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A new type of martingale estimating function is proposed for inference about classes of diffusion

processes based on discrete-time observations. These estimating functions can be tailored to a

particular class of diffusion processes by utilizing a martingale property of the eigenfunctions of the

generators of the diffusions. Optimal estimating functions in the sense of Godambe and Heyde are

found. Inference based on these is invariant under transformations of data. A result on consistency and

asymptotic normality of the estimators is given for ergodic diffusions. The theory is illustrated by

several examples and by a simulation study.
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1. Introduction

Martingale estimating functions have turned out to give good and relatively simple estimators

for discretely observed diffusion models, for which the likelihood function is only explicitly

known in special cases. By discrete observations we mean observations of the process at

deterministic times t0 , � � � , tn. These estimators have the added virtue of being consistent

and asymptotically normal when the number of observations tends to in®nity without the

(often unrealistic) assumption that the time between observations tends to zero which must be

made for most other estimators proposed in the literature. Only the estimators proposed by

Kessler (1995b) and Pedersen (1995a,b) are also consistent and asymptotically normal

without this assumption.

Bibby (1994), Pedersen (1994), Bibby and Sùrensen (1995) and Kessler (1995a)

considered martingale estimating functions of the type

Gn(è) �
Xn

i�1

g(X ti
, X tiÿ1

; è), (1:1)

where X t0
, X t1

, . . . , X t n
are the data, and where g(y, x; è) is a polynomial in y such that

Eè[g(X ti
, X tiÿ1

; è)jX tiÿ1
] � 0 Pè ÿ a:s: (1:2)
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for all values of the parameter è. Such polynomial estimating functions can be regarded as

approximations of the true score function, which are very good when the time between

observations is small. In fact, the transition distribution can be well approximated by a

normal law when the time between observations is small. This implies a Gaussian

approximate likelihood function and an approximate score function of the type (1.1) with a

polynomial g. Some polynomial estimating functions indeed provide ef®cient estimators

when the time between observations tends to zero with increasing number of observations

(Bibby and Sùrensen 1995). Polynomial estimating functions of the type (1.1) can be viewed

as a natural generalization of the method of moments to Markov processes.

There is, however, no reason to believe that polynomial estimating functions are in

general the best choice, or even natural, when the time between observations is large and

thus the transition distribution is far from Gaussian. In this situation, we also cannot in

general expect a generalized method of moments to behave particularly well. In the present

paper we therefore study martingale estimating functions of the form (1.1), where the

function g need not be a polynomial but is based on eigenfunctions for the generator of the

diffusion model. This allows the estimating function to be more closely tailored to the

diffusion model. A ®rst justi®cation for this choice of g is the importance of the

eigenfunctions in the study of the transition density. Indeed, a classical result is the series

expansion of the transition density for a diffusion process in terms of the eigenfunctions of

its generator (Karlin and Taylor 1981). It should also be mentioned here that inference

based on the optimal estimating functions studied in this paper is invariant under

transformation of data, which is not the case for the polynomial estimating functions.

In some well-known simple diffusion models it turns out that the eigenfunctions are

polynomials, such that we are led back to the polynomial estimating functions. This is, not

surprisingly, the case for the Ornstein±Uhlenbeck process, where the eigenfunctions are the

Hermite polynomials. Even in these cases it is, however, an advantage to follow the route

via spectral theory since this gives more explicit estimating equations than have been found

in earlier papers. Moreover, this puts the polynomial estimating functions into a broader

perspective.

In Section 2 we review a few results from the spectral theory of diffusions and derive the

martingale estimating functions based on eigenfunctions of the generator. In Section 3 we

®nd optimal estimating functions of this type, while consistency and asymptotic normality

of the estimators are proved for ergodic diffusions in Section 4. In Section 5 we give some

results on eigenfunctions and martingales. In particular, we give suf®cient conditions that

the estimating functions introduced in Section 2 are martingales. The theory is illustrated by

examples.

2. Martingale estimating functions based on eigenfunctions

Consider a class of one-dimensional diffusion processes de®ned as solutions of the stochastic

differential equations
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dXt � b(X t; è) dt � ó (X t; è) dWt,

X 0 � x0,
(2:1)

where W is a Wiener process. The functions b and ó are known; the unknown parameter è
varies in a subset È of Rd . They are assumed to be smooth enough to ensure for every è the

uniqueness of the law of the solution, which we denote by Pè. The statistical problem is to

draw inference about è based on discrete observations X t0
, X t1

, . . . , X t n
which, for

convenience, we assume to be observed equidistantly, i.e. ti ÿ tiÿ1 � Ä. The extension to

arbitrary ti is obvious.

The differential operator Lè de®ned by

Lè � 1
2
ó 2(x; è)

d2

dx2
� b(x; è)

d

dx
(2:2)

for all twice differentiable functions is called the generator of the diffusion model (2.1). A

twice continuously differentiable function ö(x; è) is called an eigenfunction for Lè with

eigenvalue ë(è) if

Lèö(x; è) � ÿë(è)ö(x; è) (2:3)

for all x in the state space of X under Pè.

It can be shown that under weak regularity conditions (see Section 5)

Eè[ö(X ti
; è)jX tiÿ1

] � eÿë(è)Ä ö(X tiÿ1
; è), (2:4)

where Eè denotes the expectation under Pè. Therefore, we can de®ne a martingale estimating

function by (1.1) with

g(y, x; è) � á(x; è)fö(y; è)ÿ eÿë(è)Ä ö(x; è)g, (2:5)

where á is an arbitrary function. More generally, given k eigenfunctions ö1(x; è), . . . ,

ök(x; è) with distinct eigenvalues ë1(è), . . . , ëk(è), we can de®ne a martingale estimating

function by

g(y, x; è) �
Xk

j�1

á j(x; è)fö j(y; è)ÿ eÿë j(è)Ä ö j(x; è)g: (2:6)

Suf®cient conditions for (2.4) to hold will be discussed in Section 5. In particular, (2.4) holds

in the examples considered below. It is well known from the spectral theory of diffusion

processes that the set Ëè of all eigenvalues for Lè, the spectrum of Lè, is contained in

[0, 1). For many diffusion models the spectrum is a discrete set Ëè � fë0(è), ë1(è), . . .g,
where 0 < ë0(è) , ë1(è) , � � � , ën(è) "1. Since the dependence on the past is mainly

determined by the small eigenvalues, it seems natural to use the eigenfunctions associated

with the ®rst k eigenvalues to de®ne an estimating function. A further justi®cation for

considering functions g of this form is that the eigenvalue problem (2.3) is a Sturm±Liouville

problem. By a classical result of this theory, we have, for an ergodic diffusion with invariant

probability ì, a series expansion of any function in L2(ì) in terms of the eigenfunctions
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(öi)i>0 associated with the eigenvalues (ëi)i>0 (Coddington and Levinson 1955), i.e. a

function f in L2(ì) can be written as

f (y) �
X1
i�0

ciöi(y), (2:7)

where (ci) is a sequence of real numbers and the series converges in L2(ì). There is a similar

result for many non-ergodic diffusions. Thus, for a ®xed x,
Pk

j�0, á j(x; è)ö j(y; è) can be

seen as a truncated series of the form (2.7). The estimating function (2.6) is obtained when

one makes a martingale out of this sum. Expansions of transition densities of the form (2.7)

mainly depend on the ®rst eigenfunctions. In fact, the weights ci decrease exponentially with

the eigenvalues. In Section 3, we derive the optimal estimating function based on k given

eigenfunctions. The optimal estimating function can be thought of as an approximation in

terms of eigenfunctions to the unknown score function. We shall not discuss how best to

choose k or the eigenfunctions for a given class of diffusions.

If the state space of the diffusion is a ®nite interval, the spectrum is discrete. Otherwise

the nature of the spectrum depends on the behaviour at �1 of the function

Uè(x) � b2(x; è)

2ó 2(x; è)
� 1

2
b9(x; è)ÿ b(x; è)ó 9(x; è)

ó (x; è)
� 1

8
ó 9(x; è)2 ÿ 1

4
ó (x; è)ó 0(x; è),

where a prime denotes the derivative with respect to x. The function Uè(x) is closely related

to the potential of a SchroÈdinger equation (Banon 1978). De®ne uè � minflimx!ÿ1Uè(x),

limx!1Uè(x)g. Then Ëè \ [0, uè) is discrete (Goel and Richter-Dyn 1974; Banon 1978). In

particular, if Uè(x) tends to 1 as x! �1, the spectrum is discrete. When the spectrum is

not discrete, it may still be a good idea to choose k eigenfunctions with associated

eigenvalues 0 , ë1(è) , � � � , ëk(è) and thus de®ne a martingale estimating function with g

of the type (2.6).

Further properties of the eigenfunctions are worth mentioning. Consider an ergodic

diffusion with invariant measure ìè (although these properties hold in a wider generality).

Then we have for any eigenfunction ö(x; è) that ö(:; è) is in L2(ìè) and�
ö(y; è)ìè (dy) � 0: (2:8)

If öi(y; è) and ö j(y; è) are two eigenfunctions with two distinct eigenvalues, we have�
öi(y; è)ö j (y; è)ìè (dy) � 0 (2:9)

(Karlin and Taylor 1981).

Example 2.1. The class of diffusion processes which solve

dX t � (â� èX t) dt � ó X
1=2
t dW t, (2:10)

where â. 0, è, 0 and ó . 0, is known in the ®nancial literature as the Cox±Ingersoll±Ross

(1985) model. The model has been well known, for instance in mathematical biology, for
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many years. For this model, the spectrum is Ëè � fÿnè: n � 0, 1, . . .g with corresponding

eigenfunctions öi(x) � L
(í)
i (ÿ2èxó ÿ2), where L

(í)
i is the ith order Laguerre polynomial with

parameter í � 2âó ÿ2 ÿ 1 (Karlin and Taylor 1981). We are thus in the case of polynomial

martingale estimating functions.

Example 2.2. Consider the class of diffusions given as solutions of

dX t � ÿè tan(X t) dt � dW t, (2:11)

which for è > 1
2

is an ergodic diffusion on the interval (ÿð=2, ð=2). This diffusion can be

thought of as an Ornstein±Uhlenbeck process on a ®nite interval. The invariant measure has

a density proportional to cos(x)2è.

The spectrum of the model is Ëè � fn(è� n=2): n � 0, 1, . . .g with associated

eigenfunctions given by öi(x; è) � Cè
i (sin(x)), where Cè

i is a Gegenbauer polynomial of

order i. This follows from the differential equation solved by the Gegenbauer polynomials.

By equation 8.934-2 of Gradshteyn and Ryzhik (1965),

öi(x; è) �
Xi

m�0

èÿ 1� m

m

� �
èÿ 1� iÿ m

iÿ m

� �
cos (2mÿ i)

ð

2
ÿ x

� �� �
:

The ®rst non-trivial eigenfunction is sin(x) (a constant is omitted) with eigenvalue è� 1
2
.

From the martingale estimating functionXn

i�1

sin(X tiÿ1
) fsin(X ti

)ÿ eÿ(è�1=2)Ä sin(X tiÿ1
)g

we obtain the very simple estimator for è:

~èn � ÿÄÿ1 ln
Xn

i�1

sin(X tiÿ1
) sin(X ti

)

 !�Xn

i�1

sin2(X tiÿ1
)

( )
ÿ 1

2
, (2:12)

which is, of course, only de®ned when the numerator is positive. We shall see later that ~èn is

de®ned with probability tending to 1 as n!1 and that it is n1=2 consistent and

asymptotically normal, but not optimal.

Example 2.3 (A generalized logistic diffusion). In many areas of application, e.g.

mathematical ®nance and turbulence, diffusion models with a marginal distribution with

log-linear tails are needed. Such a diffusion model is obtained when the drift is

b(x; è1, è2) � (è1 ÿ è2) cosh
x

2

� �
ÿ (è1 � è2) sinh

x

2

� �� �
cosh

x

2

� �
,

where è1 . 0 and è2 . 0, and the diffusion coef®cient is given by ó (x) � 2 cosh(x=2). This

diffusion is ergodic, and its invariant measure is the generalized logistic distribution with

density

B(è1 � 1, è2 � 1) e(è1�1)x (1� ex)ÿ(è1�è2�2):

Here B denotes the beta function. This distribution was studied by Barndorff-Nielsen et al.
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(1982). The model has a discrete spectrum given by Ëè1,è2
� f(n=2)(n� è1 � è2 � 1):

n � 0, 1, . . .g. The associated eigenfunctions are öi(x; è1, è2) � Pè2,è1

i (tanh(x=2)), where

Pè2,è1

i denotes the Jacobi polynomial of order i.

Example 2.4. (A stopped Bessel process). The Bessel processes solve the equation

dX t � èXÿ1
t dt � dW t: (2:13)

The state space is (0, 1). Suppose that the process is started at a point in the interval (0, 1)

and stopped when it hits unity. Let us further assume that è > 1
2
. Then the eigenfunctions are

öi(x; è) � xÿè�1=2 Jèÿ1=2(xæi(è)), i � 1, 2, . . . where Jí is a Bessel function and fæi(è):

i � 1, 2, . . .g is the sequence of positive zeros of Jèÿ1=2 (Karlin and Taylor 1981, p. 336).

The spectrum is f2æi(è)2: i � 1, 2, . . .g.

3. Derivation of the optimal estimating functions

In this section we shall investigate how to construct from k given eigenfunctions,

ö1(x; è), . . . , ök(x; è), an optimal martingale estimating function in the sense of Godambe

and Heyde (1987). After ®rst considering the general case, we shall study how the results

simplify when the eigenfunctions are polynomials. Finally, we consider the case of data-

independent weights, where completely explicit results can be given. To simplify the

exposition we assume in this section that the parameter è is real.

3.1. The general case

Let C be the space of functions È 3 R! R which are continuously differentiable in è. For a

non-negative integer k, de®ne Ãk to be the set of martingale estimating functions Gk obtained

by choosing k functions á1, . . . , ák in C and de®ning for all n > 1 and è

Gk
n(è) �

Xn

i�1

Xk

j�1

á j(X tiÿ1
; è)fö j(X ti

; è)ÿ eÿë j(è)Ä ö j(X tiÿ1
; è)g: (3:1)

Let us stress that in (3.1) the sequences ö1, . . . , ök and ë1, . . . , ëk of eigenfunctions and

associated eigenvalues are ®xed; hence Ãk is obtained when á1, . . . , ák vary in (3.1).

We are now interested in ®nding within Ãk the optimal element G�k
n (è) in the sense of

Godambe and Heyde (1987). This optimal element can be viewed as a projection in a

suitable sense of the score function onto Ãk . In our framework, its characterization is

particularly simple. Let ÐÄ(y, x; è) denote the transition density, i.e. ÐÄ(:, x; è) is the

density under Pè of XÄ given X 0 � x and de®ne ãk as the set of functions È 3 R2 ! R

such that Ãk � f
Pn

i�1 g(X ti
, X tiÿ1

; è): g 2 ãkg. Finally, let ãk(x; è) be the space of

functions R! R obtained by ®xing x and è in the elements of ãk . Then the optimal

estimating function within the class Ãk is given by G�k
n (è) �Pn

i�1 g�(X ti
, X tiÿ1

; è) where

g�(:, x; è) is the projection in L2(ÐÄ(y, x; è) dy) of (@èÐÄ=ÐÄ)(:, x; è) onto ãk(x; è). By

@è we denote partial differentiation with respect to è. For details, see Kessler (1995a).
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If we write g�(è, x, y) �Pk
j�1á
�
j (x; è)fö j(y; è)ÿ eÿë j(è)Ä ö j(x; è)g, the determination

of á� � (á�1 , . . . , á�k )T, where the superscript T denotes transposition, is an easy

consequence of this characterization. Indeed, the orthogonality property�
@èÐÄ

ÐÄ
ÿ g�

� �
g(y, x; è)ÐÄ(y, x; è) dy � 0 for all g(:, x; è) 2 ãk(x; è) (3:2)

is equivalent to the equation

Aá� � B (3:3)

with A � (ai, j)1<i, j<k where for 1 < r, s < k

ar,s(x; è) :�
�
för(y; è)ÿ eÿë r(è)Ä ör(x; è)gfös(y; è)ÿ eÿës(è)Ä ös(x; è)g

3 ÐÄ(y, x; è) dy,

and B � (b1, . . . , bk)T where for 1 < j < k

b j(x; è) :� ÿ
�
@è(ö j(y; è)ÿ eÿë j(è)Ä ö j(x; è))ÐÄ(y, x; è) dy:

Again details can be found in Kessler (1995a). Easy computations involving (2.3) simplify

the expressions of ar,s and b j and allow us to state the following proposition.

Proposition 3.1. The unique element which is optimal within Ãk in both the ®xed sample and

the asymptotic sense is

G�k
n (è) �

Xn

i�1

Xk

j�1

á�j (X tiÿ1
; è)(ö j(X ti

; è)ÿ eÿë j(è)Ä ö j(X tiÿ1
; è)), (3:4)

where the coef®cients á�1 , . . . , á�k satisfy (3.3) with

ar,s(x; è) �
�
ör(y; è)ös(y; è)ÐÄ(y, x; è) dyÿ eÿ(ë r(è)�ës(è))Ä ör(x; è)ös(x; è) (3:5)

for 1 < r, s < k, and

b j(x; è) � ÿ
�
@èö j(y; è)ÐÄ(y, x; è) dy� @è(eÿë j(è)Ä ö j(x; è)) (3:6)

for 1 < j < k.

In the case where è 2 È � Rd , the optimal estimating function is a d-dimensional vector,

the ith component of which is obtained as the projection in L2(ÐÄ(y, x; è) dy) of

(@èi
ÐÄ=ÐÄ)(:, x; è) onto the subspace ãk(x; è) de®ned previously. Thus it is determined by

solving a system similar to (3.3) with @è substituted by @èi
in (3.6).

As mentioned in the introduction, inference based on the optimal estimating function

(3.4) is invariant under data transformations. To see this note that, if u is a twice

continuously differentiable bijection, then the diffusion Yt � u(X t) has eigenfunctions
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ö j(u
ÿ1(y); è) with the same eigenvalues ë j(è), j � 0, 1, 2, . . . , as the diffusion X. This can

be proved by writing, using the ItoÃ formula, the stochastic differential equation satis®ed by

Y and checking that, with obvious notation, LY ( f � uÿ1)(y) � LX f (uÿ1(y)) for any f in

C2(R). Hence a straigtforward change of variable in the system (3.3) proves that the optimal

estimating function based on the transformed observations Yt1
� u(X t1

), . . . , Yt n
� u(X t n

)

equals that based on the original data X t1
, . . . , X t n

. This is an important statistical property

which polynomial estimating functions do not possess.

Example 3.2 (Example 2.2 continued). For the class of diffusions given by (2.11) we can ®nd

the optimal estimating functions explicitly. We illustrate this by ®nding G�1(è). The ®rst non-

trivial eigenfunction is, up to a multiplicative function of è, sin(x) with eigenvalue è� 1
2
;

so b1(x; è) � ÿÄ eÿ(è�1=2)Ä sin(x); see (3.6). Hence the only problem is the integral�
sin2(y)ÐÄ(y, x; è) dy, but the second non-trivial eigenfunction is 2(è� 1) sin2(x)ÿ 1 with

eigenvalue 2(è� 1). Therefore, using (2.4), we ®nd that

G�1(è) �
Xn

i�1

sin(X tiÿ1
)fsin(X ti

)ÿ eÿ(è�1=2)Ä sin(X tiÿ1
)g

1
2
(e2(è�1)Ä ÿ 1)=(è� 1)ÿ (eÄ ÿ 1) sin2(X tiÿ1

)
, (3:7)

where a constant has been omitted. The optimal estimating functions can, in a similar way, be

explicitly found for the diffusion in Example 2.3.

Note that, when Ä is small, we obtain the approximately optimal estimating function

~G(è) �
Xn

i�1

sin(X tiÿ1
)fsin(X ti

)ÿ eÿ(è�1=2)Ä sin(X tiÿ1
)g

cos2(X tiÿ1
)

,

which has the explicit solution

~è � ÿÄÿ1 ln
Xn

i�1

tan(X tiÿ1
)sin(X ti

)

cos(X tiÿ1
)

�Xn

i�1

tan2(X tiÿ1
)

 !
ÿ 1

2
: (3:8)

The explicit estimator ~è can, for instance, be used as a starting value for ®nding the optimal

estimator. It is also n1=2 consistent and asymptotically normal provided that è0 . 1:5.

Let us ®nish this section by a remark of a practical nature. The optimal estimating

function exhibited by Bibby and Sùrensen (1995) is as follows:

G�n (è) �
Xn

i�1

@èF

Ö
(X tiÿ1

; è)(X ti
ÿ F(X tiÿ1

; è)),

where F and Ö are the ®rst moment and second centred moment respectively of the transition

distribution. Although there are, in general, no closed expressions for F and Ö, Bibby and

Sùrensen demonstrated that a good approximation to these quantities can be obtained by

simulating a number of replicates of XÄ and using the law of large numbers. However, the

computation of @èF is more dif®cult because of problems of numerical stability. In our

situation, this problem disappears since, in the expressions for ar,s and b j (see (3.5) and

(3.6)), the only terms that we have to approximate numerically are simple integrals with
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respect to ÐÄ and not derivatives of these integrals. Therefore our estimating functions can

easily be found by simulation.

3.2. Polynomial estimating functions

For some classical diffusion processes (e.g. Example 2.1), the eigenfunctions ö j for j > 1 are

polynomials of degree j. In these cases, explicit calculation of A and B in (3.3) is possible.

It is straightforward that, if ö j(y; è) �P j
i�0c j,i(è)yi, computing A and B is equivalent to

computing the moments
�

yiÐÄ(y, x; è) dy for 1 < i < 2k. Using (2.3), it turns out that

these moments are the solutions of the linear system

eÿëi(è) öi(x; è) �
Xi

j�0

ci, j(è)

�
yjÐÄ(y, x; è) dy, i � 1, . . . , k:

Hence, we have a closed expression for the moments of the transition density, and the

expression for the optimal element G� k is explicit.

Example 3.3 (The radial Ornstein±Uhlenbeck process). The class of solutions of

dX t � (èXÿ1
t ÿ X t) dt � dW t,

where è. 0, is called the radial Ornstein±Uhlenbeck processes. The state space is the

positive real line. The process is ergodic when è > 1
2
. The eigenfunctions are

öi(x; è) � L
(èÿ1=2)
i (x2), where L

(í)
i is the ith-order Laguerre polynomial with parameter í,

and the associated eigenvalues are f2i: i � 1, 2, . . .g (Karlin and Taylor 1981, p. 333). Since

the eigenfunctions are polynomials, the optimal estimating functions can be found explicitly.

Using the results above, we ®nd that the ®rst optimal estimating function is

G�1(è) �
Xn

i�1

X 2
t i
ÿ eÿ2Ä X 2

t iÿ1
ÿ (1ÿ eÿ2Ä)(è� 1

2
)

2X 2
t iÿ1
� (è� 1

2
)(e2Ä ÿ 1)

:

Note that as in Example 3.2 we can obtain an approximately optimal estimating function for

Ä small by omitting the last term in the numerator. This approximate estimating function is

linear in è and hence has an explicit solution.

3.3. A simple estimating function

Let us ®nally consider the simple estimating function

H k
n(è) �

Xn

i�1

Xk

j�1

â j(è)fö j(X t j
; è)ÿ eÿë j(è)Ä ö j(X t jÿ1

; è)g, (3:9)

where â1, . . . , âk are continuously differentiable functions of è only. We denote by H k the

class of martingale estimating functions of this form. The choice of the `̀ best'' element of

H k is more dif®cult. Indeed, the existence of an optimal element within H k in the sense of

Godambe and Heyde is not ensured. Nevertheless, it is possible to minimize the asymptotic
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variance amongst all elements of H k , provided that we restrict attention to elements of H k

which yield a n1=2 consistent and asymptotically normal estimator (Kessler 1995a). We shall

therefore only consider ergodic diffusions here. Conditions ensuring n1=2 consistency and

asymptotic normality for ergodic diffusions are given in the next section. Let ìè denote the

invariant probability and de®ne Qè
Ä(x, y) � ìè(x)ÐÄ(y, x; è). The element H�k

n (è) �Pn
i�1 h� k(X ti

, X tiÿ1
; è) which minimizes the asymptotic variance is found (Kessler 1995a)

when h� k(:, :; è) is the projection of @èQè
Ä=Qè

Ä in L2(Qè
Ä(y, x) dy dx) onto the subspace

Ek(è) de®ned by H k � fH k
n(è) �Pn

i�1 hk(X ti
, X tiÿ1

; è), hk 2 Ek(è)g. From (2.9), we

deduce that öi(y; è)ÿ eÿëi(è)Ä öi(x; è)), i � 1, . . . , k, is an orthogonal sequence in

L2(Qè
Ä(y, x) dy dx). Thus, h� k(y, x; è) �Pk

j�1â
�
j (è)(ö j(y; è)ÿ eÿë j(è)Ä ö j(x; è)), with

â�j (è) �

�
(@èQè

Ä=Qè
Ä)(y, x)föi(y; è)ÿ eÿëi(è)Ä öi(x; è)gQè

Ä(y, x) dy dx�
(öi(y; è)ÿ eÿëi(è)Ä öi(x; è))2Qè

Ä(y, x) dy dx

� ÿ 1ÿ eÿë j(è)Ä

1ÿ eÿ2ë j(è)Ä

�
@èö j(x; è)ìè(x) dx�
ö2

j(x; è)ìè(x) dx

:

The coef®cients â�j (è) are explicit, and we have a closed expression for the element in H k

for which the asymptotic variance is minimum. Note the strong relationship of this criterion

to the asymptotic optimality criterion considered by Heyde and Gay (1989).

4. Consistency and asymptotic normality

In this section we show that the estimators obtained from the estimating equations derived in

the previous sections are consistent and asymptotically normal. We con®ne the discussion to

the case of ergodic diffusion processes.

Our framework is similar to that of Florens-Zmirou (1989) and Bibby and Sùrensen

(1995). We consider discrete observations of a process X that solves (2.1) for some

è 2 È � R, where È is open. The assumption that è is one dimensional is made only to

simplify the exposition. Let s(x; è) denote the density of the scale measure:

s(x; è) exp ÿ2

�x

0

b(y; è)

ó 2(y; è)
dy

� �
:

We shall work under the assumptions that will now be given.

Condition 4.1. The following holds for all è 2 È:�1
0

s(x; è) dx �
�0

ÿ1
s(x; è) dx � 1 and

�1
ÿ1

[s(x; è)ó 2(x; è)]ÿ1 dx � A(è) ,1:

Under Condition 4.1, X is ergodic, and with respect to the Lebesgue measure its invariant
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measure ìè has the density [A(è)s(x; è)ó 2(x; è)]ÿ1. Condition 4.1 is formulated for

diffusions whose state space is the real line. For diffusions con®ned to a smaller interval,

the conditions should be reformulated appropriately. The probability measure Qè
Ä is de®ned

as in Section 3.3. For a function g: R2 ! R, we use the notation Qè
Ä(g) � � g dQè

Ä. We

consider a general estimating function of the form (3.1) which satis®es the following

condition where è0 denotes the true value of è, and where

g j(x, y; è) � á j(x; è)fö j(y; è)ÿ eÿë j(è)Ä ö j(x; è)g, 1 < j < k: (4:1)

Condition 4.2. The following hold for all è 2 È.

(a) The functions g j(x, y; è), j � 1, . . . , k, are continuously differentiable with respect to

è for all x and y. The functions @è g j(x, y; è) are locally dominated square integrable with

respect to Qè0

Ä , and f (è0) �Pk
j�1Qè0

Ä (@è g j(è0)) 6� 0.

(b) The functions g j(x, y; è), j � 1, . . . , k, are in L2(Qè0

Ä ).

Under these assumptions the following theorem can be proved along the same lines as

Theorem 3.3. of Bibby and Sùrensen (1995). Here we have not included Condition 3.1 (c)

of Bibby and Sùrensen (1995) because Lemma 3.1. of Bibby and Sùrensen (1995) holds

without this assumption as follows from Theorem 1.1 of Billingsley (1961a) and the central

limit theorem for martingales of Billingsley (1961b).

Theorem 4.3. Under Conditions 4.1 and 4.2 an estimator è̂n, which solves the equation

Gk
n(è̂n) � 0, exists with a probability tending to one as n!1 under Pè0

. Moreover, as

n!1, è̂n ! è0 in probability under Pè0
and

n1=2(è̂n ÿ è0)! N 0,
v(è0)

f 2(è0)

� �
in distribution under Pè0

, where

v(è0) �
Xk

r�1

Xk

s�1

�
ár(x; è0)ás(x; è0)ar,s(x; è0)ìè0

(x) dx:

From Theorem 4.3 we deduce that, if the optimal estimating function within Ãk satis®es

Condition 4.2, it provides an estimator è̂�k
n which is n1=2 consistent and asymptotically

normal. Its asymptotic variance is the smallest within the class of all estimators derived

from an estimating function in Ãk . Let us brie¯y discuss the ef®ciency of the proposed

estimators. Note that, for the optimal estimating function (3.4), v(è0) � f (è0) so that the

minimal asymptotic variance within Ãk equals v(è0)ÿ1. From the de®nition of g�, we have

that v(è) � � (g�)2 dQè
Ä <

�
(@èÐ=Ð)2 dQè

Ä, where the right-hand side is the asymptotic

Fisher information. Since v(è0) is the upper bound for the asymptotic expected information

within the class considered, the maximum-likelihood estimator will always be at least as

ef®cient as any of our estimators. If the union
S1

k�1 Vk , where Vk is the space spanned by

fö1(:; è), . . . , ök(:; è)g, is dense in L2(ÐÄ(y, x; è) dy) for every x, then there exists a

sequence k n such that the asymptotic variance of the estimator è̂�k n

n is the inverse of the
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asymptotic Fisher information. For details, see Kessler (1995a). In particular in the case of

a bounded state interval, where it is well known that the sequence ö1(:; è), ö2(:; è), . . . is

complete in L2(ìè), the union
S1

k�1 Vk is dense in L2(ÐÄ(y, x; è) dy); so in this case there

exists quite generally a sequence k n such that the estimator è̂�k n

n is asymptotically ef®cient.

In the case of an in®nite state interval, the sequence ö1(:; è), ö2(:; è), . . . is also complete

in L2(ìè) when the spectrum is discrete but, in order to deduce denseness of
S1

k�1 Vk in

L2(ÐÄ(y, x; è) dy), additional conditions are needed.

Comparison of the relative ef®ciency of optimal estimators obtained from two different

classes of estimating equations usually cannot be done explicitly unless one of the classes is

included in the other, in which case the estimator obtained from the larger class is the more

ef®cient. Therefore, we cannot give general results above the relative ef®ciency of optimal

estimators based on disjoint sets of eigenfunctions. However, the ef®ciency of è̂�k
n obviously

increases with increasing k but so does the computational complexity. In most models the

ef®ciency is presumably high and increases only slowly with k, provided that k is

suf®ciently large, and a compromise between ef®ciency and computational feasibility must

be found.

Let us ®nish this section by testing the practical behaviour of some of our estimators for

the process which is the solution of (2.11). We simulated, using the Milstein scheme, 200

trajectories of this process for two values of è and computed the mean value and the

standard error of the simple estimator �èn given by (2.12), of ~è�n which solves the optimal

estimating equation (3.7), and of ~èn the estimator given by (3.8). Table 1 and Table 2

collect the results obtained for different values of Ä if the true parameter values are 1.5 and

3 respectively. For each estimator, we have reported the number of trajectories for which the

estimating equations had no solution. The mean and the standard error are computed for the

remaining trajectories.

Table 1. Comparison of the mean and standard deviation for 200 realizations of ~è�n , �èn and ~èn

for the process solving (2.11) with è � 1:5 and x0 � 0. In all cases there was a solution to the

estimating equation

~è�n �èn
~èn

Ä n Mean

Standard

deviation Mean

Standard

deviation Mean

Standard

deviation

0.1 200 1.62 0.44 1.60 0.45 1.78 2.00

500 1.55 0.27 1.55 0.29 1.59 0.49

1000 1.54 0.19 1.53 0.21 1.57 0.31

0.3 200 1.55 0.34 1.55 0.35 1.59 0.45

500 1.53 0.21 1.53 0.21 1.55 0.27

1000 1.52 0.15 1.52 0.15 1.54 0.22

0.5 200 1.54 0.38 1.54 0.38 1.53 0.53

500 1.50 0.22 1.50 0.22 1.51 0.32

1000 1.49 0.15 1.49 0.15 1.50 0.25
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Note that, by using the kind of arguments developed in Example 3.2, on the one hand, we

can, for the simple estimator �èn compute explicitly the asymptotic variance of n1=2(�èn ÿ è0):

v(è0)

f 2(è0)
� 1ÿ eÿ2(è0�1)Ä

Ä2 eÿ2(è0�1=2)Ä
� 3

è0 � 1

è0 � 2

(eÿÄ ÿ 1)

Ä2
,

and, on the other hand, we can compute numerically the optimal asymptotic variance. The

approximately optimal estimating function ~G does not satisfy Condition 4.2 (b) if the true

parameter value is less than or equal to 1.5. Nevertheless, as we see from Table 1, its

behaviour for the considered sample sizes is reasonably satisfactory. For è0 � 3, we can

explicitly compute the asymptotic variance of n1=2(~èn ÿ è0) to be

5

Ä2

1ÿ eÿ8Ä

4 eÿ7Ä
� eÿÄ ÿ 1

� �
:

Table 3 contains the asymptotic variances for the estimators ~è� and �è for the different values

of Ä, when è0 � 1:5, whereas in Table 4 the true parameter value is taken to be 3 and the

Table 2. Comparison of the mean and standard deviation for 200 realizations of ~è�n , �èn and ~èn

for the process solving (2.13) with è � 3 and x0 � 0, where N n is the number of realizations

for which there is no solution to the estimating equation

~è�n �èn
~èn

Ä n N n Mean

Standard

deviation N n Mean

Standard

deviation N n Mean

Standard

deviation

0.1 200 3 3.12 0.74 0 3.16 0.81 0 3.17 0.81

500 0 3.04 0.42 0 3.04 0.43 0 3.04 0.43

1000 0 3.04 0.30 0 3.04 0.31 0 3.05 0.30

0.3 200 3 3.16 0.62 0 3.20 0.70 0 3.18 0.74

500 0 3.08 0.47 0 3.08 0.41 0 3.08 0.47

1000 0 3.04 0.29 0 3.04 0.26 0 3.04 0.29

0.5 200 16 3.03 0.72 1 3.25 1.08 1 3.25 1.29

500 2 3.03 0.50 0 3.05 0.55 0 3.06 0.61

1000 0 3.00 0.38 0 3.00 0.38 0 3.01 0.43

Table 3. Asymptotic variances of

n1=2(~è�n ÿ è0) and n1=2(�èn ÿ è0) for the

process solving (2.13) with è0 � 1:5

Ä ~è� è̂

0.1 34.39 38.31

0.3 21.95 22.49

0.5 23.61 23.76
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asymptotic variances for the three estimators are given. Note how close �è is to being optimal,

particularly when Ä is not too small. Note also that the standard deviations found for ®nite

sample sizes by simulation are in good accordance with those given by the asymptotic

variances.

5. Eigenfunctions and martingales

The generator L of a Markov process X is de®ned by

Äÿ1fÐÄ( f )(x)ÿ f (x)g ! Lf (x) (5:1)

as Ä! 0, where ÐÄ( f )(x) � E[ f (XÄ)jX0 � x]. Often the convergence in (5.1) is taken to be

uniformly bounded in x so that the limit is bounded. When the Markov process is a diffusion,

the domain D of the generator L is then the class of bounded, twice continuously

differentiable functions with bounded derivatives. For an eigenfunction ö 2 D with

eigenvalue ë it is not dif®cult to prove, using the Markov property, that (5.1) implies that

@

@Ä
ÐÄ(ö)(x) � LÐÄ(ö)(x) � ÿëÐÄ(ö)(x),

and that hence

ÐÄ(ö)(x) � eÿëÄ ö(x),

which is (2.4). The domain D is, however, too restricted for our purpose; so we shall instead

consider the so-called extended domain D � de®ned as the class of twice continuously

differentiable functions f for which the process

Nt � f (X t)ÿ f (X0)ÿ
� t

0

Lf (X s) ds (5:2)

is a martingale. If dX t � b(X t) dt � ó (X t) dW t, it follows by ItoÃ's formula that

Nt �
� t

0

f 9(X s)ó (X s) dWs;

so a suf®cient condition that f 2 D � is

Table 4. Asymptotic variances for n1=2(~è�n ÿ è0), n1=2(�èn ÿ è0)

and n1=2(~èn ÿ èn) for the process solving (2.13) with è0 � 3

Ä ~è� �è ~è

0.1 85.37 88.05 91.03

0.3 75.34 75.59 88.73

0.5 126.21 126.26 154.66
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� t

0

E[ f 9(X s)
2ó 2(X s)] ds ,1 (5:3)

for all t . 0. Let D �� denote the class of twice continuously differentiable functions

satisfying (5.3).

Now suppose that ö is an eigenfunction with eigenvalue ë, and consider the process

Yt � eë t ö(X t). By ItoÃ's formula,

Yt � Y0 �
� t

0

eës fLö(X s)� ëö(X s)g ds�
� t

0

eës ö9(X s)ó (X s) dWs

� Y0 �
� t

0

eës ö9(X s)ó (X s) dWs:

Therefore, if ö 2 D ��, Y is a martingale, which implies (2.4). With a little more care, it can

be shown that (2.4) holds for any eigenfunction in the extended domain D �.
We shall give two simple but useful suf®cient conditions under which a function f

satis®es (5.3). First suppose that X is ergodic with invariant measure ì, and that X0 � ì.

Then the condition �
R

f 9(x)2ó 2(x)ì (dx) ,1, (5:4)

implies (5.3) and hence that Y is a martingale. Thus (5.4) implies (2.4).

Now consider a not necessarily ergodic diffusion. If ó and f 9 are bounded on the state

space of X, (5.3) is obviously satis®ed. This is the case for any twice differentiable function

f if the state space is bounded and if ó and f 9 are continuous on the closure of the state

space. A more generally useful suf®cient condition is that b and ó are of linear growth and

that f 9 is of polynomial growth. Then an application of Gronwall's lemma implies (5.3). By

means of these results, it is easy to verify that the estimating functions considered in the

examples are indeed martingales.

Acknowledgements

This work was partially supported by the EU Human Capital and Mobility programme. The

authors are grateful to Jean Jacod for helpful comments. Thanks are also due to an associate

editor for a detailed set of comments that has improved the presentation.

References

Banon, G. (1978) Non parametric identi®cation for diffusion processes. SIAM J. Control Optimization,

16, 380±395.

Barndorff-Nielsen, O.E., Kent, J. and Sùrensen, M. (1982) Normal variance-mean mixtures and z

distributions. Int. Statist. Rev., 50, 145±159.

Bibby, B.M. (1994) Optimal combination of martingale estimating functions for discretely observed

Estimating equations based on eigenfunctions 313



diffusion processes. Research Report 264, Department of Theoretical Statistics, University of

Aarhus.

Bibby, B.M. and Sùrensen, M. (1995) Martingale estimation functions for discretely observed diffusion

processes. Bernoulli, 1, 17±39.

Billingsley, P. (1961a) Statistical Inference for Markov Processes. Chicago, IL: University of Chicago.

Billingsley, P. (1961b) The Lindeberg±LeÂvy theorem for martingales. Proc. Amer. Math. Soc., 12,

788±792.

Coddington, E.A. and Levinson, N. (1955) Theory of Ordinary Differential Equations. New York:

McGraw-Hill.

Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985) A theory of the term structure of interest rates.

Econometrica, 53, 385±407.

Florens-Zmirou, D. (1989) Approximate discrete schemes for statistics of diffusion processes.

Statistics, 20, 547±557.

Godambe, V.P. and Heyde, C.C. (1987) Quasi likelihood and optimal estimation. Int. Statist. Rev., 55,

231±244.

Goel, N.S. and Richter-Dyn, N. (1974) Stochastic Models in Biology. New York: Academic Press.

Gradshteyn, I.S. and Ryzhik, I.M. (1965) Table of Integrals, Series, and Products, 4th edn. New York:

Academic Press.

Heyde, C.C. and Gay, R. (1989) On asymptotic quasi-likelihood estimation. Stochastic Processes

Applic., 31, 223±236.

Karlin, S. and Taylor, H.M. (1981) A Second Course in Stochastic Processes. Orlando, FL: Academic

Press.

Kessler, M. (1995a) Quasi-likelihood inference for a discrete Markov chain. Preprint, UniversiteÂ de

Paris VI.

Kessler, M. (1995b) Simple estimating functions for a discretely observed diffusion process. Research

Report 336, Department of Theoretical Statistics, University of Aarhus.

Pedersen, A.R. (1994) Quasi-likelihood inference for discretely observed diffusion processes. Research

Report 295, Department of Theoretical Statistics, University of Aarhus.

Pedersen, A.R. (1995a) A new approach to maximum likelihood estimation for stochastic differential

equations based on discrete observations. Scand. J. Statist., 22, 55±71.

Pedersen, A.R. (1995b) Consistency and asymptotic normality of an approximate maximum likelihood

estimator for discretely observed diffusion processes. Bernoulli, 1, 257±279.

Received December 1995 and revised November 1997

314 M. Kessler and M. Sùrensen


