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In a central limit theorem under certain strong mixing conditions, one does not quite have an
asymptotic linear growth of the variance of the partial sums.
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1. Introduction

Suppose that (R, .7, P) is a probability space. For any two o-fields . Z and .% C .7, define
the following measures of dependence:

a(.A#, B) = sup |P(AN B) — P(A)P(B)|, A € .4, B€ .7,
(A, B :=sup|Corr(V, W)|, V € L2(.A4), W€ L*(7),

1 J
B(A, #)=supt> > " |P(4; N B)) — P(4:)P(By)],

i=1 j=1

where this latter sup is taken over all pairs of partitions {41, ..., 4;} and {By, ..., B,;} of
€2 such that 4; € .Z for all i and B; € .7 for all j.

The o-field of events generated by a given family (X), j € S) of random variables on
(Q, .7, P) will be denoted by o(X;, j € S).

Suppose that X := (X, k € Z) is a strictly stationary sequence of random variables on
(Q, .7, P). For each positive integer n, define the mixing coefficients

a(n) = a(o(Xy, k£ <0), o(Xg, k = n)),
p(n) == p(o(Xy, k < 0), 0(Xy, k = n)),
B(n) := B(o(Xk, k < 0), 0(Xy, k= n)),
p*(n) == sup p(o(Xy, k € S), 0(Xs, k € T)),
where this latter sup is taken over all pairs of non-empty disjoint sets S, 7 C Z such that

dist(S, T) := i i — k| = n.
ist(S, T) jerg,g&l/ |=n
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Of course, for each n = 1, one has that
0<4da(n) <pn) <p*n) <1 (1.1
and
2a(n) < B(n) < 1. (1.2)

With a class of examples constructed by Bradley (1996), it was shown that, for a given
strictly stationary sequence X, there are “almost” no other restrictions on the simultaneous
behaviour of the mixing coefficients a(n), p(n) and p*(n), n=1,2,3, ..., besides (1.1),
a(n) = a(n+ 1), p(n) = p(n+ 1) and p*(n) = p*(n + 1).

The random sequence X is said to be “strongly mixing” if a(n) — 0 and n — oo, “p-
mixing” if p(n) — 0 as n — oo, “absolutely regular” if B(n) — 0 as n — oo, and “p™*-
mixing” if p*(n) — 0 as n — oc.

For each positive integer n, define the partial sum S, :== X; + X, + --- + X,,. Consider
the following two theorems.

Theorem A. Suppose that (X, k € Z) is a strictly stationary p*-mixing sequence of random
variables such that EXo =0, EX2<oo, and ES? — oo as n—oo. Then o?:=
lim,,_ n’lESi exists in (0, 00), and S,/n'*c converges in distribution to N(0, 1) as
n— oo.

This can be seen from Bradley (1992, Theorems 1, 3 and 4). (Recall that, if a random
sequence X is stationary, centred, with finite second moments, and has a spectral density
which is continuous at 0, then by Fejér’s theorem, lim, . n’lESi exists.) The next
theorem is due to Peligrad (1996, Corollary 2.3) and is based partly on a moment inequality
of Bryc and Smolenski (1993).

Theorem B (Peligrad). Suppose that (Xy, k € 7) is a strictly stationary, strongly mixing
sequence of random variables such that EXog = 0, EX3 <oo, 02 :=ES? — 00 as n — o0,
and p*(n)<1 for some n = 1. Then

0<liminfn_10i

n—0o0

< limsup n'0?% < o0, (1.3)

n—oo

and S, /0, converges to N(0, 1) in distribution as n — oo.

(For the last inequality in (1.3), see Bradley (1992, Lemma 2).)

Under the hypothesis of Theorem B, together with the extra “covariance” assumption
that > °° | |[EXoX,| <oc, one has that ¢2 :=lim, . n 'ES? exists in (0, c0), and that
S,/n'?c converges to N(0, 1) in distribution as n — co. This can be derived either as a
corollary of Theorem B itself or as a special case of a similar but more general central
limit theorem for random fields that was proved by Perera (1997). It would be nice if such
a o? still exists under the hypothesis of Theorem B, without the extra “covariance”
assumption. Unfortunately, in general, things do not work out in that way, even under
certain extra mixing assumptions. Here is our main result.
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Theorem 1. Suppose that ¢ > 0. Then there exists a stationary, absolutely regular Gaussian
sequence X = (X;, k € Z) with EXy = 0, such that p*(1) < ¢ and
liminf n~'ES? < limsup n 'ES2. (1.4)

n—0o00 RPN

Of course the sequence X in Theorem 1 is strongly mixing (by (1.2)), and hence also p
mixing by a well-known result of Kolmogorov and Rozanov (1960) for Gaussian random
sequences.

Theorem 1 will be proved in Section 2. With an example from Ibragimov and Rozanov
(1978, p. 180, Example 2), it was shown that, if a stationary Gaussian sequence is strongly
mixing (equivalently, p mixing) and its spectral density is bounded between two positive
constants, the spectral density can (in a non-trivial way) still fail to be continuous. The
construction here in Section 2 is a somewhat embellished, slightly modified version of that
example. At a critical point, it will involve an application of the theorem of Ibragimov and
Solev (1969) that characterized the stationary, absolutely regular Gaussian sequences in
terms of properties of the spectral density. Further pertinent comments will be made in
Remarks 1 and 2 at the end of the article.

Throughout the proof, quantities of the form a, will often be written as a(b) for
typographical convenience.

2. Proof of Theorem 1

First, a few preliminary items will be dealt with.
A (real) stationary Gaussian sequence (X, k € Z) is said to have a spectral density
f:[—m, w] — [0, c0) if

cov(Xo, Xp) = %r e® £(2)da (2.1

holds for every integer k. It is understood that f is a real non-negative Borel integrable
function which is symmetric about 0, i.e. f(—1) = f(A) for all 1 € [—m, m].

Lemma 1. Suppose that b and B are positive numbers such that b<<B. Suppose that
X := (X, k € Z) is a stationary Gaussian random sequence with a spectral density [ such

that b < f(1) < B for all A € [—x, ). Then X satisfies p*(1) <1 — b/B.

In one form or another this seems to be part of the folklore. By a well-known theorem of
Kolmogorov and Rozanov (1960) for Gaussian random sequences, it suffices to prove that

b
Corr (Z aXr, Z aka> ‘ <1--, (2.2)
kes

keT

where S and T are two arbitrary non-empty disjoint finite sets of integers and (ay, k € SU T)
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are arbitrary real numbers. The proof of (2.2) involves (2.1) and arguments from Kolmogorov
and Rozanov (1960) and Rosenblatt (1985); it is essentially the argument given in a closely
related context by Bradley (1992, p. 365).

The following technical lemma will be useful.

Lemma 2. Suppose that N and M are positive integers such that N < M, and
(an, aN+1, ans2, ---, ay) is a (finite) non-increasing sequence of non-negative real

numbers. Then, for every L € [—m, @] — {0}, one has that |34 yar e**| < may /|A|.

The case N = 2 reduces trivially to the case N =1 through the representation

M M—(N-1)
Z ai elkl — e1(N71)}; Z A1) elkl.
k=N k=1

For (say) the case N =1, Lemma 2 is simply an application of Zygmund (1959, p. 3,
Theorem 2.2), with a; := 0 for k = M + 1. (First recall that in the work of Zygmund (1959,
p. 3, Equation (2.3)), if uy := el and U, := Z;‘:l e where 0 < |A| < =, then supy|Ui| <
2/le* — 1| < m/|A].)

For each positive number 6 and each integer M =2, define the function g
[—m, ] — R by

M
1
go.m(A) :=0» ——— cos(kh). (2.3)
kz:; klog k

(Throughout this paper, log denotes the natural logarithm.) Define the (finite positive) number
0 by

>0 1
= —_— 2.4
0 ;(klog k)? 24)
Now let us use the fact that the functions cos(kl), k =1, 2, 3, ... are orthogonal to each
other on the interval [—, 7], and that (27)~' [* cos*(kA)dA =1 for k =1,2,3,....Bya

simple calculation, for each d >0 and each integer M = 2, one has that

PRt

R B 1
ﬁLgé’M(’Dd’l 2 ;(klog Ak

and hence, by (2.4) and Hoélder’s inequality,

1 7T
EJ |go.1(A)] di < 60", 2.5)
—T

This completes the preliminary work. Now we are ready to begin the main part of the
proof of Theorem 1.
Referring to the hypothesis of Theorem 1, let 4 be a positive number such that

0<A=<! (2.6)
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and
eM=1—c 2.7)

This number 4 will play a key role throughout the proof.

For each L=1,2,3,..., we need to choose a positive number 8;, an integer M; = 2,
the positive number J; such that ge m(1)(0) = 4, and a positive integer N;. The definition
of these numbers will be recursive. In this definition, we shall use the fact that
>, 1/(klog k) = 0o, and also the fact that, for each 0 >0 and each integer M = 2, the
function g s is continuous and

G
o ® =02 ek 28)
We start with L = 1. Define the positive number 6, by
6, :=1. (2.9)
Let M| = 2 be an integer such that
M
2739, ;ngz 1. (2.10)

Referring to (2.8), let d; be the positive number such that

M(1)

1
go.u1)(0) = O ; Togk =+ (2.11)
Define (just as a formality) the positive integer
Ny :=1. (2.12)
Now suppose that L =2 and that, for each /=1, ..., L — 1, the following have been

defined: the positive number 6,, the integer M, = 2, the positive number J, such that
gs()m()(0) = A, and the positive integer N,.
Let 6, be a positive number satisfying the following three conditions:

0<60,<6,, (2.13)
0, <2"'N;', 4 (2.14)
and
VA € [<01, 011, |go—1ym—1)(A) — 4] < 27" A4. (2.15)
Let M; =2 be an integer such that
M(L)
271729, N7 ; Tiogi> 1. (2.16)

Referring to (2.8), let &, be the positive number such that
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go.m(ny(0) =90y ——=A. (2.17)
“— klogk
Let N; be a positive integer such that
N> Njp_ (2.18)

and

1 (1 sin?{N(L)A/2 L L
ﬁj,n N Sms;{n2((i/)2)/ ) exp (;(—1)/ gé(/),M(/)@)) dA —exp Lz‘:(—l)/ gé(/),M(/)(O)] ‘

<27t (2.19)

To obtain (2.19), we are using Fejér’s theorem.

By (2.11) and (2.17), the requirement gsr) amz)(0) = A is met for each L = 1. The
recursive definition of 6;, M;, 6; and N is complete.

A couple of comments on this recursive definition are in order. Referring to (2.19), one
has that

L o
Y _ J1if Liseven
exp </Zl( D g‘W)’M(/)(O)) - {exp(—A) if L is odd (2.20)
by (2.11) and (2.17). Also, for each L =1,2,3, ..., 0, $% by (2.9) and (2.13), and hence
01 <27%0,4 <2734,

(2:21)
VL=2,06, <229, N;' a<27t724
by (2.10) and (2.11) for L =1 and by (2.16) and (2.17) for L = 2.
For each L =1, 2,3, ..., define the function %;: [—m, ] — R by
L
h@) == (=1) gouramnA)- (2.22)
/=1
Lemma 3.

(a) For each even positive integer L, /4;(0) =0 and, for each odd positive integer L,
hi(0) = —A.
(b) For every A € [—m, «], one has that

VL=1,2,3,..., 24 < h(A) < A. (2.23)
(c) For every A € [—m, ] — {0}, H(A) :=lim;_ A (A) exists in [—24, 4].

Proof of Lemma 3. Statement (a) follows immediately from (2.22), (2.11) and (2.17). Hence
also (2.23) holds for 1 = 0. Now let A € [—x, ] — {0} be arbitrary but fixed. To complete
the proof of Lemma 3, it suffices to prove (2.23) and the conclusion of statement (c) for this

A.
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Refer again to (2.3) and (2.22). For each 0 >0 and each integer M = 2, the function
gs.m 1s symmetric about 0. Hence, for each L = 1, the function A; is symmetric about 0.
Hence, without loss of generality, we assume that 0 <A < .

Consider first the case where 6; <1 <m. In this case, for each L=1,2,3,..., by
(2.13), (2.21) and Lemma 2,

1 1
N < -md
|gacn).my(A) P ' 3Tog2

1
< 402720, 4)1
01

<27ty

Hence >} ,|gsym)A)| <A and, by (2.22), one has (2.23) and the conclusion of
statement (c) (in lemma 3) for our given A.

Now we only need to consider the remaining case where 0 <A <#6,. By (2.14), 6, — 0
as L — oo. Referring to (2.13), let J be the (unique) positive integer such that

0,1 <A<0y. (2.24)
For any L = J + 1, one has that A € [0, ] by (2.13), and hence

1

1
= —
| gocLy.mc)A)] 1 o TTog2

- i4(27L729LA)1 (225)
0L

<2714

by Lemma 2 and (2.21). Hence > )7 || 2oz m(1)(A)| < 0o. Hence by (2.22), if (2.23) is proved

for our given 4, then the conclusion of statement (c) (of Lemma 3) will also follow, and the

proof of Lemma 3 will be complete. Thus all that remains is to prove (2.23) for our given A.
Referring to the integer J from (2.24) again, we first need to show that

2774 < gsnmnA) < 4. (2.26)

The second inequality in (2.26) holds by (2.3) together with (2.11) (if J = 1) or (2.17) (if
J = 2). The proof of the first inequality in (2.26) will take a little more work.

From (2.9), (2.13) and (2.24), one has that 2 <<1/A. Let I denote the greatest element of
{2,3,4,..., M;} such that I < 1/A. For each k=2,3,..., I, one has that kA <1 and
hence cos(kd)>0. If [ = M,, then, by (2.3), the first inequality in (2.26) holds with
go().m()(A) = 0. Therefore, let us suppose instead that 7 <<M,. In order to prove the first
inequality in (2.26), it now suffices to show that

M(J)
o5 Y kl - cos(kd) = 277 4. (2.27)

k=I+1
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Now A< 0, s% by (2.9), (2.13) and (2.24), and 7+ 1>1/4>3. Hence, by (2.21) and
Lemma 2,

M(J)

k IJrlk1

M) sy
cos( k/l)‘ ' ek
* 2= Flogi

_1 8(J)
=2 T+ DlogI + 1)

7to(J)
T log(I + 1)

4(3J

1
<2774,

Thus (2.27) holds. This completes the proof of the first inequality in (2.26).

Now we return to the task of proving (2.23) for our given A.

Referring to (2.24), consider first the case where J = 1. By (2.26), (2.25) (for
L=J+1=2) and (2.22), one has that 27'4 = h;(A) = —4 and, for each L =2,

L
d2laz=nR)=-4-> 274
/=2

Thus (2.23) holds if J = 1.

Now suppose instead that J = 2.

For any positive integer L < J — 1, one has that 4 € (0, 6;,1] by (2.24) and (2.13), and
hence | gor).um(r)(A) — 4| < 274D 4 by (2.15). Hence, by (2.22),

L

L
1, |Ar(h) — Z(—l)/A‘ <Y 274 (2.28)
/=1

/=1

VL=1,...,J

Recall that 3% (=14 =0 or —4, according to whether L is even or odd. As a
consequence, it follows from (2.28) that (2.23) holds for the case J =2, L < J — 1. Now all
that remains is to prove (2.23) for the case J =2, L = J.

Our next task is to show that

J
—A=Y 2 A<hA)<) 274 (2.29)
/=1

First note that

hy(A) = hy1(A) + (= 1) gscy.myA)- (2.30)
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If J is even, then by (2.28) (with L = J — 1), one has that

J-1 J-1
—A— ZZ’/A <h;(A) <-4+ Zz*/A,
/=1 /=1

and hence (2.29) holds by (2.30) and (2.26). If instead J is odd, then, by (2.28) (with
L=J—1), |hy_1(A)] <>27212774, and hence (2.29) holds by (2.30) and (2.26). This
completes the proof of (2.29).

Now for any L = J + 1, one has that

L
h) = @)+ Y (=1 oA,

/=J+1
Hence, by (2.25) and (2.29),
L L
VL=J+1, A=Y 27Ad< k()< 274 (2.31)
/=1 /=1

By (2.31), (2.29) and (2.28) (together with the fact that Zf;l(—l)/A =0 or —A), one
has that (2.23) holds for our given A. This completes the proof of Lemma 3. ]

2.1. Continuation of the main argument in the proof of Theorem 1

Let H(A), A € [-x, wt] — {0}, denote the (bounded) function defined in statement (c) in
Lemma 3. As a consequence of (2.3) and (2.22), the function H is symmetric about 0.
Define the positive bounded symmetric Borel function f on [—m, ] — {0} by

F(A) == ef?, (2.32)

Let X := (X, k € Z) be a stationary Gaussian sequence with EXy = 0 and with spectral
density f. We shall prove for this Gaussian sequence X the properties asserted in the
statement of Theorem 1.

By Lemma 3, e 24 < f(1) < e’ for every A € [-m, ] — {0}. By (2.7) and Lemma 1,
the sequence X satisfies p*(1) <. To complete the proof of Theorem 1, we now need to
prove absolute regularity and (1.4).

Proof of absolute regularity. In order to prove that the (stationary Gaussian) sequence X

satisfies absolute regularity, it suffices to prove that the function H has the Fourier
representation

HQ) = f: ay cos(k7), (2.33)
k=0

where the (real) coefficients a; satisfy
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> kaj < oo (2.34)
k=0

(and, say, the sum in (2.33) converges in #2 to H(A)). This is simply an application of the
theorem of Ibragimov and Solev (1969) that characterized the stationary, absolutely regular
Gaussian random sequences (see, for example, Ibragimov and Rozanov (1978, p. 129,
Theorem 8)).

Define the non-negative numbers ¢y, k € {0, 1,2, ...}, 7/ €{1,2,3,...}, by

o, - if2<ksM,,
Crs = klog k (2.35)

0 otherwise.

For each A € [—m, «], one has the following: for each / =1,2,3, ...,

8ot m(HA) = Z ci, cos(ki) (2.36)
=0

by (2.3), and hence, for each L =1, 2, 3, ...,

00 L
h() = <Z(—1)/ck,/> cos(kA) (2.37)

k=0 \/=1

by (2.22). In the sum in (2.36) and in the double sum in (2.37), only finitely many of the
numbers ¢, are non-zero, since for each /= 1 one has that ¢z, # 0 for only finitely many
k.

By (2.37) and a simple calculation, for each L =1 and each k =0,

1" 1
EL e h)ydd = —

o L[ e p(A)dA

. (2.38)

/
=3 (D ew
/=1

(For k£ = 0, the factor of % in the last term does not belong, but it is harmless, since ¢o, = 0
for all /= 1. This should be kept in mind below.)
It will be helpful to observe that, for k =0 or 1,

o0 (o)
> lexs =2 0=0 (239)
/=1 /=1

and, for each k& = 2, one has that
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o0 o0 1
|Ck,/ | 6
/2::1 Z klog k
= 1

< 2="=24 2.40

; klogk (2-40)
1

=

klogk

by (2.35), (2.21) and (2.6).
Now, by (2.38), Lemma 3 and dominated convergence, one has that, for each k£ = 0,

LJ e H()dA = LJ e H(1)dA
2n -7 -7

27
- (2.41)
=3 (1 er
/=1
For each k=0, 1, 2, ..., define the number
ajp = Z(_l)/ck’/. (242)
/=1

Then, by (2.39) and (2.40), ap = a; =0 and |ax| < 1/(klog k) for each k = 2. For these
numbers aj, (2.34) holds and, by (2.41) and (2.42), the function A has the Fourier
representation in (2.33) (with the sum there converging in 4'2). This completes the proof that
the stationary Gaussian sequence X is absolutely regular. ]

To complete the proof of Theorem 1, all that remains is to prove (1.4).

Proof of (1.4). By (2.6) and Lemma 3, for each L = 1 and each 4 € [—x, ©t] — {0},
|H() — h(D)| <34 < 1. (2.43)

Also, by a simple calculation, for each real number x < 1, one has that |e* — 1| < 2|x|.
Hence by (2.32), for each L = 1 and each A € [—m, «t] — {0},

1/ (A) = explhL (V]| = {exp[h ()]} {exp [H(A) — (D]} — 1]
< {exp[AL(D]}2[H(2) — hi(A)] (2.44)
< 6|H(A) — h(2),

where the last inequality holds by (2.43) and statement (b) of Lemma 3.
We need to derive some 4! bounds for the terms in (2.44). For each L =1 and each
/ = L+ 1, one has that
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1 TU
EJ | 2o A dA < 6,02
I

<27720,N;! 40"
< 27/N21Q1/2

by (2.5) (see (2.4)), (2.21), (2.9), (2.13), (2.18) and (2.43). Hence for each L = 1 and each
1 =L+1, by (2.22),

!

[ L
Ej_n“’ll(/l) - hL(/l)| di =< /;Imj_ngé(/),/w(/)(in di

<27LN7! 0'2.
Hence by Lemma 3 and dominated convergence, for each L = 1,

1 7T
EJ |H(A) — ()| d2 < 27N, 102,
-7

Hence by (2.44), for each L = 1,

1 T
EJ |f(2) — exp[hy(M)]|dA < 6 X 27 LN QY2 (2.45)
—TT
We shall come back to this equation shortly.
In working with the Fejer kernels, it will be handy to use the notation

1 sin?(nA/2)

&= sin2(1/2)

for n=1 and 1 € [—m, w], with F,(0) defined by continuity to be n. The upper bound
F,(A) < n is well known, for n =1 and 1 € [—m, @].
For each positive integer n, one has for our stationary (Gaussian) sequence X that

1 T
—lpQ2 _ &
n'ES) = o LFH(A) £(A)dA,

by a well-known calculation (Ibragimov and Linnik 1971, p. 322, Theorem 18.2.1). (Keep in
mind the stipulation EXy = 0. Also note that, in the definition of spectral density in (2.1),
there is an extra factor of 1/2m.) Consequently, for each L = 1, one has that

1

NT'ESY ) = %j Fuiy{explhu ()]} di

(2.46)
1 TT
4o Fvar s - explhuciny ot

—TT

Now for each L =1, by (2.45),
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L (" ("
_J, Fywlf(A) — explh (D] dA < EL Ni|f(2) — exp[h(A)]] dA

2 (2.47)
<6x27LQ"2
For each odd L = 3, one has that
1" -4 —-L
I Fny){explh ()]} dA —e *| <2
T —T
by (2.19), (2.22) and (2.20). Hence, by (2.46) and (2.47),
N 'ES%) — e " as L — oo, L odd. (2.48)
For each even L = 2, one has that
1 7T
‘Z_J FywyM{explhL(A)]}dA — 1| <27F
T
by (2.19), (2.22) and (2.20). Hence, by (2.46) and (2.47),
N, 'ESy ) — las L — oo, L even. (2.49)

By (2.48) and (2.49), (1.4) holds. This completes the proof of (1.4) and of Theorem 1.
O

Remark 1. For stationary Gaussian sequences, the “information regularity” condition (which
will not be defined here) is equivalent to absolute regularity (Ibragimov and Rozanov 1978,
Chapter 4, Theorems 4, 6 and 8). Hence the sequence X in Theorem 1 satisfies information
regularity.

Remark 2. For the sequence X in Theorem 1, one can in addition make 5(1) (and even (1),
the first dependence coefficient associated with the information regularity condition)
arbitrarily small. This can be done by having > -, kai sufficiently small, where the
numbers a; are as in (2.33) and (2.34). This is based on a technical fact which was pointed
out by Bradley (1983, p. 84, Lemma 1.2) and which is just a slight embellishment of some of
the arguments of Ibragimov and Solev (1969) and Ibragimov and Rozanov (1978, Chapter 4).
Referring to (2.40) and (2.42), one way to have ;- , kai very small is to retain the constant
A in the last term in (2.40) and to choose 4 (see (2.6) and (2.7)) very small to begin with.
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