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1. Introduction

Suppose that (Ù, F , P) is a probability space. For any two ó-®elds A and B � F , de®ne

the following measures of dependence:

á(A, B ) :� sup jP(A \ B)ÿ P(A)P(B)j, A 2A, B 2 B ,

r(A, B ) :� sup jCorr(V , W )j, V 2 L 2(A), W 2 L 2(B ),

â(A, B ) :� sup 1
2

XI

i�1

XJ

j�1

jP(Ai \ Bj)ÿ P(Ai)P(Bj)j,

where this latter sup is taken over all pairs of partitions fA1, . . . , AIg and fB1, . . . , BJg of

Ù such that Ai 2A for all i and Bj 2 B for all j.

The ó-®eld of events generated by a given family (Xj, j 2 S) of random variables on

(Ù, F , P) will be denoted by ó (Xj, j 2 S).

Suppose that X :� (X k , k 2 Z) is a strictly stationary sequence of random variables on

(Ù, F , P). For each positive integer n, de®ne the mixing coef®cients

á(n) :� á(ó (X k , k < 0), ó (X k , k > n)),

r(n) :� r(ó (X k , k < 0), ó (X k , k > n)),

â(n) :� â(ó (Xk , k < 0), ó (Xk , k > n)),

r�(n) :� sup r(ó (Xk , k 2 S), ó (Xk , k 2 T )),

where this latter sup is taken over all pairs of non-empty disjoint sets S, T � Z such that

dist(S, T ) :� min
j2S,k2T

j jÿ kj > n:
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Of course, for each n > 1, one has that

0 < 4á(n) < r(n) < r�(n) < 1 (1:1)

and

2á(n) < â(n) < 1: (1:2)

With a class of examples constructed by Bradley (1996), it was shown that, for a given

strictly stationary sequence X, there are `̀ almost'' no other restrictions on the simultaneous

behaviour of the mixing coef®cients á(n), r(n) and r�(n), n � 1, 2, 3, . . . , besides (1.1),

á(n) > á(n� 1), r(n) > r(n� 1) and r�(n) > r�(n� 1).

The random sequence X is said to be `̀ strongly mixing'' if á(n)! 0 and n!1, `̀ r-

mixing'' if r(n)! 0 as n!1, `̀ absolutely regular'' if â(n)! 0 as n!1, and `̀ r�-
mixing'' if r�(n)! 0 as n!1.

For each positive integer n, de®ne the partial sum Sn :� X 1 � X 2 � � � � � X n. Consider

the following two theorems.

Theorem A. Suppose that (X k , k 2 Z) is a strictly stationary r�-mixing sequence of random

variables such that EX 0 � 0, EX 2
0 ,1, and ES2

n !1 as n!1. Then ó 2 :�
limn!1 nÿ1ES2

n exists in (0, 1), and Sn=n1=2ó converges in distribution to N (0, 1) as

n!1.

This can be seen from Bradley (1992, Theorems 1, 3 and 4). (Recall that, if a random

sequence X is stationary, centred, with ®nite second moments, and has a spectral density

which is continuous at 0, then by FejeÂr's theorem, limn!1 nÿ1ES2
n exists.) The next

theorem is due to Peligrad (1996, Corollary 2.3) and is based partly on a moment inequality

of Bryc and Smolenski (1993).

Theorem B (Peligrad). Suppose that (X k , k 2 Z) is a strictly stationary, strongly mixing

sequence of random variables such that EX0 � 0, EX 2
0 ,1, ó 2

n :� ES2
n !1 as n!1,

and r�(n) , 1 for some n > 1. Then

0 , lim inf
n!1 nÿ1ó 2

n < lim sup
n!1

nÿ1ó 2
n ,1, (1:3)

and Sn=ó n converges to N (0, 1) in distribution as n!1.

(For the last inequality in (1.3), see Bradley (1992, Lemma 2).)

Under the hypothesis of Theorem B, together with the extra `̀ covariance'' assumption

that
P1

n�1jEX0 Xnj,1, one has that ó 2 :� limn!1 nÿ1ES2
n exists in (0, 1), and that

Sn=n1=2ó converges to N (0, 1) in distribution as n!1. This can be derived either as a

corollary of Theorem B itself or as a special case of a similar but more general central

limit theorem for random ®elds that was proved by Perera (1997). It would be nice if such

a ó 2 still exists under the hypothesis of Theorem B, without the extra `̀ covariance''

assumption. Unfortunately, in general, things do not work out in that way, even under

certain extra mixing assumptions. Here is our main result.
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Theorem 1. Suppose that E. 0. Then there exists a stationary, absolutely regular Gaussian

sequence X :� (Xk , k 2 Z) with EX 0 � 0, such that r�(1) < E and

lim inf
n!1 nÿ1ES2

n , lim sup
n!1

nÿ1ES2
n: (1:4)

Of course the sequence X in Theorem 1 is strongly mixing (by (1.2)), and hence also r
mixing by a well-known result of Kolmogorov and Rozanov (1960) for Gaussian random

sequences.

Theorem 1 will be proved in Section 2. With an example from Ibragimov and Rozanov

(1978, p. 180, Example 2), it was shown that, if a stationary Gaussian sequence is strongly

mixing (equivalently, r mixing) and its spectral density is bounded between two positive

constants, the spectral density can (in a non-trivial way) still fail to be continuous. The

construction here in Section 2 is a somewhat embellished, slightly modi®ed version of that

example. At a critical point, it will involve an application of the theorem of Ibragimov and

Solev (1969) that characterized the stationary, absolutely regular Gaussian sequences in

terms of properties of the spectral density. Further pertinent comments will be made in

Remarks 1 and 2 at the end of the article.

Throughout the proof, quantities of the form ab will often be written as a(b) for

typographical convenience.

2. Proof of Theorem 1

First, a few preliminary items will be dealt with.

A (real) stationary Gaussian sequence (Xk , k 2 Z) is said to have a spectral density

f : [ÿð, ð]! [0, 1) if

cov(X0, Xk) � 1

2ð

�ð
ÿð

eikë f (ë) dë (2:1)

holds for every integer k. It is understood that f is a real non-negative Borel integrable

function which is symmetric about 0, i.e. f (ÿë) � f (ë) for all ë 2 [ÿð, ð].

Lemma 1. Suppose that b and B are positive numbers such that b , B. Suppose that

X :� (X k , k 2 Z) is a stationary Gaussian random sequence with a spectral density f such

that b < f (ë) < B for all ë 2 [ÿð, ð]. Then X satis®es r�(1) < 1ÿ b=B.

In one form or another this seems to be part of the folklore. By a well-known theorem of

Kolmogorov and Rozanov (1960) for Gaussian random sequences, it suf®ces to prove that����Corr
X
k2S

akXk ,
X
k2T

akXk

 !���� < 1ÿ b

B
, (2:2)

where S and T are two arbitrary non-empty disjoint ®nite sets of integers and (ak , k 2 S [ T )
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are arbitrary real numbers. The proof of (2.2) involves (2.1) and arguments from Kolmogorov

and Rozanov (1960) and Rosenblatt (1985); it is essentially the argument given in a closely

related context by Bradley (1992, p. 365).

The following technical lemma will be useful.

Lemma 2. Suppose that N and M are positive integers such that N < M, and

(aN , aN�1, aN�2, . . . , aM ) is a (®nite) non-increasing sequence of non-negative real

numbers. Then, for every ë 2 [ÿð, ð]ÿ f0g, one has that jPM
k�N ak eikëj < ðaN=jëj.

The case N > 2 reduces trivially to the case N � 1 through the representationXM

k�N

ak eikë � ei(Nÿ1)ë
XMÿ(Nÿ1)

k�1

ak�(Nÿ1) eikë:

For (say) the case N � 1, Lemma 2 is simply an application of Zygmund (1959, p. 3,

Theorem 2.2), with ak :� 0 for k > M � 1. (First recall that in the work of Zygmund (1959,

p. 3, Equation (2.3)), if uk :� eikë and Uk :�Pk
j�1 ei jë where 0 , jëj < ð, then supk jUk j <

2=jeië ÿ 1j < ð=jëj:)
For each positive number ä and each integer M > 2, de®ne the function gä,M :

[ÿð, ð]! R by

gä,M (ë) :� ä
XM

k�2

1

k log k
cos(kë): (2:3)

(Throughout this paper, log denotes the natural logarithm.) De®ne the (®nite positive) number

Q by

Q :�
X1
k�2

1

(k log k)2
: (2:4)

Now let us use the fact that the functions cos(kë), k � 1, 2, 3, . . . are orthogonal to each

other on the interval [ÿð, ð], and that (2ð)ÿ1
� ð
ÿð cos2(kë) dë � 1

2
for k � 1, 2, 3, . . . : By a

simple calculation, for each ä. 0 and each integer M > 2, one has that

1

2ð

�ð
ÿð

g2
ä,M (ë) dë � ä2

2

XM

k�2

1

(k log k)2
,

and hence, by (2.4) and HoÈlder's inequality,

1

2ð

�ð
ÿð
jgä,M (ë)j dë < äQ1=2: (2:5)

This completes the preliminary work. Now we are ready to begin the main part of the

proof of Theorem 1.

Referring to the hypothesis of Theorem 1, let A be a positive number such that

0 , A < 1
3

(2:6)
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and

eÿ3A > 1ÿ E: (2:7)

This number A will play a key role throughout the proof.

For each L � 1, 2, 3, . . . , we need to choose a positive number èL, an integer ML > 2,

the positive number äL such that gä(L),M(L)(0) � A, and a positive integer NL. The de®nition

of these numbers will be recursive. In this de®nition, we shall use the fact thatP1
k�21=(k log k) � 1, and also the fact that, for each ä. 0 and each integer M > 2, the

function gä,M is continuous and

gä,M (0) � ä
XM

k�2

1

k log k
: (2:8)

We start with L � 1. De®ne the positive number è1 by

è1 :� 1
3
: (2:9)

Let M1 > 2 be an integer such that

2ÿ3è1

XM(1)

k�2

1

k log k
> 1: (2:10)

Referring to (2.8), let ä1 be the positive number such that

gä(1),M(1)(0) � ä1

XM(1)

k�2

1

k log k
� A: (2:11)

De®ne (just as a formality) the positive integer

N1 :� 1: (2:12)

Now suppose that L > 2 and that, for each l � 1, . . . , Lÿ 1, the following have been

de®ned: the positive number èl , the integer M l > 2, the positive number äl such that

gä(l ),M(l )(0) � A, and the positive integer Nl .

Let èL be a positive number satisfying the following three conditions:

0 , èL , èLÿ1, (2:13)

èL < 2ÿL Nÿ1
Lÿ1 A (2:14)

and

8ë 2 [ÿèL, èL], jgä(Lÿ1),M(Lÿ1)(ë)ÿ Aj < 2ÿL A: (2:15)

Let ML > 2 be an integer such that

2ÿLÿ2èL Nÿ1
Lÿ1

XM(L)

k�2

1

k log k
> 1: (2:16)

Referring to (2.8), let äL be the positive number such that
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gä(L),M(L)(0) � äL

XM(L)

k�2

1

k log k
� A: (2:17)

Let NL be a positive integer such that

NL . N Lÿ1 (2:18)

and���� 1

2ð

�ð
ÿð

1

N (L)

sin2fN (L)ë=2g
sin2(ë=2)

exp
XL

l �1

(ÿ1)l gä(l ),M(l )(ë)

 !
dëÿ exp

XL

l �1

(ÿ1)l gä(l ),M(l )(0)

" #����
< 2ÿL: (2:19)

To obtain (2.19), we are using FejeÂr's theorem.

By (2.11) and (2.17), the requirement gä(L),M(L)(0) � A is met for each L > 1. The

recursive de®nition of èL, ML, äL and NL is complete.

A couple of comments on this recursive de®nition are in order. Referring to (2.19), one

has that

exp
XL

l �1

(ÿ1)l gä(l ),M(l )(0)

 !
� 1 if L is even

exp(ÿA) if L is odd

�
(2:20)

by (2.11) and (2.17). Also, for each L � 1, 2, 3, . . . , èL < 1
3

by (2.9) and (2.13), and hence

ä1 < 2ÿ3è1 A < 2ÿ3 A,

8L > 2, äL < 2ÿLÿ2èL Nÿ1
Lÿ1 A < 2ÿLÿ2 A

(2:21)

by (2.10) and (2.11) for L � 1 and by (2.16) and (2.17) for L > 2.

For each L � 1, 2, 3, . . . , de®ne the function hL: [ÿð, ð]! R by

hL(ë) :�
XL

l �1

(ÿ1)l gä(l ),M(l )(ë): (2:22)

Lemma 3.

(a) For each even positive integer L, hL(0) � 0 and, for each odd positive integer L,

hL(0) � ÿA.

(b) For every ë 2 [ÿð, ð], one has that

8L � 1, 2, 3, . . . , ÿ2A < hL(ë) < A: (2:23)

(c) For every ë 2 [ÿð, ð]ÿ f0g, H(ë) :� limL!1 hL(ë) exists in [ÿ2A, A].

Proof of Lemma 3. Statement (a) follows immediately from (2.22), (2.11) and (2.17). Hence

also (2.23) holds for ë � 0. Now let ë 2 [ÿð, ð]ÿ f0g be arbitrary but ®xed. To complete

the proof of Lemma 3, it suf®ces to prove (2.23) and the conclusion of statement (c) for this

ë.
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Refer again to (2.3) and (2.22). For each ä. 0 and each integer M > 2, the function

gä,M is symmetric about 0. Hence, for each L > 1, the function hL is symmetric about 0.

Hence, without loss of generality, we assume that 0 , ë < ð.

Consider ®rst the case where è1 < ë < ð. In this case, for each L � 1, 2, 3, . . . , by

(2.13), (2.21) and Lemma 2,

jgä(L),M(L)(ë)j < 1

ë
ðäL

1

2 log 2

<
1

è1

4(2ÿLÿ2èL A)1

< 2ÿL A:

Hence
P1

L�1jgä(L),M(L)(ë)j < A and, by (2.22), one has (2.23) and the conclusion of

statement (c) (in lemma 3) for our given ë.

Now we only need to consider the remaining case where 0 , ë, è1. By (2.14), èL ! 0

as L!1. Referring to (2.13), let J be the (unique) positive integer such that

èJ�1 < ë, èJ : (2:24)

For any L > J � 1, one has that ë 2 [èL, ð] by (2.13), and hence

jgä(L),M(L)(ë)j < 1

ë
ðäL

1

2 log 2

<
1

èL

4(2ÿLÿ2èL A)1

< 2ÿL A

(2:25)

by Lemma 2 and (2.21). Hence
P1

l �1jgä(L),M(L)(ë)j,1: Hence by (2.22), if (2.23) is proved

for our given ë, then the conclusion of statement (c) (of Lemma 3) will also follow, and the

proof of Lemma 3 will be complete. Thus all that remains is to prove (2.23) for our given ë.

Referring to the integer J from (2.24) again, we ®rst need to show that

ÿ2ÿJ A < gä(J ),M(J )(ë) < A: (2:26)

The second inequality in (2.26) holds by (2.3) together with (2.11) (if J � 1) or (2.17) (if

J > 2). The proof of the ®rst inequality in (2.26) will take a little more work.

From (2.9), (2.13) and (2.24), one has that 2 , 1=ë. Let I denote the greatest element of

f2, 3, 4, . . . , MJg such that I < 1=ë. For each k � 2, 3, . . . , I , one has that kë < 1 and

hence cos(kë) . 0. If I � MJ , then, by (2.3), the ®rst inequality in (2.26) holds with

gä(J ),M(J )(ë) > 0. Therefore, let us suppose instead that I , MJ . In order to prove the ®rst

inequality in (2.26), it now suf®ces to show that

äJ

XM(J )

k� I�1

1

k log k
cos(kë) > ÿ2ÿJ A: (2:27)
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Now ë, èJ < 1
3

by (2.9), (2.13) and (2.24), and I � 1 . 1=ë. 3. Hence, by (2.21) and

Lemma 2, ����äJ

XM(J )

k� I�1

1

k log k
cos(kë)

���� � ����Re
XM(J)

k� I�1

ä(J )

k log k
eikë

����
<

1

ë
ð

ä(J )

(I � 1) log(I � 1)

<
ðä(J )

log(I � 1)

<
4äJ

1

< 2ÿJ A:

Thus (2.27) holds. This completes the proof of the ®rst inequality in (2.26).

Now we return to the task of proving (2.23) for our given ë.

Referring to (2.24), consider ®rst the case where J � 1. By (2.26), (2.25) (for

L > J � 1 � 2) and (2.22), one has that 2ÿ1 A > h1(ë) > ÿA and, for each L > 2,

XL

l �1

2ÿl A > hL(ë) > ÿAÿ
XL

l �2

2ÿl A:

Thus (2.23) holds if J � 1.

Now suppose instead that J > 2.

For any positive integer L < J ÿ 1, one has that ë 2 (0, èL�1] by (2.24) and (2.13), and

hence jgä(L),M(L)(ë)ÿ Aj < 2ÿ(L�1) A by (2.15). Hence, by (2.22),

8L � 1, . . . , J ÿ 1,

����hL(ë)ÿ
XL

l �1

(ÿ1)l A

���� <
XL

l �1

2ÿl A: (2:28)

Recall that
PL

l �1(ÿ1)l A � 0 or ÿA, according to whether L is even or odd. As a

consequence, it follows from (2.28) that (2.23) holds for the case J > 2, L < J ÿ 1. Now all

that remains is to prove (2.23) for the case J > 2, L > J .

Our next task is to show that

ÿAÿ
XJ

l �1

2ÿl A < hJ (ë) <
XJ

l �1

2ÿl A: (2:29)

First note that

hJ (ë) � hJÿ1(ë)� (ÿ1)J gä(J ),M(J )(ë): (2:30)
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If J is even, then by (2.28) (with L � J ÿ 1), one has that

ÿAÿ
XJÿ1

l �1

2ÿl A < hJÿ1(ë) < ÿA�
XJÿ1

l �1

2ÿl A,

and hence (2.29) holds by (2.30) and (2.26). If instead J is odd, then, by (2.28) (with

L � J ÿ 1), jhJÿ1(ë)j < PJÿ1
l �12ÿl A, and hence (2.29) holds by (2.30) and (2.26). This

completes the proof of (2.29).

Now for any L > J � 1, one has that

hL(ë) � hJ (ë)�
XL

l �J�1

(ÿ1)l gä(l ),M(l )(ë):

Hence, by (2.25) and (2.29),

8L > J � 1, ÿAÿ
XL

l �1

2ÿl A < hL(ë) <
XL

l �1

2ÿl A: (2:31)

By (2.31), (2.29) and (2.28) (together with the fact that
PL

l �1(ÿ1)l A � 0 or ÿA), one

has that (2.23) holds for our given ë. This completes the proof of Lemma 3. u

2.1. Continuation of the main argument in the proof of Theorem 1

Let H(ë), ë 2 [ÿð, ð]ÿ f0g, denote the (bounded) function de®ned in statement (c) in

Lemma 3. As a consequence of (2.3) and (2.22), the function H is symmetric about 0.

De®ne the positive bounded symmetric Borel function f on [ÿð, ð]ÿ f0g by

f (ë) :� e H(ë): (2:32)

Let X :� (Xk , k 2 Z) be a stationary Gaussian sequence with EX0 � 0 and with spectral

density f. We shall prove for this Gaussian sequence X the properties asserted in the

statement of Theorem 1.

By Lemma 3, eÿ2A < f (ë) < eA for every ë 2 [ÿð, ð]ÿ f0g. By (2.7) and Lemma 1,

the sequence X satis®es r�(1) < E. To complete the proof of Theorem 1, we now need to

prove absolute regularity and (1.4).

Proof of absolute regularity. In order to prove that the (stationary Gaussian) sequence X

satis®es absolute regularity, it suf®ces to prove that the function H has the Fourier

representation

H(ë) �
X1
k�0

ak cos(kë), (2:33)

where the (real) coef®cients ak satisfy
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X1
k�0

ka2
k ,1 (2:34)

(and, say, the sum in (2.33) converges in L 2 to H(ë)). This is simply an application of the

theorem of Ibragimov and Solev (1969) that characterized the stationary, absolutely regular

Gaussian random sequences (see, for example, Ibragimov and Rozanov (1978, p. 129,

Theorem 8)).

De®ne the non-negative numbers ck,l , k 2 f0, 1, 2, . . .g, l 2 f1, 2, 3, . . .g, by

ck,l :�
äl .

1

k log k
if 2 < k < M l ,

0 otherwise:

8><>: (2:35)

For each ë 2 [ÿð, ð], one has the following: for each l � 1, 2, 3, . . . ,

gä(l ),M(l )(ë) �
X1
k�0

ck,l cos(kë) (2:36)

by (2.3), and hence, for each L � 1, 2, 3, . . . ,

hL(ë) �
X1
k�0

XL

l �1

(ÿ1)l ck,l

 !
cos(kë) (2:37)

by (2.22). In the sum in (2.36) and in the double sum in (2.37), only ®nitely many of the

numbers ck,l are non-zero, since for each l > 1 one has that ck,l 6� 0 for only ®nitely many

k.

By (2.37) and a simple calculation, for each L > 1 and each k > 0,

1

2ð

�ð
ÿð

eikëhL(ë) dë � 1

2ð

�ð
ÿð

eÿikë hL(ë) dë

� 1
2

XL

l �1

(ÿ1)l ck,l :

(2:38)

(For k � 0, the factor of 1
2

in the last term does not belong, but it is harmless, since c0,l � 0

for all l > 1. This should be kept in mind below.)

It will be helpful to observe that, for k � 0 or 1,

X1
l �1

jck,l j �
X1
l �1

0 � 0 (2:39)

and, for each k > 2, one has that
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X1
l �1

jck,l j <
X1
l �1

äl
1

k log k

<
X1
l �1

2ÿl ÿ2 A
1

k log k

<
1

k log k

(2:40)

by (2.35), (2.21) and (2.6).

Now, by (2.38), Lemma 3 and dominated convergence, one has that, for each k > 0,

1

2ð

�ð
ÿð

eikë H(ë) dë � 1

2ð

�ð
ÿð

eÿikë H(ë) dë

� 1
2

X1
l �1

(ÿ1)l ck,l :

(2:41)

For each k � 0, 1, 2, . . . , de®ne the number

ak :�
X1
l �1

(ÿ1)l ck,l : (2:42)

Then, by (2.39) and (2.40), a0 � a1 � 0 and jak j < 1=(k log k) for each k > 2. For these

numbers ak , (2.34) holds and, by (2.41) and (2.42), the function H has the Fourier

representation in (2.33) (with the sum there converging in L 2). This completes the proof that

the stationary Gaussian sequence X is absolutely regular. u

To complete the proof of Theorem 1, all that remains is to prove (1.4).

Proof of (1.4). By (2.6) and Lemma 3, for each L > 1 and each ë 2 [ÿð, ð]ÿ f0g,
jH(ë)ÿ hL(ë)j < 3A < 1: (2:43)

Also, by a simple calculation, for each real number x < 1, one has that jex ÿ 1j < 2jxj.
Hence by (2.32), for each L > 1 and each ë 2 [ÿð, ð]ÿ f0g,

j f (ë)ÿ exp[hL(ë)]j � fexp[hL(ë)]gjfexp [H(ë)ÿ hL(ë)]g ÿ 1j
< fexp[hL(ë)]g2jH(ë)ÿ hL(ë)j
< 6jH(ë)ÿ hL(ë)j,

(2:44)

where the last inequality holds by (2.43) and statement (b) of Lemma 3.

We need to derive some L 1 bounds for the terms in (2.44). For each L > 1 and each

l > L� 1, one has that
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1

2ð

�ð
ÿð
jgä(l ),M(l )(ë)j dë < äl Q1=2

< 2ÿl ÿ2èl Nÿ1
l ÿ1 AQ1=2

< 2ÿl Nÿ1
L Q1=2

by (2.5) (see (2.4)), (2.21), (2.9), (2.13), (2.18) and (2.43). Hence for each L > 1 and each

I > L� 1, by (2.22),

1

2ð

�ð
ÿð
jhI (ë)ÿ hL(ë)j dë <

XI

l �L�1

1

2ð

�ð
ÿð
jgä(l ),M(l )(ë)j dë

< 2ÿL Nÿ1
L Q1=2:

Hence by Lemma 3 and dominated convergence, for each L > 1,

1

2ð

�ð
ÿð
jH(ë)ÿ hL(ë)j dë < 2ÿL Nÿ1

L Q1=2:

Hence by (2.44), for each L > 1,

1

2ð

�ð
ÿð
j f (ë)ÿ exp[hL(ë)]j dë < 6 3 2ÿL Nÿ1

L Q1=2: (2:45)

We shall come back to this equation shortly.

In working with the Fejer kernels, it will be handy to use the notation

Fn(ë) :� 1

n

sin2(në=2)

sin2(ë=2)

for n > 1 and ë 2 [ÿð, ð], with Fn(0) de®ned by continuity to be n. The upper bound

Fn(ë) < n is well known, for n > 1 and ë 2 [ÿð, ð].

For each positive integer n, one has for our stationary (Gaussian) sequence X that

nÿ1ES2
n �

1

2ð

�ð
ÿð

Fn(ë) f (ë) dë,

by a well-known calculation (Ibragimov and Linnik 1971, p. 322, Theorem 18.2.1). (Keep in

mind the stipulation EX0 � 0. Also note that, in the de®nition of spectral density in (2.1),

there is an extra factor of 1=2ð.) Consequently, for each L > 1, one has that

Nÿ1
L ES2

N (L) �
1

2ð

�ð
ÿð

FN (L)fexp[hL(ë)]g dë

� 1

2ð

�ð
ÿð

FN (L)f f (ë)ÿ exp[hL(ë)]g dë:

(2:46)

Now for each L > 1, by (2.45),
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1

2ð

�ð
ÿð

FN (L)j f (ë)ÿ exp[hL(ë)]j dë <
1

2ð

�ð
ÿð

N Lj f (ë)ÿ exp[hL(ë)]j dë

< 6 3 2ÿLQ1=2:

(2:47)

For each odd L > 3, one has that���� 1

2ð

�ð
ÿð

FN (L)(ë)fexp[hL(ë)]g dëÿ eÿA

���� < 2ÿL

by (2.19), (2.22) and (2.20). Hence, by (2.46) and (2.47),

Nÿ1
L ES2

N (L) ! eÿA as L!1, L odd: (2:48)

For each even L > 2, one has that���� 1

2ð

�ð
ÿð

FN(L)(ë)fexp[hL(ë)]g dëÿ 1

���� < 2ÿL

by (2.19), (2.22) and (2.20). Hence, by (2.46) and (2.47),

Nÿ1
L ES2

N(L) ! 1 as L!1, L even: (2:49)

By (2.48) and (2.49), (1.4) holds. This completes the proof of (1.4) and of Theorem 1.

u

Remark 1. For stationary Gaussian sequences, the `̀ information regularity'' condition (which

will not be de®ned here) is equivalent to absolute regularity (Ibragimov and Rozanov 1978,

Chapter 4, Theorems 4, 6 and 8). Hence the sequence X in Theorem 1 satis®es information

regularity.

Remark 2. For the sequence X in Theorem 1, one can in addition make â(1) (and even I(1),

the ®rst dependence coef®cient associated with the information regularity condition)

arbitrarily small. This can be done by having
P1

k�0 ka2
k suf®ciently small, where the

numbers ak are as in (2.33) and (2.34). This is based on a technical fact which was pointed

out by Bradley (1983, p. 84, Lemma 1.2) and which is just a slight embellishment of some of

the arguments of Ibragimov and Solev (1969) and Ibragimov and Rozanov (1978, Chapter 4).

Referring to (2.40) and (2.42), one way to have
P1

k�0 ka2
k very small is to retain the constant

A in the last term in (2.40) and to choose A (see (2.6) and (2.7)) very small to begin with.
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