified.

Theorem 5.1. There exists an efficient algorithm with time complexity of O(n2),
where n is the number of all involved objects in a picture, to determine whether a given
planar picture is pseudo-symbolic, and if it is, the algorithm also returns its pseudo-2D
string representation.

Now, we present the algorithm.

Algorithm. Decide whether a given planar picture f is pseudo-symbolic.

Input: the set of objects Of and the set of relationships Rf representing f .

Output: YES if f is pseudo-symbolic; NO, otherwise.

And if YES, the pseudo-2D string representation of f is also produced.

Step 1. Encode local scenes by super-symbols

Set O = Of ;

While O �= ∅ do

begin

Choose one symbol x ∈ O, and calculate the set Ex , then

check whether {x} ∪ Ex forms a local scene of f .

If yes, use a super-symbol ei to represent it and continue;

otherwise, output “NO” and exit the procedure.

Reset O = O − {x} ∪ Ex;

end; /∗ while ∗/
Step 2. Define left-of and below relationships among super-symbols

For every pair of super-symbols ei and ej , check whether

the bad condition between ei and ej occurs.

If yes, then output “NO” and exit the procedure;

otherwise, define either left-of or below relationships between them.

Step 3. Find local substrings of super-symbols

/∗ Form local substrings of super-symbols w.r.t. left-of relationships. ∗/
Set S = {e0, e1, . . . , el−1}; /∗ the set of super-symbols ∗/
While S �= ∅ do

begin

Choose one super-symbol e ∈ S, and calculate the set Le, then check

whether {e} ∪ Le forms a local substring w.r.t. left-of relationships.

If yes, represent it by Li (i is some integer) and continue;

otherwise, output “NO” and exit the procedure.

Reset S = S − {e} ∪ Le ;

end; /∗ while ∗/
/∗ Form local substrings of super-symbols w.r.t. below relationships.

The following code is the same as the above one except

all left-of ’s are replaced by below’s. ∗/
Set S = {e0, e1, . . . , el−1}; /∗ the set of super-symbols ∗/
While S �= ∅ do

begin
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Choose one super-symbol e ∈ S, and calculate the set Be , then check

whether {e} ∪ Be forms a local substring w.r.t. below relationships.

If yes, represent it by Bj (j is some integer) and continue;

otherwise, output “NO” and exit the procedure.

Reset S = S − {e} ∪ Be ;

end; /∗ while ∗/
Step 4. Produce the pseudo-2D string representation (u, v) of f

Sort {L1, L2, . . . , Lp} w.r.t. the natural left-of relationship, and use u

to store the sorted order;

Sort {B1, B2, . . . , Bq} w.r.t. the natural below relationship, and use v

to store the sorted order;

Replace all Li ’s and Bj ’s in u and v by their represented local substrings of

super-symbols, respectively, and then output “YES” and (u, v).

/∗ End of the algorithm. ∗/

Note that the above presented algorithm needs only the first three steps to verify
whether a given planar picture is pseudo-symbolic. And if it is, then the algorithm
executes Step (4) to output its pseudo-2D string at the extra cost of time complexity
of at most O(n2).

5.2. Algorithm for Deciding Extended Pseudo-Symbolic Pictures. Note
that, in our algorithm for deciding extended pseudo-symbolic pictures, the first two
steps are the same as those in the algorithm for deciding pseudo-symbolic pictures.
1 and 2. Same as 1 and 2 in the case of pseudo-symbolic pictures.
3. Produce the Extended Pseudo-2D String Representation
Since one super-symbol may take across several rows and columns in the extended
pseudo-symbolic picture f , finding local substrings of super-symbols here is much
harder than that in the case of pseudo-symbolic pictures.

Let S be the set of super-symbols. A super-symbol x ∈ S is called left-most in S

if, for any other super-symbol y ∈ S, y left-of x cannot hold. Let L be the set of all
left-most super-symbols in S and set S1 = S − L. Then we have the following three
claims.

Claim 5.2. L 	= ∅.
Proof. Choose one super-symbol x1 from S. If x1 is left-most in S, then x1 ∈ L.

Otherwise, there exists x2 ∈ S such that x2 	= x1 and x2 left-of x1 holds. Now if
x2 is left-most in S, then x2 ∈ L. Otherwise, there exists x3 ∈ S such that x3 is
different from x1 and x2, and x3 left-of x2 holds. Continue this process. Because of
the finiteness of | S |, there exist a positive integer k and one super-symbol xk ∈ S

such that xk 	= xi and xi+1 left-of xi, where 1 ≤ i < k, and xk is left-most in S. Thus,
xk ∈ L and L 	= ∅.

Claim 5.3. For any y ∈ S1, there exists x ∈ L such that x left-of y holds.
Proof. Let y ∈ S1. Note that S1 = S − L, so y is not in L, namely, y is not
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left-most in S. Then there exists x1 ∈ S such that x1 left-of y holds. By using the
argument of Claim 5.2, there exists xk ∈ S such that xk left-of x1 holds and xk ∈ L.
The relationship xk left-of y can be deduced from relationships xk left-of x1 and x1

left-of y by using the transitive rule (i.e., Rule I) in the system of rules R.

Claim 5.4. There exists e ∈ L such that for any y ∈ S1, e left-of y holds.

Proof. Let xr(O) be the x-coordinate of the right-most point (i.e., the supreme x-
coordinate of points) in an object O, and let xr(e) be the supreme of the set {xr(O) | O

is an object in the local scene encoded by e} for a super-symbol e. Then choose one
super-symbol e ∈ L such that xr(e) ≤ xr(e′) for all e′ ∈ L. For any y ∈ S1, by
Claim 5.3, there exists x ∈ L such that x left-of y holds. By the semantics definition
of spatial relationship left-of, we conclude that e left-of y holds.

Now, by Claims 5.2 and 5.3, L forms first local set (or substring) of super-symbols.
Note that, a super-symbol x ∈ L ends at the first column (i.e., x does not take across
the second column) if and only if x left-of y holds for every y ∈ S1. Let L1 be the
set of all x’s ending at the first column and set L2 = L − L1. Then, by Claim 5.4,
L1 	= ∅. And every super-symbol in L2 cannot end at the first column and must
take across the second column. Note that every super-symbol in S1 must start at the
second or later columns. Let S′ = S1 ∪ L2, then | S′ |≤| S | −1. Repeat this process
by replacing S by using S′ until S1 = ∅. Finally, we can have the first component u

of the extended pseudo-2D string representation (u, v) of f .

Similarly, the above process can be applied to get the second component v of the
extended pseudo-2D string representation (u, v) of f by simply replacing all left-of ’s
by using below ’s.

For each loop, the time needed for computing L and S1 is O(l2), and the com-
parisons needed for computing L1 is at most | L | × | S1 |≤ l2. Hence, the total time
needed for one loop is O(l2). Since | S | decreases at least one after each loop, the
total time spent in Step (3) is O(l3) and thus is bounded by O(n3).

Therefore, our algorithm has the time complexity O(n3), where n is the number
of all involved objects in a picture. The correctness of the algorithm can be easily
verified.

Theorem 5.5. There exists an efficient algorithm with time complexity of O(n3),
where n is the number of all involved objects in a picture, to determine whether a given
planar picture is extended pseudo-symbolic, and if it is, the algorithm also returns its
extended pseudo-2D string representation.

Now, we present the algorithm.

Algorithm. Decide whether a given planar picture f is extended pseudo-symbolic.

Input: the set of objects Of and the set of relationships Rf representing f .

Output: YES if f is extended pseudo-symbolic; NO, otherwise.

And if YES, the extended pseudo-2D string representation of f is also produced.
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Step 1. Encode local scenes by super-symbols

Same as Step 1 in the algorithm for deciding pseudo-symbolic pictures.

Step 2. Define left-of and below relationships among super-symbols

Same as Step 2 in the algorithm for deciding pseudo-symbolic pictures.

Step 3. Produce the extended pseudo-2D string representation (u, v) of f

/∗ Find the first component u of the pair (u, v). ∗/
Set u = ∅ and S = {e0, e1, . . . , el−1};
/∗ Initially S is the set of super-symbols ∗/
While S �= ∅ do

begin

Calculate the set u1 of all left-most super-symbols in S

and set S1 = S − u1;

/∗ ◦ means the concatenation operation of two strings. ∗/
If S1 = ∅ then u = u ◦ u1 and reset S = ∅;
else begin

u = u ◦ u1◦ <;

Calculate the set u11 of all x’s ending at the current column

and set u12 = u1 − u11;

Reset S = S1 ∪ u12;

end;

end; /∗ end of while ∗/
/∗ Find the second component v of the pair (u, v). The following code is

the same as the above one used to find u except

replacing all left-of ’s using below’s. ∗/
Set v = ∅ and S = {e0, e1, . . . , el−1};
/∗ Initially S is the set of super-symbols ∗/
While S �= ∅ do

begin

Calculate the set v1 of all below-most super-symbols in S

and set S1 = S − v1;

If S1 = ∅ then v = v ◦ v1 and reset S = ∅;
else begin

v = v ◦ v1◦ <;

Calculate the set v11 of all x’s ending at the current row and set

v12 = v1 − v11;

Reset S = S1 ∪ v12;

end;

end; /∗ end of while ∗/
Output “YES” and (u, v).

/∗ End of the algorithm. ∗/

Note that our above algorithm needs only the first two steps to verify whether a
given planar picture is extended pseudo-symbolic. Hence, it takes only time complex-
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ity of O(n2) to verify the decidability problem for extended pseudo-symbolic pictures.
And if it is, then the algorithm executes Step (3) to output its extended pseudo-2D
string at the extra cost of time complexity of O(n3).

6. Picture Retrieval by (Extended) Pseudo-2D Strings. The 2D string
approach transforms the image retrieval into a 2D string matching problem. Chang
et al. [11] defined type-0, type-1, and type-2 picture matchings. Similarly, with
(extended) pseudo-2D strings, we can define type-1 and type-2 picture matchings for
(extended) pseudo-symbolic pictures. Informally, a pseudo-symbolic (an extended
pseudo-symbolic, respectively) picture f is a type-2 subpicture of a pseudo-symbolic
(an extended pseudo-symbolic, respectively) picture f ′ if f occurs somewhere in f ′, in
its native configuration; f is a type-1 subpicture of f ′ if f is equal to the intersection
of some rows and some columns from f ′. Now we define type-i (i = 1, 2) picture
matching as follows:

• Type-2 picture matching: Given a query picture Q, Q matches a picture f ′

stored in the database if there exists a type-2 subpicture f of f ′ such that
both Q and f have the same matrix or regular partition configuration and
each local scene in Q is part (i.e., a subscene) of the corresponding local scene
in f .

• Type-1 picture matching: Given a query picture Q, Q matches a picture f ′

stored in the database if there exists a type-1 subpicture f of f ′ such that
both Q and f have the same matrix or regular partition configuration and
each local scene in Q is part (i.e., a subscene) of the corresponding local scene
in f .

Observe that the type-2 picture matching is a special part of the type-1 picture match-
ing. We also call the type-1 picture matching the exact picture matching. However,
type-0 picture matching is not applicable here because of the “absolute” nature of
spatial relationships. Notice that the picture matching problem can be considered
as a two-level subpicture matching problem, with level-1 subpicture matching for
the local scenes, and level-2 subpicture matching for the reduced symbolic pictures,
where each local scene is considered as a super-symbol, and super-symbol e1 matches
super-symbol e2 if e1 is a subscene of e2.

Because of the close connection between the (extended) pseudo-2D string and the
usual augmented 2D string, we can adapt existing picture-matching algorithms (see,
e.g., [11]) originally developed for the augmented 2D string to work on the (extended)
pseudo-2D string.

For a description of query processing of picture retrieval, the interested reader
may refer to [34].

Tucci et al. [27] proved that the type-1 symbolic picture matching is NP-complete.
It can also be proved that the exact picture matching problem with (extended) pseudo-
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2D strings is NP-complete.
While the exact picture matching yields the query outcome consisting of only

those stored images matched exactly by a user query, it might take much long time
to perform the query processing for certain irregular stored images because of NP-
completeness of the exact picture matching. To address this type of inefficiency,
approximate or heuristic picture matching algorithms need to be developed to help
improve the performance of picture retrieval.

7. Conclusion. In this paper we have defined a large class of two-dimensional
scenes, the extended pseudo-symbolic pictures. The existing rule system R is proved
to be complete for (extended) pseudo-symbolic pictures. We have proposed efficient
(i.e., polynomial-time) algorithms to determine whether a given planar picture is
(extended) pseudo-symbolic or not and, if it is, these algorithms also return its (ex-
tended) pseudo-2D string representation. The detailed algorithms, presented in this
paper, can be directly programmed into executable computer codes. We have devel-
oped a new iconic indexing, the (extended) pseudo-2D string representation, for the
(extended) pseudo-symbolic pictures. The (extended) pseudo-2D string has the good
properties of the 2D string. It is unambiguous, like the augmented 2D string, and has
a compact form suitable for image retrieval.

In this paper we have partially but not completely attacked the completeness
problem, proposed in [23], of reasoning about planar spatial relationships in pictorial
retrieval systems. Theoretically this completeness problem still remains open because
of its nature of difficulty. However, practically we [30] have proposed an alternative
to maintain the complete information about the absolute spatial relationships in the
image, which is sufficient for our generalized extended pseudo-2D string (GEP-2D
string) approach of image retrieval.

As mentioned in the Introduction, the 2D string approach considers only relative
spatial relationships among objects and thus overlooks the possible absolute spatial
relationships that are more accurate, while the approach in [23] considers only absolute
spatial relationships among objects and thus overlooks the possible relative spatial
relationships that are less accurate. In [33], we proposed a new iconic indexing,
called the combined 2D string representation, for 2D and 3D scenes. This new iconic
indexing takes advantage of both approaches, eliminates their deficiencies, and thus
gives a better representation of the spatial relationships in pictorial database systems.
Later, Zhang et al. [30] extended our work on the extended pseudo-symbolic pictures,
presented in this paper and [33], to work for the whole images.

The interested reader may refer to [28, 29, 30, 31, 32, 33, 34, 35, 36] for our further
developments in content-based image database systems.
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