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Abstract. We consider the problem of simulation-based estimation of performance measures
for a Markov chain conditioned on a rare event. The conditional law depends on the solution of a
multiplicative Poisson equation. An adaptive scheme for learning the latter is proposed and analyzed.
An example motivated by a well known problem in communication networks is given. Applications
of the basic scheme to other related domains such as importance sampling for rare event simulation

and the solution of a class of eigenvalue problems are also sketched.
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1. Introduction. Simulation-based performance analysis of discrete event sys-
tems such as queuing networks has traditionally concerned itself with estimation of
probabilities or expectations associated with the underlying Markov chain. There
are, however, situations where one is interested in conditional probabilities or expec-
tations, conditioned on a ‘rare’ event of zero probability. (If the latter probability
were positive, the problem could be reduced to that of estimating two expectations
whose ratio gives the desired conditional expectation.) A typical scenario wherein
such a situation might arise is when one wants to investigate how an extremal event
in one part of a large interconnected system (such as overflow of a particular buffer
or a burst of traffic in a queuing network) affects the functioning of another part of
the system. Our aim here is to provide an adaptive scheme to handle such a situation
when the conditioning event is a rare event of a particular kind, viz., that correspond-
ing to a certain time average of a function of the underlying Markov chain exceeding a
threshold larger than its mean. The conditional law of the chain conditioned on such
an event turns out to be the law of another Markov chain with transition probabilities
absolutely continuous w.r.t. the original transition probabilities. This change of mea-
sure depends on the solution to a multiplicative Poisson equation, which is in fact the

problem of finding the Perron-Frobenius eigenfunction of a certain positive operator.
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This equation also arises in connection with dynamic programming for risk-sensitive
control and its well-posedness as well as computational issues have been extensively
studied in [10], [8], [9]. We use these developments to devise an adaptive scheme
for on-line learning of this change of measure. This scheme uses for each simulation
transition the current guess for the change of measure, which in turn uses the current
guess for the solution to the multiplicative Poisson equation mentioned above. The
latter is updated iteratively by a stochastic approximation scheme. This scheme is
of the ‘reinforcement learning’ variety adapted from [8], [9]. (An adaptive impor-
tance sampling scheme based on reinforcement learning for estimating expectations

associated with rare events was presented in [1].)

The conditional performance analysis problem described above is important in
several contexts such as communication networks, supply chains, etc., and to our
knowledge this is the first work to address it and provide a mathematical formulation
as well as an algorithm to go with it. As it turns out, the key component of the algo-
rithm is readily provided by existing developments in a completely different domain,
viz., risk-sensitive control. To be precise, the core iteration of our two-tier algorithm
is a ‘linear’ version of the reinforcement learning algorithm for risk-sensitive control.
This is augmented by another iteration, a stochastic ascent scheme commonplace in
stochastic approximation literature. The two are interlinked, but operate on different
timescales which induce a ‘leader-follower’ behavior in the coupled scheme. This fits
into the framework of two timescale stochastic approximation and can be analyzed as
such. The overall scheme thus is a composition of existing ideas from other domains,
a fact which helps us economize on the analysis presented here.

The paper is organized as follows: The next section describes the mathemati-
cal formalism underlying our scheme. Section 3 describes the algorithm and briefly
sketches its convergence analysis. Section 4 lists two related problems which fit the
general scheme, making them amenable to the techniques developed here. These
are resp. the problem of asymptotically optimal adaptive importance sampling for
rare event simulation and the problem of finding the Perron-Frobenius eigenvalue and
eigenvector for a class of positive operators. Section 5 describes some simulation stud-
ies for a queuing example. Section 6 describes some important future directions for

research.

2. Mathematical background. This section collects together the mathemati-
cal facts underlying our scheme. Some of it is standard folklore of the subject, but is
repeated here nevertheless in order to make the account reasonably self-contained.

We shall consider an irreducible Markov chain {X,,n > 0} on a (very large)
finite state space S. Denote by E[ - ] its stationary expectations. Let g : S — R
and a > E[g(X,)]. For simplicity, we assume E[g(X,)] = 0, which is equivalent to
replacing a by a — E[g(X,)] throughout in what follows. Formally, we are interested
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in the behavior of this chain conditioned on the rare event

limnHool Z

m=0

3

or, to be precise, in the conditional transition probabilities
(1) “(4,) 2 limn oo P(X1 = j|Xo = i lz_: i.j€S.
p %] n— 00 1 J1Xo0 n Pt .7

We shall do this by means of an adaptive scheme that may be viewed as ‘conditional

Monte Carlo’. For this purpose we need the multiplicative Poisson equation

e69(i)

(2) V(i) = > pli,)Ve(), i €5,

pe %

for a prescribed parameter ¢ > 0, where p(+, -) are the original transition probabilities.
Note that V¢, resp. p¢, are then the Perron-Frobenius eigenvector, resp. eigenvalue,

of the positive operator
(3) FC) = 90N " p(5) £(5)
J

LEMMA 1. For ¢ > 0, there exist V() > 0, pc > 0, satisfying (2), where V;(-) is

unique up to multiplication by a positive scalar and p¢ is the unique scalar given by
1 n—

(4) In p¢ = iy —oo— In EleX = 9(Xm)).
n

See [2] for a proof. We fix the choice of V¢ by imposing V¢ (io) = p¢ for a prescribed
10 € S. The following is also standard, see, e.g., Lemma 6.4 of [22].
COROLLARY 1. The map ¢ — p¢ is convex and for any o > 0 (more generally, >

E[g(Xn)], which is assumed to be zero here), there exists a unique ¢* 2 argmaz¢so (o

—tn(pc)).
Let
. A
P = p(*a
V* R Ve,
y A [92nlp)
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We also need the following Bahadur-Rao type exact asymptotic from Theorem 6.3
of [22] (see [25], [28] and [18, Chapter 9] for extensions and related results):
LEMMA 2. Asn — oo,
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where a,, = a — k/n for a constant k, the subscript « on the Lh.s. stands for ini-
tial condition, and ‘~’ stands for the fact that the ratio of the r.h.s. and the Lh.s.

approaches one.

REMARK 1. We briefly sketch here how Lemma 2 may be derived using the proof
techniques of [22]. To conform to the notation of [22], pp. 347-348, define

It may be noted that the suprema in the first and the third definition above are over
a set {a: |a| < a} in [22], where a € [0, 0] is defined in terms of the constant arising
in the Liapunov condition for geometric ergodicity (see p. 325 and 314-315 resp. of
[22]) Tt is easy, however, to verify that in the finite state space set-up we are using, a
may be taken to be co. For n > 1, let a,, € (0,00) denote the unique number such
that A/ (an) = o, and Af (o) = anan, — An(ay) (ie., a, = argmaz,(aa, — Ay(a))).
The difference with the corresponding definitions in [22], p. 348, is that they use
ay = ¢ VYn. Nevertheless, the fact that

k 1
an—a——E—O(ﬁ)

allows us to mimic the arguments of the key Lemma 6.4, p. 348-349, 359, of [22] to

conclude that a, — ¢* and
* * 1 * * 1
Az (om) = A%(a) = = (6n(V* (@) + KC*) + o(- ).

(We observe here that ¢*, V* in our notation are precisely a, f in the notation of [22].)
From this, our claim follows exactly along the lines of Theorem 6.3, p. 347-348, of
[22].

This in turn leads to:

THEOREM 1. p*(-,-) is given by

e 9Wp(i, j)V*(5)

) Pl ) =
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Proof. Note that
1 n—1
P =j =1, —
(X1 =jlXo =i~ > g(X
m=0

P(Xo:i,Xlzj,iZZ; 0 9(Xm) > @)
P(Xo=1i,2 30 g(Xm) > @)
iy )P (i Sm 2 9(Xm) > o — =25 (g(i) — @)
Pyl 9(Xm) > )

— p*(i,7)

as defined above, in view of the preceding lemma. o
Note that this is nothing but a Gibbs conditioning principle (see, e.g., [13, section
3.3]) for Markov chains. The Markov property under the above conditional law can

also be established by an analogous argument. In fact, one can show that for m > 0,

Z — P (xmflaxm)

m=0

limy— oo P( X = | X = 25,0 < k <m

3I'—‘

Thus we conclude:

THEOREM 2. The regular conditional law of {X,,,m > 0} conditioned on the
event {Xo =, = >/, ' 9(Xk) > a} converges to the law of a Markov chain starting
at « with transition probabilities p*(-,-).

COROLLARY 2. For any h: S — R,
1 1
UM — oolimy— oo E[— h(Xg)|— Xm) > o] = E*[h(X])],
i —oclitmn oo E[— >~ h(Xi)| = >~ 9(X) 2 ] = E*[h(X})]

where E*[ - ] is the stationary expectation for the irreducible Markov chain {X},n >
0} with transition probabilities p*(, -).

This result motivates our adaptive scheme, described in the next section. We
conclude this section with a useful formula for d¢n(p;)/d¢. Let n(-) denote the
unique stationary probability distribution for the irreducible Markov chain on S with

transition probabilities

¢g(7)
¢ A €
p°(i,j) =

)= Ven”

p(i,§)Ve(d), 47 € 5.

Lo 3. 20 — 52 (i),

For proof see, e.g., Proposition 4.9 of [22].
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3. The adaptive algorithm. This section describes our algorithm and presents
its convergence analysis. As the latter is mostly identical to that of [8], [9] with some
ingredients from [6] and [7], we shall skip the technical details. These would be
quite messy notationally and extremely lengthy. Instead we sketch the underlying
arguments in broad strokes, with pointers to relevant literature as and when required.

Our adaptive scheme is based on a single simulation run { X, }. Fix a distinguished
state ig € S. Let {a(n)}, {b(n)} be positive scalar sequences satisfying

(6) S an) =" bn) =0, Y (a(n)? +b(n)?) < oo, b(n)

. . a(n)

These will serve as stepsizes or ‘learning parameters’ for our iterative scheme.
The algorithm
At each iteration n,
1. simulate a transition from X, =i to X,4+1 = j (say) according to the current

‘quess’ of the transition probability p*(i,j) given by

A e6ng(i)

(7) pn(i,J) = )P(i,j)Vn(j),

Vi (1) Vo (o
normalized suitably to render it a probability vector, and

2. update current guesses for (V*(i),(*), denoted by (V,,(i), (), according to the

iterative scheme

e6na(®)
Vn (ZO)

Va1 (i) = Va(i) + a(m)I{ X, = i}|

Vo (Xoi1) ( (i Xni1) >

pn(i7 Xn—i—l)
(8) —Vali)|,

9)  Gurr = (G +b(n) (@ = g(Xps1)))

3. n—n+1.
We now describe the rationale behind this scheme. The iterations are motivated

by the following considerations: To solve the equation

eS9(9)

(10) Veli) = — = 3 plii)Veli), i€,

the following ‘value iteration’ scheme has been justified in [10]:

V(i) = e Zp(i,j)V”(j%
VL) = VL) )Vt (), i€ S.

Recall that the solution of (10) is unique only up to a multiplicative scalar (see

[10]), thus is rendered unique if the value of V(%) is fixed a priori for some choice of
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i. The above scheme corresponds to fixing V¢(ip) = 1 and one correspondingly has
V"™(ip) — 1. In [9], a ‘reinforcement learning’ version of this has been obtained in
three steps, described below. While inspired by the above ‘value iteration’, it differs
in one key aspect: It seeks the unique solution corresponding to V¢ (i0) = p¢.

1. Replace the above by a single iteration

. e$9() oo
Vi) = —— Y " p(i, j)V"(j), i € S.
Vn(io) <
2. Replace the conditional average on the right by an actual evaluation at a
simulated transition, i.e., by
eS9(9)

V(i)

V*(Xnt1)

when X,, = ¢. This transition is executed with probability p(i,-).
3. Use the averaging property of stochastic approximation to get the desired
average. This is achieved by making an incremental move in the direction

suggested by the above, which leads to

e69(?)
Vat1(8) = Vo (4) + a(n)I{X, =i} <mVn(Xn+1) - Vn(z)> .

4. In our case, the simulated transition is part of a single simulation run for a
Markov chain with time-varying transition probabilities p, (-, -) and not p(-, -).
Hence one ‘unbiases’ the r.h.s. above by multiplying the first term in the large

parentheses with the likelihood ratio

P(Xns Xng1)
Pn(Xns Xpt1)’
which leads to (8) with ¢, = (.

5. In our case, ( is replaced by a slowly varying sequence {(,} given by (9). In
view of Lemma 3, the iteration (9) is simply a projected stochastic gradient
ascent algorithm for maximizing the function ¢ — a — ¢n(p¢), carried out
on a slower timescale. The effect of the separation of timescales is that the
iteration (8) sees {(,} as ‘quasi-static’, permitting its analysis as though they
were constant, as in [6].

Note that the i—th component gets updated only when X,, = ¢, which makes this
an asynchronous stochastic approximation [7]. A synchronous version would be one

in which all components are updated concurrently according to

eSng(i) i, Xpa1 _
A1) Vi) = Vali) + a(n) (mvn(xnm (1%) - Vn<z>) |

Here X,,11 is a simulated random variable with law p,, (i, ), generated separately for

each 1.



266 V. S. BORKAR, S. JUNEJA, AND A. A. KHERANI

If we ‘freeze’ ¢, = ¢ Vn, then this can be analyzed by the ‘o.d.e.” approach to
stochastic approximation as in [8], [9]. To be specific, one argues as in these articles
that the iterates remain a.s. in the positive quadrant and bounded, whence they can

be shown to asymptotically track the o.d.e.

) eS9(zi(t)) o '
(12) Fi(t) = ——— > p(i,f)a;(t) = zi(t), i €S,
for z(t) = [21(¢t), -+ @15 (¢)]". It is then shown that this equation in the positive

quadrant has a unique globally asymptotically stable equilibrium point, viz., the so-
lution V; of the multiplicative Poisson equation (2) with V(i) = p¢. In turn this
implies by standard arguments of the ‘o.d.e. approach’ to stochastic approximation,
that V™ — VC a.s. In particular, V(o) — p¢ (not 1, as in the original value itera-
tion of [10]). Recall that iteration (9) is the projected stochastic gradient scheme for
maximizing ((a — ¢n(p¢)) in view of Lemma 3. In order that (12) be justified, we
need to run this stochastic gradient scheme on a slower timescale. This is achieved
by the condition b(n) = o(a(n)) in (6) in view of the results of [6]. This allows us to
‘freeze’ ¢, = ¢ to analyze (8) as done above because {(,} are changing on a slower
timescale than (8) and thus are quasi-static. In turn, for the slower iterations (9), the
fast iterations (8) are quasi-equilibrated. See [6] for the details of this argument.
This, however, justifies only the synchronous iterations. For the asynchronous
iterations that we actually execute, the analysis of [7] implies that (12) should be

replaced by

eS9(zi(t))

(13) Bi(0) =110 |

Zp(zpj)arj@) —z(t) |, i€s,

where II(¢) is a diagonal matrix for each ¢ with nonnegative diagonal elements adding
up to 1 (i.e., they form a probability vector, reflecting in some sense the relative
frequency with which the various components are being sampled - see [7]). Our
‘irreducibility’ hypotheses are sufficient to ensure that these diagonal elements remain
bounded away from zero (see, e.g., the arguments on p. 843 of [7]). This implies that
all components are being updated ‘comparably often’; as required for the analysis of
[7]. If our simulated chain were asymptotically stationary, then II(t) = II, for some
time-invariant IL,.. (In fact, if the iterates converge, the resulting chain will indeed be
asymptotically stationary.) (13) has the same equilibrium as (12). To see this, note
that the r.h.s. of one vanishes at exactly the same point(s) as the other. What this
implies is that if the iterations converge, they will converge to the desired limit. The
proof that they do converge will require establishing that there are no other possible
attractors other than equilibria. We do not have a proof of this at present for arbitrary

TI(-) or II*, but our simulation results always showed convergence to an equilibrium.
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An alternative would be to replace (8) by

e6n9g(?) i, X,
Vi) = Vali) + a0l )X, = i) [V () (25
—Vn(Z) )
where
A n—1
v(i,n) 2 H{Xpm =i},
m=0

is the ‘empirical count’ of state i at time n, for ¢ € S. Under some additional technical
hypotheses which include additional conditions on {a(n)}, this can be shown to track
the o.d.e. [7]

Cg(zi(t
= [ Sorli o)t | i
This is a time-scaled version of (12) and has identical phase portrait. Hence a.s.
convergence follows as in the synchronous case. We tried this variation as well. It in
fact gave faster convergence, though with higher fluctuation levels. This is as expected
from the o.d.e. picture with the stepsize viewed as a discrete time step. In this version,
the stepsize is decreased at a slower rate (because v(i,n) < n in general) and thus
the o.d.e. is ‘simulated’ on a faster timescale. At the same time, the fluctuations
are larger because both the discretization error and error due to noise (which gets
multiplied by the stepsize) increase with the stepsize. This trade-off is standard in
stochastic approximation theory. Note also that the original motivation for using
a(v(i,n)) instead of a(n) in literature (see, e.g., [7]) is because {v(i,n)} represents
the local clock of the i—th processor in a distributed implementation in which each
component is computed by a different processor. Here it is a centralized computation,
so this becomes an artifice for sake of faster convergence with a theoretical guarantee,
at the expense of the computational overheads to keep track of the v(i,n)’s and higher

fluctuations.

4. Further applications. Here we briefly discuss two other important applica-
tion domains where the above techniques can be usefully applied.

1. Rare event simulation: As is well known, estimating probabilities of rare
events via naive simulation can be computationally prohibitively expensive.

The importance sampling technique has been successful in efficiently simulat-

ing rare events for many stochastic systems (see, e.g., [16], [17]). It involves
simulating the system under a change of measure and then unbiasing the
resultant output by multiplying it with the likelihood ratio, i.e., the ratio

of the original probability and the new probability of the generated sample
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path. The challenge is to come up with a good change of measure so that
the resultant output has significantly reduced variance compared to a naive
estimator. It is well known that to estimate P(A) for an event A, the zero
variance estimator exists and under it the probability assigned to any event
B equals P(B|A). However, this zero variance estimator is typically not im-
plementable as it requires a priori knowledge of P(A), the unknown quantity.
A good importance sampling distribution then is the one that closely approx-
imates the zero variance estimator, i.e., the conditional measure, and is easy
to identify and implement. Such distributions have been identified and suc-
cessfully applied to simulate many queueing systems, reliability systems and
other performance measures associated with random walks (see the references
above).

For many such stochastic systems involving constituent processes that are
Markov chains or more generally, Markov additive processes, the asymp-

! involves finding the Perron-Frobenius

totically optimal change of measure
eigenvalue and the corresponding eigenfunction of a member of a certain pa-
rameterized family of positive matrices (see, e.g., [12], [3], [23], [19] for such
examples in single queues and queueing networks). This member is char-
acterized by a parameter that is a unique solution to a specified equation,
analogous to the problem considered in this paper. Thus, the methodology
developed here proves useful in such rare event settings as well.

For example, in [11] it is shown that the asymptotically optimal change of
measure to estimate the probability P, (< an;lo 9(Xm) > «) (using the no-
tation from Section 2) is precisely the p*(:,-) specified by Theorem 1. An
importance sampling estimator for this probability is the average of the i.i.d.

samples of

p(Xo, X1)p(X1, Xo) - p(Xn—2, Xp—1)
p*(Xo, X1)p* (X1, X2) - p*(Xp—2, Xpn_1)’

(14) K 9(Xm) = a}
where I{A} denotes the indicator of the event A and the ratio in the above
equation is the unbiasing likelihood ratio.

As our experiments indicate, finding p*(+,-) purely by numerical techniques
becomes difficult even for moderately large state spaces, making simulation
a viable alternative. A natural way to implement our methodology is to
first learn p*(-,-) via simulation to a specified degree of accuracy and then
apply importance sampling as specified above. From a practical viewpoint

an interesting question arises: What is the optimal level of accuracy to which

I Asymptotic optimality is a standard terminology in rare event simulation. Loosely speaking,

under an asymptotically optimal change of measure the computational effort to estimate the rare

event to a specified relative accuracy does not grow fast even as the event of interest becomes rarer.
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p*(-,-) should be learnt so as to minimize the overall computational effort
needed to estimate the probability of interest to a specified degree of accuracy?
Too little effort in learning p*(-,-) may give a change of measure that has
large variance in estimating the probability of interest. On the other hand,
infinite amount of computational effort is needed to exactly learn p*(-,-) via
simulation. We empirically observe this trade-off for a particular example in
Section 5.
2. Figenvalue problems

The proposed algorithm can be easily specialized to find the Perron-Frobenius
eigenvalue and eigenvector for an irreducible non-negative matrix P, which
may be taken to be substochastic w.l.o.g. This involves setting ¢, = constant
for all n and elimination of (9) from the algorithm.

The eigenvalue problems have diverse engineering and scientific applications.
We refer the reader to [21], [14] and [15] for applications related to stability
of dynamical systems, radiation transport systems, etc. These papers also
propose adaptive techniques for determining eigenvalues of positive matrices
similar to the one we encounter above. However, these rely on computation-
ally expensive methodology that requires that many independent samples be
generated from each state. Our approach based on updates using stochastic

approximation offers a more economical alternative (see,e.g., [1]).

5. Application to a network of communication links. We now apply the
foregoing to a concrete problem of great interest in communication networks. Consider
a backbone network comprising a set of links £ where each link [ € £ has a capacity
C; > 0. A number of flows compete for access to these links, each flow is associated
with a route identified by an ordered subset of £. Write [ € r when route r goes
through link I. Let R denote the set of routes and let N,.(¢) denote the number of
flows on route r € R active at time instant ¢. Fairness considerations require that each
of the N, (t) flows on route r have the same bandwidth x,(t) allocated to them. Call a
bandwidth allocation x(t) = {z,(t)},cr feasible if it satisfies the capacity constraints,
(15) > Ny, (t) < Ci, VIEL

riler

A general fairness criterion for allocating bandwidth to flows on different routes

is introduced in [26]. It involves selecting a positive constant 8 # 1. For such a (3,

the fair allocation corresponds to the solution of the following optimization problem:

1-83
Maximize Z N, (t) % ,
T

subject to the capacity constraints (15). Strict concavity of the function to be max-

imized ensures a unique allocation which is referred to as the g—proportionally fair
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bandwidth allocation.

Two cases are of special interest: § — oo implies the max-min fairness, i.e., the
rate allocation which maximizes the minimum rate given to a flow in the network.
On the other hand, § — 1 gives the proportionally fair rate allocation, i.e., the rate
allocation which maximizes the total throughput of the network (see [20]). For transfer
of files controlled by Transport Control Protocol (TCP), it is argued in [20] that the
rate achieved by the active file transfers on each route are proportionally fair. See [26]
for further details.

In our experiment we consider the case where the flows on route r arrive accord-
ing to a Poisson process of rate A\, and terminate after receiving an exponentially
distributed service (with mean pu,, independent of the arrival process) that it brought
with it. Let N,(¢) denote the number of flows active at route r at time ¢. Allocation
is determined dynamically as a function of {N,.(¢)},er by solving the associated opti-
mization problem. Note that the service rate obtained by a flow on route r, i.e., z,(t)
is time varying since, for each r, N,.(t) varies with time. Also note that the process
{N,(t)}rer is a continuous time Markov chain.

This example is considered in [5], where it is shown that irrespective of the value
of 3, the Markov chain formed by the process { N, (t)},cr is stable under the simple

condition

Y A <G, VIEL,

riler
i.e., when the normalized offered load on each link is less than unity. It is also noted
that finding the stationary distribution of the process { N,.(t)},er analytically is a non-
trivial exercise and is known only for some specific networks for 5 — 1 (see [5]). Thus
development of techniques for efficient simulation of such networks is an important

problem.

5.1. Simulating a Two Link Two Route Network. Figure 1 depicts a linear
data network comprising two tandem links and two routes. This is a common scenario
when a dial-up user is connected to a high speed backbone link via a single low speed
access link. The backbone link carries traffic which is a superposition of the traffic
generated by the dial-up user and the traffic from other source-destination pairs. The
traffic from other source destination pairs is assumed to be clubbed together and
forms Route 2 in the figure. A reason for choosing this particular network topology is
the well known fact that for this network all —proportional fair rates are equivalent.

Recall that {N1(t), N2(t)} is a vector valued process corresponding to the number
of ongoing transfers in the two routes at time ¢. Let {N]*, N3} be the discrete time
Markov chain obtained by sampling the above process periodically at times placed
d units apart for ¢ small, i.e., N* = N;(én) for i = 1,2 and all n. The transition

probabilities for this Markov chain can be easily obtained from the proportionally fair
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A
2

! ‘ Route 2 + ?

Route 1

Ol 1O l®

C C,

Fic. 1. Two Link Two Route Network

rates. It is easily shown that for this network,

C .
A (1t) if

Cs > Cy
N1 (t)+N2(t) Ni(t)°

Cy N, (t)
N1(t)+N2(t)
CQ — N1 (t).l?l (t)
No(t) '

5.1.1. Estimating the conditional expectation. We first estimate via sim-

otherwise,

X9 (t) =

ulation, the expected number of flows in steady state at Route 1 conditioned on
the event that Route 2 is heavily loaded for a long period of time. Specifically, we

estimate:
1 — 1 — , ,
li lim E[— - I{N.> N} >qal = E*[N}
Jim lim m; In; {N; > N} > a] = E*[N]],

where E*[-] is the stationary expectation for the Markov chain { N7*, N3} under p*(-, -)
as specified in Theorem 2 and IV and « are constants specified later. In our simulations
we estimate E*[N}] simultaneously while learning p*(-, -) using the proposed adaptive
algorithm with g(N7*, NJ) = I{N} > N}.

The parameters used in the simulation are: A1 = 0.2, A = 0.5, C; = 0.5,
Co =10, up = po = 1.0, N =5, § = 0.5 and the simulation is started with an
initial value of ¢ = 0.0. These choices are made so as to facilitate the numerical
validation; see section 5.1.2. We set @ = 0.2463 ( from simulations we observed
that under the original measure P(N§ > N) in steady state equals 0.0463, so « is
greater than this). We restrict the state space of each N;* to be less than or equal
to 300 so that the resultant state space is finite. (In our simulations these bounds
m and b(n) = ln(‘:f)iz)mg. In our
experiments not reported here, we found similar convergence rates with other related

are never achieved.) We use step-sizes a(n) =

pairs of step-sizes.
Figure 2 shows the value of {(,,} as obtained during the simulation as a function of
the number of iterations of the algorithm. It is seen from Figure 2 that this converges

to the value obtained numerically in Section 5.1.2.
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5.1.2. Numerical validation. We validate the results obtained via simulation
by those computed using numerical techniques using matlab (matlab uses the QR
algorithm to find the eigenvalues of a matrix; see, e.g, [24]). Numerical techniques
have far greater storage requirement as storing the transition matrix requires O(|S|?)
memory, where |S| denotes the state space size. Note that our simulation methodology
requires O(|S]) storage. In our experiment |S| = 90,000. Storing a matrix of size
8.1 x 10 is not viable, thus to implement the numerical techniques we truncated
the state space to [0,25] x [0,25] (now |S| = 625) and the arrival and service rates
are chosen so that the probability of the number of flows in any link exceeding 25 is
extremely small.

Implementing any numerical procedure requires selecting an initial value of (j,
then numerically computing the Perron-Frobenius eigenvalue p¢ and/or related quan-
tities such as its derivative with respect to ¢ to update the value of (,,, and repeating
this procedure till convergence to ¢* is observed. The resulting plot of a¢ —In p¢ vs.
¢ for a = 0.2463 is shown in Figure 3. It is seen from Figure 3 that the maximum of
the function a¢ — In p¢ is achieved for ¢ near and to the right of ¢ = 0.008.

In Figure 4 we plot %Z?:l Ni vs. n obtained from simulation. This is an
estimate of the conditional mean number of flows active in route 1. The conditional
value of E*[N?] obtained from simulations is around 1.24 while it can be shown that
the unconditional mean of N in steady state is 0.85.

Figure 5 shows the values of {(,} obtained from the simulation with the same
system parameters as used in previous reported simulations. The only difference now
is that the updates of the transition probabilities for any state (N1, N2) are now
based on the step sizes a(v((N1(n), Na(n)),n)), while the update of ¢ uses a fixed
state independent sequence {b(n)}. ¢ is seen to converge to the correct value in this

case as well.

5.1.3. Estimating the rare event probability. In order to demonstrate the

utility of the proposed methodology to rare event simulation we also estimate

Pn =P <%zn:I(N2(Z) > N) 204)

for N =5, a = 0.9 and n = 100.

As we discussed in Section 4, there may exist an optimal level of accuracy to which
p*(-,-) should be estimated so that the overall computational effort to estimate p,, to
the specified degree of accuracy is minimized. We observe this trade-off empirically.
The accuracy of estimation of p*(-,-) is measured by observing the stability of the
estimate of p¢. For a fixed € > 0, let k. be the transition number at which estimate of
p¢ converged to within e of its previous value 100 times in succession. Since we have
Ve (0,0) = pe, this is effectively also a convergence criterion in terms of the estimates

of V¢(0,0). We run the algorithm for different values of e. For each such ¢, we obtain
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€ ke Estimated py (x10°) T.
1.0e —04 | 1.1e+ 04 1.337773 4.0e + 10
1.0e — 05 | 5.7e + 06 1.318673 1.7¢ 4+ 09
1.0e — 06 | 1.5e+ 08 1.314035 4.6e 409
1.0e — 07 | 5.1e+ 09 1.316046 1.9e + 10

Naive 0 1.340516 4.6e+ 10
TABLE 1

This table shows the the estimated value of the rare event probability pn, when the optimal

tmportance sampling change of measure is learnt to varying degrees of accuracy.

an estimate p(-,-) of p*(,-). This is then used to generate i.i.d. samples as shown
in (14). From these samples we iteratively determine the sample mean and sample
variance. The simulation stops when the 95% confidence interval of the probability,
derived using standard methodology based on the central limit theorem along with
the estimated mean and variance (see, e.g., [17], [19]), lies within 5% of its estimated
mean value. Let T, denote the total computational effort, as measured by the number
of transitions of the Markov chain generated via simulation till the desired accuracy
level is attained.

In Table 1 we list the values of estimate of p,, for different €. Also shown are the
values of k., and T,. We use constant step sizes a = 0.15 and b = 1076 for finding
the change of measure. The values of network parameters are the same as those used
in simulations described in Section 5.1.1. The estimates of p, obtained via naive
simulation are also shown.

From Table 1 we observe that the minimum computational effort corresponds to
€ = 1.0e—05, where we get about thirty times improvement over naive simulation.
However, this comparison based on number of transitions has a minor flaw that it
doesn’t account for the differential of computational effort per transition in the two
methodologies (i.e., proposed and naive). In the proposed methodology, in the initial
stages of the simulation where the change of measure is adaptively learnt, additional
effort at each transition is needed to update the estimates of (V*,¢*). Once the
change of measure is learnt and fixed, the effort required using importance sampling
differs from naive simulation only in that the likelihood ratio needs to be updated
at each transition. As the data in Table 1 indicates, when € equals 1.0e—05, the
adaptive learning phase lasts for only 1/300 of the total number of transitions. Thus,

the comparison based on number of transitions is reasonably accurate.

6. Future directions. In conclusion we point out some important topics for
future work in this direction.

1. A natural extension of this framework would be to develop schemes for sim-
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ulating conditional expectations conditioned on more than one event of the

above type, i.e., on

. 1
“lim 7 —
n—oo n

n—1
> gi(Xm) > o

m=0

for 1 <i< N,N>1 Let a2 [a, - ,an], 9() 2 [g:1(),- ,gn()] and
¢ 2 [C1,-++,C¢n] € (RN)*. Then the results of [28] indicate that all one
needs is to repeat the foregoing with (g(), (o replaced by resp. (¢, g(")),
(¢, ). Unfortunately these results have been derived under a strong assump-
tion equivalent to assuming that p(4,j) > 0 Vi, j, which does not hold, e.g.,
for queuing systems. Thus they need to be extended appropriately to more

general chains.

. For very large state spaces, as indeed will be the case in many important

applications such as large networks of queues, the curse of dimensionality
will make the ‘ideal’ scheme proposed above impractical. This calls for an
additional layer of approximation. Taking cue from reinforcement learning
literature [4], one may then approximate V* by an element of a parametrized
family of functions, e.g., linear combinations of a fixed finite basis of functions
with the weights as ‘parameters’ to be tuned. The understanding here is that
the dimensionality of the parameter space is much smaller than |S|. One then
hopes to write a recursive scheme for learning the optimal parameters within
the given search space. See [4] for such approaches in the more ‘classical’
reinforcement learning framework. These need to be extended to the schemes

for ‘risk-sensitive control’ invoked here.
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