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Let (X , X , ì) be a measure space, and let M(X , X , ì) denote the set of the ì-almost surely strictly

positive probability densities. It was shown by Pistone and Sempi in 1995 that the global geometry on

M(X , X , ì) can be realized by an af®ne atlas whose charts are de®ned locally by the mappings

M(X , X , ì) � U p 3 q 7! log(q=p)� K( p, q) 2 Bp, where U p is a suitable open set containing p,

K( p, q) is the Kullback±Leibler relative information and Bp is the vector space of centred and

exponentially ( p . ì)-integrable random variables. In the present paper we study the transformation of

such an atlas and the related manifold structure under basic transformations, i.e. measurable

transformation of the sample space. A generalization of the mixed parametrization method for

exponential models is also presented.
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1. Introduction

The present paper is devoted to mathematical developments connected to the so-called theory

of statistical manifolds. As general references on the subject in book form we mention Amari

(1985), Amari et al. (1987), Murray and Rice (1993) and Barndorff-Nielsen and Cox (1994).

Other relevant references for the present paper are Rao (1945, 1949), Jeffreys (1946), Dawid

(1975, 1977), Efron (1975, 1978), Madsen (1979), Amari (1982), Barndorff-Nielsen and Jupp

(1989) and Kass (1989).

In the literature on statistical manifolds, the question of ®nding a suitable functional

setting to a nonparametric extension of the geometric construction has been mentioned by

many workers (see, for example, Dawid (1975, 1977), Amari (1982) and Murray and Rice

(1993)). In those papers and books some fundamental ideas of the nonparametric theory
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have been sketched but, as far as we know, no detailed formal construction has been

published before that of Pistone and Sempi (1995).

Starting with unpublished seminars held in Lecce University by Pistone and Sempi in

1989, the following idea has been developed. The statistical object that induces the

geometry is the exponential model with its particular form of the Fisher information (Efron

1975); so the starting point has to be a nonparametric de®nition of the exponential model.

This de®nition in turn is related to the class of exponentially integrable random variables

whose natural topology is given by the notion of Orlicz space for the exponential function.

The present paper is dedicated to further developments of these ideas. Some of the results

developed here in full detail were announced by Pistone and Rogantin (1994).

The content of the paper is as follows.

Sections 2 and 3 are mainly devoted to a new presentation of the previous results of

Pistone and Rogantin (1990), Pistone and Rogantin (1994) and Pistone and Sempi (1995),

where the proofs of the basic propositions have been given in detail. Some of those proofs

rely on quite straightforward arguments from functional analysis, but nevertheless the

programme sketched above is systematically developed in these references. A few new results

are added here and also the presentation has been improved; we give a de®nition of tangent

space, show the relevance of the Kullback information and recall the notion of submanifold.

The main results of the present paper are given in Sections 6 and 7, where we give a

nonparametric version of the concept of mixed parametrization in exponential models, and

®nally the effect of space transformation on the exponential manifold. A paper by Rogantin

(1996) has given further developments in the case of ®nite sample spaces, discussing the

derivation of parameters' orthogonality for various classes of ®nite-state-space stochastic

processes.

2. The exponential manifold

The de®nition of statistical manifold can be given in the framework of the theory of

manifolds modelled on Banach spaces, as introduced for example by Lang (1995).

We consider a measure space (X , X , ì), where ì is a reference measure, and the set

M(X , X , ì) of the ì-almost surely strictly positive probability densities. We shall de®ne

on the set M(X , X , ì) a topology such that M(X , X , ì) is an Hausdorff space (i.e.

points can be separated by open sets). Then we shall construct a covering of M(X , X , ì)

with open sets U p, p 2 U p, p 2M(X , X , ì), and a corresponding family of Banach

spaces Bp, with norms i:i p, p 2M(X , X , ì), such that each density q 2 U p is

represented with respect to p by a coordinate sp(q) 2 Bp.

We shall use the notation

sp: U p ! V p � Bp, (1)

ep: V p !U p �M(X , X , ì), (2)

to denote respectively the charts, i.e. the mappings from points to coordinates, and the

patches, i.e. the mappings from coordinates to points (Figure 1).
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The idea of a chart on U p �M(X , X , ì) is an abstraction of the parametrization for a

family of probability densities (`̀ statistical model''). Below we shall see that the condition

of being a chart is actually more stringent than the condition of being a regular

parametrization. Our model is nonparametric; so the coordinate mapping sp cannot take

values in a ®nite-dimensional vector space unless the sample space has a ®nite number of

atoms.

As in differential geometry, we say that f(U p, sp): p 2M(X , X , ì)g is an atlas if all

the space is covered by its charts. If each of the change in coordinates (see Figure 1)

s p2
� e p1

: s p1
(U p1

\U p2
)! s p2

(U p1
\U p2

)

is a diffeomorphism of some regularity, the atlas is said to have that regularity. In such a case

the atlas, possibly augmented by all the compatible charts, de®nes the manifold. Here a new

chart is said to be compatible if all the corresponding changes of coordinate are regular

(Lang 1995).

In our case we shall introduce a very special manifold, such that the change of

coordinates are actually af®ne functions (i.e. they differ from a linear function by a additive

constant), but we shall keep a weaker regularity, namely the C1 regularity (differentiability

of any order) for compatible charts.

We shall denote by E p.ì[:] the expectation with respect to the probability measure p . ì
(where ( p . ì) dx � p(x)ì dx); if there is no ambiguity we shall use the notation E p[:].

p2

M

U p1

q

Bp1

V p1

u1

ep1

sp1

sp2

ep2

Bp2

u2

V p2

p1
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Figure 1. The charts and the patches of the atlas.
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2.1. Functional framework

First we de®ne the topology on M(X , X , ì) as follows. For simplicity we give only the

de®nition of convergence of sequences.

De®nition 1 (Exponential convergence). The sequence ( pn)n2N in M(X , X , ì) is e

convergent (exponentially convergent) to p if ( pn)n2N tends to p in ì probability as

n!1 and moreover the sequences ( pn=p)n2N and ( p=pn)n2N are eventually bounded in

each Lá( p), á. 1, i.e.

8á. 1 lim sup
n!1

E p

pn

p

� �á
" #

,�1, lim sup
n!1

E p

p

pn

� �á
" #

,�1:

Some properties of the topology associated with this notion of convergence have been

given by Pistone and Sempi (1995).

Now we shall introduce the Banach spaces on which the statistical manifold is modelled.

We give a de®nition that shows how they are connected with well-known statistical objects

(Barndorff-Nielsen 1978a; Letac 1992).

De®nition 2 (CrameÂr class). For each density p 2M(X , X , ì), the CrameÂr class at p is the

set of all random variables u on (X , X , ì) such that the moment generating function of u

with respect to the probability measure p . ì given by

û p(t) �
�

e tu p dì � E p[e tu], t 2 R,

is ®nite in a neighbourhood of the origin 0.

If moreoever the expectation of u is zero (the previous condition implies the existence of

a ®nite expectation), then we shall call the set the centred CrameÂr class at p.

Note that, if p 2M(X , X , ì) and p(è) is a one-dimensional exponential model,

p(è) � eèuÿø(è) p, è 2 I open real interval, 0 2 I ,

then the suf®cient statistic u belongs to the CrameÂr class at each density p(è) in the model.

In fact, for t 2 I,

û p(è)(t) � E p(è)[e
tu] � E p[e tu eèuÿø(è)] � E p[e( t�è)u]

eø(è)
� eø( t�è)

eø(è)

and E p(è)[e
tu] is ®nite for t in a neighbourhood of 0.

The following construction was presented by Pistone and Sempi (1995); we repeat it here

for ease of presentation.

Proposition 3 (A norm on the CrameÂr class). The CrameÂr class at p of De®nition 2 is a

vector space and a Banach space with the norm de®ned by

iui p � inf r . 0: E p cosh
u

r

� �
ÿ 1

� �
< 1

� �
: (3)
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The centred CrameÂr class, denoted by Bp and given by

Bp � fu 2 L1( p . ì): 0 2 dom(û p)�, E p[u] � 0g,
is a closed subspace.

Proof. It is clear that E p[e tu] ,�1 in a neighbourhood of 0 if and only if E p[eu=r] ,�1
and E p[eÿu=r] ,�1, i.e. E p[cosh(u=r)] ,�1. Moreover E p[cosh(juj=r)]! 1 if r!1.

Consequently the CrameÂr class at p is de®ned by iui p ,�1.

The Banach space property follows from general arguments on Orlicz spaces (Rao and

Ren 1991; Krasnosel'skii and Rutickii 1961). u

Note that iui p , 1 if and only if there exists a real á. 1 such that

E p[cosh(áu)ÿ 1] < 1, i.e. E p[cosh(áu)] < 2:

Note also that, if un is a sequence of random variables, then iun ÿ ui p ! u if and only if

8E. 0, E p[coshf(un ÿ u)=Eg] , 2 eventually, n!1.

Example 4. Figure 2 illustrates the construction of the norm i:i p when X � fx1, x2g and ì is

the counting measure. In such a case the space of the random variables u is R2. We consider

the convex set V p of all the vectors u � (u1, u2) 2 R2 such that

V p � f(u1, u2): fcosh(u1)ÿ 1gè� fcosh(u2)ÿ 1g(1ÿ è) < 1g,

v

u

u
u 

v
v 

Figure 2. Construction of the norm i:i p.
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where è � p(x1) and 1ÿ è � p(x2) (in Figure 2 we have assumed that è � 1
3
). For any vector

u 2 R2 this norm is the unique positive value r such that

cosh
u1

r

� �
ÿ 1

� �
è� cosh

u2

r

� �
ÿ 1

� �
(1ÿ è) � 1,

that is (u1=r, u2=r) lies on the boundary of V p.

This example shows the construction of the norm de®ned in (3) in a ®nite sample space,

where actually all norms de®ne the same topology because the vector space of random

variables has ®nite dimension. The construction that we present is really needed only when

the underlying space of random variables is in®nite dimensional.

In the previous proposition the function x 7! cosh(x)ÿ 1 is a convex function that plays

in the theory of the spaces Bp the same role as the function x 7! jxjá=á in the theory of

Lebesgue spaces Lá, á. 1. We cite Krasnosel'skii and Rutickii (1961) and Rao and Ren

(1991) as general references.

We shall use various types of such convex functions:

ö1: x 7! cosh(jxj)ÿ 1, (4)

ö2: x 7! exp(jxj)ÿ jxj ÿ 1, (5)

ö3: x 7! (1� jxj) log(1� jxj)ÿ jxj: (6)

For each of these functions it is possible to de®ne a norm as in (3); we shall denote, for

i � 1, 2, 3, the following.

(a) V öi, p the convex set fu 2 L1( p . ì): E p[öi(u)] < 1g;
(b) i:iöi , p the norm associated with öi:

iuiöi, p � inf r . 0: E p öi

u

r

� �� �
< 1

� �
;

(c) Löi ( p . ì) (or Löi ( p) if there is no ambiguity) the corresponding Banach spaces of

non-centred random variables:

Löi ( p) � fu: 9á. 0 such that E p[öi(áu)] ,�1g � fu: iuiöi, p ,�1g;
(d) L

öi

0 ( p) the corresponding space of centred random variables.

The classes of centred random variables are closed subspaces. The function ö1 is the

most important for us; above, we have denoted i:iö1, p by i:i p and L
ö1

0 by Bp. We say that

two ö functions are equivalent if the corresponding norms are equivalent, i.e. there exist

two real constants a and b such that aiuiöi
< iuiö j

< biuiöi
.

As the ö functions in (4)±(6) are strictly convex and differentiable, it is possible to

consider the inverse function [ö9]ÿ1(x) and to de®ne the conjugate function of ö as the

function ø, such that, for any y � ö9(x), ø9(y) � [ö9]ÿ1(x). This implies that xy < ö(x) �
ø(y), x, y 2 R�, with equality if and only if y � ö9(x). If ö and ø are conjugate, then

u 7! supvfE p[uv]: E p[ø(v)] < 1g is a norm equivalent to i:iö, p (Rao and Ren 1991, p. 61).
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It can be shown that ö1 and ö2 are equivalent (and the corresponding Banach spaces coincide

with the Cramer class at p) and that ö2 and ö3 are conjugate.

Conjugacy implies that the Banach spaces are in a duality relation almost in the same

way the Lebesgue spaces Lá and Lâ are in duality if áÿ1 � âÿ1 � 1. Precisely the bilinear

form

Lö( p) 3 Lø( p) 3 (u, v) 7! E p[uv] 2 R

is continuous, but in general Lö( p) and Lø( p) are not dual.

The following proposition follows immediately from the main result of Pistone and

Sempi (1995). Because of its importance, we give here a new direct proof.

Proposition 5. Let p and q be two probability densities in M(X , X , ì) connected by a one-

dimensional exponential model. Then

Lö1 ( p) � Lö1 (q):

Proof. Let r 2M(X , X , ì) be given and let u 2 Lö1 (r). Let p(t) � e tuÿø( t) r be the one-

dimensional exponential model associated with r and u, where t belongs to the real interval I

with 0 2 I . Let p(t0) � p and p(t1) � q be two densities in the given model. We can assume

that t0 , t1 because otherwise we change u with ÿu.

It is enough to show that Lö1 ( p) � Lö1 (q) because the relation that connects p and q is

symmetric.

Let w 2 Lö1 ( p) be given; we have to prove that there exists a â. 0 such that

Eq[cosh(âw)] ,�1:
We have

Eq[cosh(âw)] � Er[cosh(âw) e t1 uÿø( t1)]

� Er[cosh(âw) e t1 u]

Er[e t1 u]
:

The previous equation involves the convex function

g: (è, t) 7! Er[cosh(èw) e tu]:

We study the domain in which g is ®nite. If è � 0 the value of the function is

g(0, t) � Er[e
tu] which is ®nite for t 2 I. If t � t0 the value is

g(è, t0) � Er[cosh(èw) e t0 u] � E p[cosh(èw)]Er[e
t0 u]

and is ®nite for è in some interval ]ÿè, è[, because we have assumed that w 2 Lö1 ( p). We

chose b . t1, such that b 2 I and ã 2 ]0, è[. The function t 7! g(0, t) is ®nite in the interval

[t0, b] and the function è 7! g(è, t0) is ®nite in the interval [ÿã, ã]. Then, because of the

convexity, (è, t) 7! g(è, t) is ®nite in the triangle with vertices at the points (t0, ã), (b, 0)

and (t0, ÿã).
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We consider the straight line between the points (t0, ã) and (b, 0) and we denote by â
the value of è at the intersection point of the previous straight line and the straight line

è � t1, namely â=ã � (bÿ t1)=(bÿ t0). It follows that

Eq[cosh(âw)] Er[e
t1 u] <

t1 ÿ t0

bÿ t0

E p[cosh(ãw)] Er[e
t0 u]� bÿ t1

bÿ t0

Er[e
t0 u],

Eq[cosh(âw)] <
t1 ÿ t0

bÿ t0

E p[cosh(ãw)]
Er[e

t0 u]

Er[e t1 u]
� bÿ t1

bÿ t0

Er[e
t0 u]

[e t1 u]
,

so that Eq[cosh(âw)] ,�1. u

Note that the equality between the spaces Lö1 ( p) and Lö1 (q) holds true for each pair of

points p, q which are connected by a one-dimensional exponential model. This establishes

an equivalence relation, as we show below.

If p(t), t 2 I , is a one-dimensional exponential model connecting p and q, and r(t),

t 2 J , is a one-dimensional exponential model connecting q and r we can assume those

models to be of the form

p(t) � e tuÿø1( t) q,

r(t) � e tvÿø2( t) q,

with u, v 2 Lö1 (q). Then by convexity all the densities in the two-dimensional model

q(t1, t2) � e t1 u� t2vÿö3( t1, t2) q

are connected by a one-dimensional model; in particular p and r are connected.

De®nition 6 (x log x class). We shall denote by �Bp the Banach space of centred random

variables in Lö3 ( p . ì), i.e. the centred random variable of the so-called x log x class.

Proposition 7. A ( p . ì) integrable random variable u belongs to the x log x class �Bp if and

only if it is centred and (1� juj) log(1� juj) is ( p . ì) integrable.

Proof. If u 2 Lö3 ( p), there exists a constant á such that E p[ö3(áu)] ,�1. This implies that

E p[ö3(u)] ,�1; in fact there exists a constant k such that, for any n, ö3(2n u) , k n ö3(u)

(Rao and Ren 1991, p. 22). For any á there exists an n such that 1=á < 2n and, because ö3

is even and increasing in the positive real values, ö3(u) < ö3(2náu) < k n ö3(áu). So

E p[ö3(áu)] ,�1 implies that E p[ö3(u)] ,�1. Finally both u 2 Lö3 ( p) and the

integrability of (1� juj) log(1� juj) imply that u 2 L1( p), and the conclusion follows from

E p[u] � 0. u

Now we give some details about the Banach spaces Bp and �Bp which will be useful in

the construction of the statistical manifold.
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Proposition 8.

(a) All the elements �u in �Bp are identi®ed with an element u� of the dual space B�p of

Bp by the formula: u�(u) � E p[�uu], with u 2 Bp. In general, �Bp is identi®ed with a

proper subset of B�p. The injection of �Bp into B�p is continuous; we write

�Bp v B�p:
(b) All the elements u in Bp are identi®ed with an element u of the dual space (�Bp)� of�Bp by the formula u(�u) � E p[u �u], with �u 2 �Bp. This identi®cation is onto, i.e. Bp is

identi®ed with (�Bp)�; we write

(�Bp)� ' Bp:

(c) The following continuous injections hold true:

L10 ( p . ì) v Bp v
\
á.1

Lá
0 ( p . ì) v �Bp v B�p:

Proof. We recall some results about the Orlicz spaces; for further details see, for instance,

Rao and Ren (1991).

Let ö and ø be conjugate functions. If f 2 Lö( p) and g 2 Lø( p), then there exists a

constant k such that
� j fgj p dì < k i f iö, p i giø, p (Rao and Ren 1991, p. 58).

If u 2 Lö2 ( p) and �u 2 Lö3 ( p), then E p[u �u] < k iuiö2, p i�uiö3, p. Thus for all�u 2 Lö3 ( p) the mapping u 7! E p[u �u] is always de®ned, linear and continuous; it is

an element of Lö2 ( p)�. Similarly for all u 2 Lö2 ( p) the mapping �u 7! E p[u �u] is an

element of Lö3 ( p)�.
ö1 and ö2 are equivalent. Then, for any �u 2 Lö3 ( p), (u 7! E p[u �u]) 2 Lö1 ( p)� and for

any u 2 Lö1 ( p), (�u 7! E p[u �u]) 2 Lö3 ( p)�,
Lö3 ( p) v Lö1 ( p)� and Lö1 ( p) v Lö3 ( p)�:

Moreover, if ö is such that there exists k such that ö(2x) < kö(x), then Lö( p)� is isometric

to Lö( p) (Rao and Ren 1991, p. 111). We apply this to ö3; then

Lö1 ( p) ' Lö2 ( p) � Lö3 ( p)�:
Now we have to show that the same properties extend to the centred spaces, i.e.

�Bp v B�p and Bp ' (�Bp)�:
Let �u 2 �Bp. Then �u 2 Lö3 ( p) and there exists u� 2 Lö1 ( p)� such that u�(u) � E p[�uu],

for all u 2 Lö1 ( p); if u� is restricted to Bp, then it is an element of B�p such that

u�(u) � E p[�uu], u 2 Bp. The mapping �u! u� is continuous from �Bp to B�p because the

restriction is a contraction.

The same argument applies to show that Bp v (�Bp)�.
Now let u 2 (�Bp)�. u extends to a continuous linear operator ~u on Lö3 ( p) de®ned by

~u(�u) � u(�uÿ E p[�u]). Let u 2 Lö1 ( p) be the representation of ~u; then ~u(�u) � E p[u �u],

with �u 2 Lö3 ( p). In particular, for �u 2 �Bp, ~u(�u) � u(�u) � E p[u�u].
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Proposition 8(c) follows from the existence of constants k1, k2 and k3 such that

i:i1 > k1 i:iö1
> k2 i:iá > k3 i:iö3

:

Such inequalities depend on the different order of growth at 1 of the ö functions involved

(Rao and Ren 1991, p. 155). u

Proposition 9. The multilinear mappings (u1, . . . , un) 7! E p[u1 . . . un] with ui 2 Bp, are

continuous; in particular the moments u 7! E p[u n] are continuous.

Proof. This follows from the inclusion Bp v Ln( p); see Proposition 8(c). u

The Banach space Bp is an algebraic subspace of the Hilbert space L2
0( p), and its

topology is stronger than the induced topology; in particular the scalar product of L2
0( p) is

de®ned on it and it is continuous.

De®nition 10 (Orthogonality in Bp ). The covariance induces a continuous scalar product on

Bp de®ned as

hu, vi p � E p[uv] � cov p[u, v] for all u, v 2 Bp:

We say that u and v in Bp are orthogonal if hu, vi p � 0.

The scalar product h:, :i p extends to the usual scalar product in L2
0( p). A different

extension is possible, as is shown in the following de®nition.

De®nition 11 (Orthogonality on B�p 3 Bp ). We shall denote by h:, :i�, p the bilinear form

between the Banach space Bp and its dual Banach space B�p:

B�p 3 Bp 3 (u�, u) 7! u�(u) � hu�, ui�, p:

We say that u� 2 B�p is orthogonal to u 2 Bp if hu�, ui�, p � 0.

As h:, :i�, p is not a scalar product, being de®ned on a product of different space, the previous

de®nition is not consistent with the usual mathematical terminology. Nevertheless we suggest

using the term `̀ orthogonality'' in this case because this notion is exactly what we need to

discuss the notion of `̀ orthogonal parametrization'' in our framework; see below in Section 6.2.

We have seen in Proposition 8 that the Banach space �Bp can be identi®ed with a

subspace of the dual space B�p. Thus, if u� 2 B�p is identi®ed with �u 2 �Bp, one has

hu�, ui�, p � E p[�uu]:

2.2. Analytical prerequisites for the construction of the atlas

The patches of the atlas will be de®ned on the open ball of radius 1:

V p � fu 2 Bp: iui p , 1g,
where we have denoted iuiö1, p by iui p.
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Proposition 12. If u 2 V p and q � eu p=E p[eu] then

(a) the random variable eu is ( p . ì) integrable and q is a probability density in

M(X , X , ì) and

(b) Lö1 ( p . ì) � Lö1 (q . ì).

Proof.

(a) We remark that the condition iui p , 1 is equivalent to the existence of an á. 1 such

that E p[cosh(áu)ÿ 1] < 1, which in turn implies that E p[eu] < 4.

(b) The hypothesis implies that p and q are connected by a one-dimensional exponential

model and the conclusion follows from Proposition 5. u

De®nition 13 (Moment generating functional). The moment generating functional

G p: Lö1 ( p . ì)! R� � [0, �1]

is de®ned by

G p(u) � E p[eu]:

Proposition 14 (Properties of the moment generating functional). The moment generating

functional Gp

(a) takes the value 1 at 0; otherwise is strictly greater than 1, is convex and its proper

domain dom(G p) � fu 2 Lö1 ( p . ì): G p(u) ,1g is a convex set which contains the open

unit ball of Lö1 ( p . ì);

(b) is bounded and in®nitely FreÂchet differentiable on the open unit ball V p with differential

DnG p(u)(v1, . . . , vn) � E p[v1 . . . vn eu]:

Proof. See Pistone and Sempi (1995, Proposition 2.4). u

The previous abstract de®nition includes the usual de®nition of a (multivariate) moment

generating function. In fact, let u � (u1, . . . , un) be an n-dimensional random variable of

the Cramer class under the density p. Then for each real vector t � (t1, . . . , tn) the linear

combination
Pn

i�1 tiui belongs to the Cramer class and its multivariate moment generating

function G p(t1 . . . tn) is equal to G p(
Pn

i�1 tiui). We remark that the multivariate moments

of order r1, . . . , rn of the random variables u1, . . . , un are the value of the derivative at 0

of order r1, . . . , rn of G p in the direction u1, . . . , un:

E p[ur1

1 . . . urn

n ] � Dr1�����rn G p(0) (u�r1

1 , . . . , u�rn

n )

where u�r means u, . . . , u.

De®nition 15 (Cumulant generating functional). The cumulant generating functional

K p: Bp ! [0, �1] is de®ned by

K p(u) � log G p(u):

�r times

The exponential statistical manifold 731



We remark that we restrict the cumulant generating functional to be de®ned on centred

random variables of the CrameÂr class at p.

Proposition 16 (Cumulant). The cumulant generating functional K p has proper domain

dom(G p) \ Bp. If V p denotes the open ball of Bp of radius 1 then V p � dom(G p) \ Bp.

Moreover K p satis®es the following properties.

(a) K p is 0 at 0; otherwise is strictly positive, is convex and in®nitely FreÂchet

differentiable on V p.

(b) 8u 2 V p, q � euÿK p(u) p is a probability density in M(X , X , ì). The value of the

nth differential at u in the direction v (2 Bp) of Kp, that is the n-linear continuous form

Dn K p(u) applied to (v, . . . , v), is the nth cumulant of v under the probability density q:

Dn K p(u)vn � dn

dt n
log Eq[e tv]

����
t�0

:

(c) For v, v1 and v2 in Bp, one has

DK p(u) v � Eq[v],

D2 K p(u) (v1, v2) � Eq[v1v2]ÿ Eq[v1] Eq[v2] � covq[v1, v2]:
(7)

(d) 8u 2 V p and q � euÿK p(u) p, the random variable q=pÿ 1 belongs to �Bp and

DK p(u) v � E p

q

p
ÿ 1

� �
v

� �
, v 2 Bp:

In other words the differential of K p at u, DK p(u), is in B�p but actually is identi®ed with an

element of �Bp, denoted by =K p(u):

=K p(u) � euÿK p(u) ÿ 1 � q

p
ÿ 1:

(e) The mapping Bp 3 u 7! =K p(u) 2 �Bp is monotonic, and in particular one to one.

(f) The weak derivative of the map Bp 3 u 7! =K p(u) 2 �Bp at u applied to w 2 Bp is

given by

D(=K p(u)) w � q

p
(wÿ Eq[w]),

and it is one to one at each point.

Proof.

(a) For the ®rst point see Pistone and Sempi (1995, Proposition 2.5(a)).

(b) It is a consequence of the de®nition of K p(u) and its properties, see Proposition 14.

(c) Same proof as (b).

(d) We note that the random variable q=pÿ 1 is centred: E p[q=p]ÿ 1 � Eq[1]ÿ 1 � 0.

�n times
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To prove that q=pÿ 1 2 �Bp we show, using the Proposition 7, that q=p 2 Lö3 ( p), i.e.

E p 1� q

p

� �
log 1� q

p

� �� �
,�1:

We have

E p 1� q

p

� �
log 1� q

p

� �� �
� E p log 1� q

p

� �� �
� E p

q

p
log 1� q

p

� �� �
< E p

q

p

� �
� E p

q

p
log 1� q

p

� �� �
� 1� E p

q

p
log 1� q

p

� �� �
:

So we have to show that

E p

q

p
log 1� q

p

� �� �
,�1:

By the inequality x log(1� x) < (1� x) log�(x)� 1, for x . 0, where log�(x) �
maxflog(x), 0g, we have

E p

q

p
log 1� q

p

� �� �
< E p 1� q

p

� �
log�

q

p

� �� �
� 1

� E p log�
q

p

� �� �
� E p

q

p
log�

q

p

� �� �
� 1:

(8)

We know that

log
q

p

� �
� uÿ K p(u) 2 Lö1 ( p) v L1( p)

and also (see Proposition 12)

log
q

p

� �
2 Lö1 (q) v L1(q):

Then all terms on the right-hand side of (8) are bounded. Since v 2 Bp implies that

E p[v] � 0, the ®rst equality in (7) may be written as

DK p(u) v � E p

q

p
ÿ 1

� �
v

� �
:

By de®nition the gradient =K p(u) is an element of B�p such that

DK p(u) v � h=K p(u), vi�, p:

By comparing the two previous equations, we conclude that the gradient can be identi®ed

with q=pÿ 1 2 �Bp. By a change in notation we write =K p(u) � q=pÿ 1 2 �Bp.

(e) Note that, if u and u are in Bp and è 2 [0, 1], the following relation holds:
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E p[(=K p(u)ÿ =K p(u))(uÿ u)] � h=K p(u)ÿ =K p(u), (uÿ u)i�, p

�
��1

0

dè
d

dè
=K p((1ÿ è)u� èu), (uÿ u)

�
�, p

�
�1

0

dèD2 K p((1ÿ è)u� èu)(uÿ u, uÿ u)

�
�1

0

dè varè(uÿ u)

(9)

where varè is the variance with respect to the density pè � ep((1ÿ è)u� èu). As the

mapping è 7! D2 K p((1ÿ è)u� èu) is continuous and positive de®nite, then è 7!
varè(uÿ u) is continuous and non-negative. If =K p(u) � =K p(u), then varè(uÿ u) � 0 for

any è. This implies that uÿ u � constant and u � u, because they are p-centred random

variables.

(f) The map f : Bp 3 u 7! =K p(u) 2� Bp is weakly differentiable if, 8v 2 Bp, u 7!
E p[ f (u)v] is differentiable. We have

E p[ f (u)v] � E p[=K p(u)v] � DK p(u) v:

Now we consider the increment of =K p(u) in the direction w 2 Bp:

E p[( f (u� w)ÿ f (u))v] � DK p(u� w) vÿ DK p(u) v

� D2 K p(u)(w, v)� Rp(u, v, w),

where jRp(u, v, w)j � o(iwi p). We have shown that

D2 K p(u)(w, v) � covq[v, w] � E p

q

p
(wÿ Eq[w]) v

� �
, (10)

so that E p[D f (u)wv] � E p[(q=p)(wÿ Eq[w]) v]. To check that (q=p)(wÿ Eq[w]) is an

element of �Bp we use (10) and the properties of the norms with respect to two conjugate

functions. We want to prove that

sup
ivi p ,1

E p

q

p
(wÿ Eq[w]) v

� �
,�1:

Now covq[v, w] � D2 K p(u)(v, w) < k iviö2, p iwiö2, p because K p is twice differentiable at u.

Finally supiviö2, p<1 ivi p ,�1 because the norms i:iö2, p and i:i p are equivalent. The weak

derivative is one to one; in fact, if there exists v1 such that

q

p
(vÿ Eq[v]) � q

p
(v1 ÿ Eq[v1]),

then vÿ v1 � constant and v � v1 because they are centred random variables. u

Using the previous de®nitions and properties, it is possible to give a de®nition of the

nonparametric exponential model as follows.
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De®nition 17 (Maximal exponential model). For each p in M(X , X , ì) the maximal

exponential model at p is the statistical model

E p � feuÿK p(u) p: u 2 dom(K p)�, E p[u] � 0g:
The function

Bp � dom(K p)� 3 u 7! euÿK p(u) p 2M(X , X , ì)

is the likelihood function of the maximal exponential model; u plays the role of the `̀ model

parameter''.

Any parametric exponential model generated by p is embedded into the maximal

exponential model as follows. Let (u1, . . . , ud) be the suf®cient statistic of the parametric

exponential model, with ui 2 Bp, and let

È � è � (è1, . . . , èd) 2 Rd:
X

èiui 2 dom(K p)�
( )

: (11)

Then the parametric exponential model is

pè � e
P

èi uiÿø(è) p (12)

with ø(è) � K p(
P

èiui).

Note that the parametric exponential model is uniquely characterized by the linear

subspace spanned by (u1, . . . , ud). Note also that

@

@è j

ø(è) � DK p

X
èiui

 !
u j � E pè[u j] � E p

pè

p
u j

� �
� E p

pè

p
ÿ 1

� �
u j

� �
� E p[�uèu j],

where �uè � pè= pÿ 1 � =K p(uè); the second equality follows from Proposition 16 and the

last but one holds because the u j are p-centred random variables.

We denote

@

@è j

ø(è)

by ç j. The parameters (ç1, . . . , çd) are the mean parameters of Barndorff-Nielsen and Cox

(1994) or the mixture coordinates of Amari (1982).

2.3. The atlas

We now have all the elements for the de®nition of the atlas (see Figure 1). Let us consider

the following map de®ned on a subset V p of the proper domain of K p:

ep: V p 3 u 7! q � euÿK p(u) p 2M(X , X , ì), (13)

where K p(u) � log E p[eu] � log G p(u) is the cumulant generating functional computed at u.

The exponential statistical manifold 735



This mapping is one to one because u is centred; in fact, if u1, u2 2 V p and

eu1ÿK p(u1) � eu2ÿK p(u2), then u1 ÿ K p(u1) � u2 ÿ K p(u2), and u1 ÿ u2 is constant and this

constant has to be 0.

According to (1) and (2) we shall denote by U p the image of V p by the mapping ep and

by sp the inverse of ep on U p. Such an inverse, sp: U p ! V p, is easily computed as

sp: U p 3 q 7! log
q

p

� �
ÿ E p log

q

p

� �� �
2 V p: (14)

The functions sp, p 2M(X , X , ì), will be the coordinate mappings of our manifold in the

sense that, locally around each p 2M(X , X , ì), each q 2 U p will be `̀ parametrized'' by

its centred log-likelihood.

Let us now compute the change-in-coordinates formula; if p1 and p2 are two points in

M(X , X , ì) such that U p1
\U p2

6� Æ, then for all q in that intersection

log
p1

p2

� �
� log

p1

q

� �
� log

q

p2

� �
belongs to Lö1 ( p1) � Lö1 (q) � Lö1 ( p2). The composite transition mapping

s p2
� e p1

: s p1
(U p1

\U p2
)! s p2

(U p1
\U p2

)

simpli®es to

s p2
� e p1

(u) � u� log
p1

p2

� �
ÿ E p2

u� log
p1

p2

� �� �
, (15)

where the algebraic computations are done in the space of ì classes of measurable functions

and the expectation is well de®ned as long as U p1
\U p2

6� Æ.

Theorem 18. The collection of pairs f(U p, sp): p 2M(X , X , ì)g is an af®ne C1 atlas on

M(X , X , ì). The induced topology on sequences is equivalent to e convergence and the

transition mappings are those de®ned in (15).

Proof. This is the main result of Pistone and Sempi (1995, Theorem 3.6). u

Note that the derivative of the transition mapping de®ned in (15) is

B p1
3 u 7! uÿ E p2

[u] 2 B p2
,

and this is an isomorphism between B p1
and B p2

as topological linear spaces (Lang 1995).

This extends Proposition 12 (b).

De®nition 19 (Manifold). The exponential (statistical) manifold is the manifold de®ned by the

property in Theorem 18 on the set M(X , X , ì).

The maximal exponential model de®ned in De®nition 17 has a precise place in the

general framework, as the following theorem shows.
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Theorem 20. The maximal exponential model E p is the connected component containing p

of the exponential manifold M(X , X , ì).

Proof. See Pistone and Sempi (1995, Theorem 4.1). u

The manifold structure that we have de®ned is special; many other types of atlas have

been suggested in the literature, in particular the coordinates based on the mean parameters

of Barndorff-Nielsen and Cox (1994) and the so-called Amari embeddings described by

Amari (1982). In the in®nite-dimensional case those different geometric structures are not

equivalent to the exponential manifold, but in some restricted sense they are, because they

induce the same manifold structure on ®nite-dimensional submanifolds (i.e. parametric

statistical manifolds) (see again Amari (1982, 1985) and Murray and Rice (1993)).

3. Tangent space

A basic object of the theory of manifolds is the tangent bundle. In the case of the exponential

statistical manifold it has been remarked from the very beginning (Dawid 1975) that there is

a very natural identi®cation between the tangent vectors and the exponential one-dimensional

models around a point p. In fact each differentiable curve in M(X , X , ì), i.e. each one-

dimensional statistical model p(t), t 2 I � R, such that p(0) � p, has a tangent model of the

exponential form e tuÿK p( tu) p. This prompts the identi®cation of the tangent space with the set

of one-dimensional exponential models.

Let p1(t) and p2(t) be two regular curves such that p1(t0) � p2(t0) � p and let u1(t) and

u2(t) be the corresponding representations by a chart sq, i.e. u1(t) � sq( p1(t)) and

u2(t) � sq( p2(t)). Then the curves p1 and p2 are equivalent at p if _u1(t0) � _u2(t0). We

denote by T pM the set of equivalence classes of regular curves through p. In local

coordinates determined by the chart sq the equivalence class corresponding to p(t) may be

represented by the tangent vector to u(t) at t0, that is by _u(t0), if p(t0) � p and u(t) �
sq( p(t)). This de®nition does not depend on the chart chosen (Lang 1995).

Proposition 21 (Tangent space). Let p(t) be a regular curve in M(X , X , ì) with

p(t0) � p, and let u(t) 2 Bq be its representation by a chart sq, where t 2
ft: u(t) 2 dom(Kq)�g. Then p(t) � eu( t)ÿKq(u( t)) q.

(a) The relation between _u(t0), the tangent to u(t) at t0, and the score function of p(t)

with respect to the density p is

_u(t0)ÿ Eq[ _u(t0)] � d

dt
log

p(t)

p

� �����
t�0

:

If q � p, i.e. if the chart is centred at the same point where the log-likelihood is calculated,

we have
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_u(t0) � d

dt
log

p(t)

p

� �����
t�0

:

Then the space of the score function is a representation of the tangent space T pM.

(b) The curve

t 7! p(t)

p
ÿ 1

is in �Bp and its weak derivative at t0 is _u(t0).

(c) The score function of any one-dimensional exponential model through p, i.e.

e tuÿK p( tu) p,

at t � t0, is u and vice versa any u 2 Bp has such a corresponding one-dimensional

exponential model. Then the space of the one-dimensional exponential models is another

representation of the tangent space T pM.

Proof.

(a) We have

d

dt
log

p(t)

p

� �����
t� t0

� d

dt
fu(t)ÿ u(t0)ÿ Kq(u(t))� Kq(u(t0))g

����
t� t0

� _u(t0)ÿ E p[ _u(t0)]:

If p � q, then E p[ _u(t0)] � Eq[ _u(t0)] � 0.

(b) From Proposition 16 (c) we have

p(t)

p
ÿ 1 � =K p(u(t)):

Its weak derivative (see Proposition 16 (f)) calculated at t � t0, is

_p(t0)

p
� D=K p(u(t)) _u(t)

����
t� t0

� p(t)

p
( _u(t)ÿ E p( t)[ _u(t)])

����
t� t0

� _u(t0)

and it is in �Bp.

(c) It follows by direct computation that

d

dt
ftuÿ K p(tu)gj t� t0

� u: u

The tangent space inherits the structure of vector space and the topology from Bp.

As a scalar product is de®ned on Bp (see De®nition 10), a scalar product is de®ned on

T pM together with the de®nition of orthogonality.

Let v 2 T pM and let p(t) a regular curve whose tangent vector is v, i.e. a curve tangent

at p to p(t) � e tvÿK p( tv) p. Let j: M(X , X , ì)! R. The differential of j at p, denoted

by d pj, is a linear form on the tangent space:
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d pj(v) � d

dt
j( p(t))

����
t�0

:

If p(t) � eq(u(t)), then

d pj(v) � Dfj � eq(u(t0))g v:

3.1. Regular parametrization

Now we give a de®nition of a parametrization and we shall show an example of a

parametrization that is not a chart in our sense.

De®nition 22. Let A be an open set of the exponential statistical manifold M(X , X , ì), and

let B be a Banach space. We shall say that F: A! B is a C k parametrization of A,

k � 1, 2, . . . , 1, if F is a one-to-one, k-times continuously differentiable parameter and the

tangent mapping d p F is one to one at each p.

Note that the condition of being a C1 parametrization is weaker than the condition of

being a chart (essentially because we do not require (d p F)ÿ1 to be continuous), unless the

manifold is ®nite dimensional. In fact the regularity of the inverse mapping is not ensured

by the conditions in De®nition 22.

As an example, we consider the parameter shown in Proposition 16 based on the

likelihood: q 7! q=pÿ 1. For any u 2 V p there exists an �u 2 �Bp such that �u �
=K p(u) � q=pÿ 1. The map u 7! �u � q=pÿ 1 is one to one and �u belongs to xÿ log x

class (see Proposition 16); then this is a reasonable parametrization but it does not de®ne a

chart.

To see this, we denote by Z p the image of U p in �Bp under the mapping q 7! q=pÿ 1.

If u 7! �u � q=pÿ 1, a chart Z p would be an open set of �Bp. This is false; in fact a

base of the neighbourhood of �Bp is of the form f�u: E p[ö3(�u)] , kg while �u 2Z p

satis®es the condition �u > ÿ1 and, if the space does not have a ®nite number of atoms,�
(�u� 1) log(�u� 1) p dì,�1 does not imply that �u > ÿ1. So in the nonparametric

theory the mean parameters do not de®ne a system of charts.

Another example is the global parametrization p 7! p1=2 2 L2(ì). This case has been

discussed in more detail by Brigo and Pistone (1996).

4. Information

We now describe brie¯y how the notion of information (or entropy) is connected to the

notion of the exponential statistical manifold.

De®nition 23 (Kullback±Leibler information). Let the probability densities p and q in

M(X , X , ì) be given. If (q=p) log(q=p) is ( p . ì) integrable, then the Kullback±Leibler

relative information of q with respect to p is the number
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K(q, p) �
�

q

p
log

q

p

� �
p dì � E p

q

p
log

q

p

� �� �
� Eq log

q

p

� �� �
:

Proposition 24. Let p 2M(X , X , ì), let q 2U p and let u be the sp coordinate of q, i.e.

q � euÿK p(u) p. Let �u 2 �Bp de®ned as �u � q=pÿ 1 and let

H p(�u) � E p[(1� �u) log(1� �u)]:

Then

(a) K p(u) � K( p, q),

(b) H p(�u) � K(q, p),

(c) Eq[u] � K( p, q)� K(q, p) � K p(u)� H p(�u):

Proof. We have

(a) K( p, q) � ÿE p log
q

p

� �� �
� ÿE p[u]� K p(u) � K p(u),

(b) H p(�u) � E p[(1� �u) log(1� �u)] � E p

q

p
log

q

p

� �� �
� K(q, p),

(c) K(q, p) � Eq[uÿ K p(u)] � Eq[u]ÿ K p(u) � Eq[u]ÿ K( p, q): u

Note that the value sp(q) of the mapping sp(:) de®ned in (14) is the log-likelihood of q

with respect to p plus the Kullback±Leibler relative information K( p, q) whose value is

E p[log( p=q)]

sp(q) � log
q

p

� �
� K( p, q):

The mapping sp is connected to the maximum-likelihood estimator as follows.

Proposition 25 (Maximum expected log-likelihood). Let p 2M(X , X , ì), u 2 V p and

ep(u) � euÿK p(u) p. Let û 2 V p and q � eûÿK p(û) p.

The maximum expected (at q) log-likelihood, i.e. the maximum of the function,

V p 3 u 7! Eq log
ep(u)

p

� �� �
is obtained at the point û and

max
u

Eq log
ep(u)

p

� �� �� �
� K(q, p):

740 G. Pistone and M.P. Rogantin



Proof. We have

Eq log
ep(u)

p

� �� �
� Eq[u]ÿ K p(u):

The function u 7! Eq[u]ÿ K p(u) is concave in u. Its derivative at u in the direction v 2 Bp is

Eq[v]ÿ DK p(u) v � Eq[v]ÿ Ee p(u)[v]. Such a derivative is zero for all v if and only if

q � ep(u); then the maximum is obtained at û � sp(q) and consequently

max
u

Eq log
ep(u)

p

� �� �� �
� Eq[û]ÿ K p(û) � K(q, p): u

Proposition 26. Let u 2 Bp. Let �u and H p(�u) be as de®ned in Proposition 24.

The functions K p(u) and H p(�u) are conjugate convex functions. The relations of

conjugacy are

H p(�u) � max
u
fE p[�uu]ÿ K p(u)g,

K p(u) � max�u
fE p[�uu]ÿ H p(�u)g:

Proof. The ®rst relation follows from Proposition 24 (b) and from Proposition 25:

H p(�u) � K(q, p)

� max
u
fEq[u]ÿ K p(u)g

� max
u

E p

q

p
u

� �
ÿ K p(u)

� �
� max

u
E p

q

p
ÿ 1

� �
u

� �
ÿ K p(u)

� �
:

The last relation follows from the general theory of convex analysis (Ekeland and Temam

1974). u

The results of this section develop standard arguments on the entropy function (Kullback and

Leibler 1951; Donsker and Varadhan 1975; Amari 1985; Kullback 1997 (some 38 years ago)).

5. Submanifold

De®nition 27 (Submanifold, submodel). Let N be a subset of the exponential manifold

M(X , X , ì) and, for each density p 2 N , let V 1
p and V 2

p be closed subspaces of Bp, such

that there exist

(a) a homeomorphism (i.e. a linear invertible and bi-continuous mapping) between Bp

and the direct product V 1
p 3 V 2

p (we say that V 1
p and V 2

p are split in Bp) and
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(b) a chart on a neighbourhood W p of p:

ó p: W p ! Bp ' V 1
p 3 V 2

p,

where ó p maps W p onto the product of two open sets V 1
p 3 V 2

p (with V 1
p � V 1

p and

V 2
p � V 2

p) and maps N \W p onto V 1
p 3 f0g.

We shall say that N is a submodel or a submanifold of the exponential statistical manifold

M(X , X , ì).

A submanifold N is a manifold whose charts are the restriction of the charts ó p to N
(Figure 3).

Frequently below we shall use this particular splitting; V 1
p and V 2

p are closed subspaces

of Bp such that V 1
p \ V 2

p � f0g and Bp � V 1
p � V 2

p. Then any element u 2 Bp can be

written uniquely as u � u1 � u2, with ui 2 V i
p, i � 1, 2.

In this case N � fq � eu1ÿK p(u1) p: u1 2 V 1
p \ V pg is a submanifold, which we call

`̀ exponential submodel'' of the maximal exponential model.

5.1. Some examples of submanifolds

We discuss two relevant examples of submanifolds.

5.1.1. (m, d)-curved exponential models

We consider the parametric exponential model de®ned above in (12). Let u1, . . . , ud 2 Bp

and V 1
p � f

Pd
i�1èiui; èi 2 Rg be given. Let Pu1,:::,ud

be the orthogonal projector from Bp

(as a subspace of L2
0( p)) onto the ®nite-dimensional Hilbert space V 1

p. For each

u 2 Bp, u � Pu1,:::,ud
u� (I ÿ Pu1,:::,ud

)u. The orthogonal projector P is characterized by

p

W

N

M

Vp
1

V  p
1 3 V p

2

V p
1

V p
2

Figure 3. Submanifold: in this example the parallelepiped is V 1
p 3 V 2

p and the emphasized rectangle

is V 1
p (subset of horizontal plane).
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hu, u ji p �
P

è̂ihui, u ji p for j � 1, . . . , d and è̂ 2 È, with È as in (11). V 1
p is closed

in Bp because it is ®nite dimensional. Pu1,:::,ud
and I ÿ Pu1,:::,ud

are continuous functions

in Bp; then V 2
p � ker(Pu1,:::,ud

) is a closed subset of Bp. This implies the existence of a

splitting.

Then the d-dimensional parametric exponential model

N �
�

e
X

i

èiui ÿ ø(è) p

�
with ø(è) � K p

X
i

èiui

 !
is a submanifold of the nonparametric model M(X , X , ì). The set È, as in (11), is an open

set of Rd and è$ u �Pèiui is a C1 chart of N into È. If A is an m-dimensional

submanifold of È the corresponding m-dimensional parametric submodel S is a submanifold

of N and thus of M(X , X , ì). S is the (m, d)-curved exponential model of Barndorff-

Nielsen and Cox (1994, p. 65).

5.1.2. Conditional expectation

Let A a sub-ó-algebra of X . We consider V 1
p � L

ö1

0 (X , A, ì) and the conditional

expectation

E p[:jA]: Bp ! V 1
p:

This mapping is well de®ned; in fact any element u 2 Bp maps to an element of

V
p
1 : E p[ö1(áE p[ujA])] < E p[E p[ö1(áujA)]] � E p[ö1(áu)] (the Jensen inequality). It is

surjective (any element of V 1
p maps to itself) and continuous (Neveu 1972). The subspace V 1

p

is closed. We consider V 2
p � fu: E p[ujA] � 0g. This subspace is closed because it is the

kernel of a linear and continuous map.

V 1
p and V 2

p split in Bp because u � E p[ujA]� (uÿ E p[ujA]) is a unique decompo-

sition. Then

M(A) � fp 2M(X , X , ì): p is A measurableg
is a submanifold. In particular this applies to invariance with respect to measurable

transformation of the sample space.

6. Splitting and orthogonality

What follows is a nonparametric version of results taken from Amari (1982); we extend to

the statistical exponential manifold the method of mixed parametrization for exponential

models (Barndorff-Nielsen 1978a,b).

6.1. Splitting

Let V 1
p and V 2

p be two closed subspaces of Bp, such that V 1
p \ V 2

p � f0g and Bp �
V 1

p � V 2
p, i.e. any element u 2 Bp can be uniquely written as u � u1 � u2, with ui 2 V i

p,

i � 1, 2. We consider the linear projectors Pi: Bp ! V i
p de®ned by the splitting as Pi(u) � ui
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with i � 1, 2. The projectors are both continuous because of the Banach closed-graph

theorem (Lang 1995, p. 4).

The mixed parametrization in exponential models is based on analytical computations

that involve partial derivatives. Our next step is to describe how to compute the partial

derivatives when the two components are not Cartesian components, but the two projections

induced by a splitting. Such an extension is straightforward; nevertheless it is useful to have

precise notation for the nonparametric case.

We consider the annihilating subspaces (V 1
p)0 and (V 2

p)0 of B�p, and 0(V 1
p) and 0(V 2

p) of�Bp de®ned by

(V i
p)0 � fu� 2 B�p: hu�, u ji�, p � 0, 8u j 2 V j

p, j 6� ig,
0(V i

p) � f�u 2 �Bp: E p[�uu j] � 0, 8u j 2 V j
p, j 6� ig,

with i, j 2 f1, 2g. Such spaces can be considered the `̀ orthogonal'' spaces to the spaces of

the splitting. This means, for example, that, if �u 2 0(V 2
p) \ L2

0( p), then �u belongs to (V 1
p)?

in the Hilbert sense. Note that the numbering is such that sup-1 is `̀ orthogonal'' to sup-2 and

vice versa for consistency with the natural L2 notation.

The following poposition shows that the annihilating subspaces split the dual space and

gives a characterization of the dual projections.

Proposition 28. (V 1
p)0 and (V 2

p)0 split in B�p and any element of B�p can be written as

u� � u�1 � u�2 , with u�i 2 (V i
p)0, i � 1, 2. If v 2 Bp, v � v1 � v2, vi 2 V i

p, then u�i (v) �
u� � Pi(v); so u�i � u� � Pi, for i � 1, 2.

Proof. This follows from the following properties of the subspaces.

(a) (V 1
p)0 and (V 2

p)0 are closed in B�p; in fact, if u j is ®xed in V j
p, then the space

fu� 2 B�p: hu�, u ji�, p � 0g is closed because it is the kernel of a continuous map, and

(V i
p)0, i 6� j, is the intersection of such closed subsets.

(b) (V 1
p)0 \ (V 2

p)0 � f0g; in fact, if u� 2 (V 1
p)0 \ (V 2

p)0, then, for any v � v1 � v2 2 Bp,

hu�, v1i�, p � 0 and hu�, v2i�, p � 0; so u� � 0 because the bilinear form of the duality is

separating.

(c) B�p � (V 1
p)0 � (V 2

p)0; in fact, if u� 2 B�p, then u� � u� � P1 � u� � P2; then, if

v 2 Bp, v � v1 � v2, we have u�(v) � u� � P1(v)� u� � P2(v) � u�(v1)� u�(v2) and u�i
(with u�i � u�(Pi)) 2 (V i

p)0. The last assertion follows from the de®nition of (V i
p)0; in fact,

if v j 2 V j
p and i 6� j, then

hu�i , v ji�, p � u�i (v j) � u� � Pi(v j) � u�(0) � 0: u

Note that properties (a) and (b) hold also for 0(V 1
p) and 0(V 2

p).

6.1.1. Partial derivatives of Kp

Given a splitting of B�p, we now look for a characterization of u�1 and u�2 for those elements
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u� of B�p (with u� � DK p(u)) identi®ed with an element �u of �Bp such that �u � =K p(u)

(see Proposition 8 (a) and Proposition 16 (c)).

If �u � =K p(u) 2 �Bp is identi®ed with u� � DK p(u) 2 B�p, v � v1 � v2 2 Bp and

u� � u�1 � u�2 2 B�p, then

u�i (v) � u�(vi) � DK p(u)vi � E p[=K p(u) vi], i � 1, 2: (16)

For i � 1, 2 we de®ne the two partial derivative of K p(u) in the direction v as follows:

@ i K p(u) v � @

@ t
K p(u� Pi(tv)) t�0 � DK p(u) Pi(v) � DK p(u) vi � E p[=K p(u) vi]: (17)

Note that @ i K p(u) is an extension to Bp of the partial derivative of the function

(u1, u2) 7! K p(u1, u2) � K p(u1 � u2) de®ned on V 1
p 3 V 2

p; such a partial derivative takes

the value 0 on V j
p, with i 6� j and i, j 2 f1, 2g.

By (16) and (17), we have that @ i K p(u) � u�i . In general, this element of the dual space

will not be in �Bp, even if the gradient �u � =K p(u) of K p is; in the following we shall

study special cases where such inclusion takes place; see Propositions 35 and 37 below.

The problem of ®nding general conditions which ensure that u�i 2 B�p may be identi®ed

with an element of �Bp remains open.

6.2. Orthogonality and mean parameters

In this section we show how to extend the notion of the Fisher information matrix and the

corresponding notion of orthogonality (see, for example, Barndorff-Nielsen and Cox (1994))

to the exponential statistical manifold.

We assume that there exists a splitting V 1
p, V 2

p of Bp. Let q � euÿK p(u) p 2U p be given.

From the remark immediately after the proof of Theorem 18 it is seen that the derivative of

the transition mapping, i.e.

Bp 3 v 7! ~v � vÿ Eq[v] 2 Bq

is a top-linear isomorphism (Lang 1995, Chapter 3). It follows also directly from Proposition

5. Here and in the following the ~v and the v differ only by a constant. The subspaces V 1
q and

V 2
q de®ned as

V i
q � f~vi � vi ÿ Eq[vi]: vi 2 V i

pg, i � 1, 2,

split in Bq. In such a case, for all w1, w2 2 Bp and ~wi � wi ÿ Eq[wi], i � 1, 2, by Proposition

16 (b), we have

D2 K p(u)(w1, w2) � covq[w1, w2]

� Eq[(w1 ÿ Eq[w1])(w2 ÿ Eq[w2])]

� h~w1, ~w2iq:
(18)

As in the previous section the cumulant generating functional K p can be considered as a

function of two variables:
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K p(:, :): V 1
p 3 V 2

p 3 (w1, w2) 7! K p(w1, w2) � K p(w1 � w2):

We can take partial derivatives that we shall denote by @1, @2, @11, @12, @21, @22 by

composing with the relevant projections; see (17).

De®nition 29 (Fisher information operator). The value at q � ep(u) of the Hessian linear

operator from Bp to B�p of K p at u will be denoted by I( p, q):

hI( p, q)w, vi�, p � D2 K p(u)(w, v) with w, v 2 Bp:

and it is called the Fisher information operator.

Given a splitting of Bp, if v � v1 � v2 and w � w1 � w2, we consider the partitioned

operators I ij, with i, j 2 f1, 2g, restricted from V j
p to (V k

p)�, k 6� i, and such that

hI ij( p, q)w j, vii�, p � hI( p, q)w j, vii�, p:

In matrix form,

I( p, q) � I11( p, q) I12( p, q)

I21( p, q) I22( p, q)

� �
: Bp ' V 1

p 3 V 2
p ! (V 1

p)� 3 (V 2
p)� ' B�p:

From (18) we get, for ~w � wÿ Eq[w], ~v � vÿ Eq[v],

covq[w, v] � h~w, ~viq � hI( p, q)w, vi�, p:

We now consider the problem of ®nding an orthogonal projection of Bq onto V 1
q.

The space Bq is a pre-Hilbert space for the scalar product h:, :iq as in De®nition 10, i.e.

the space is in general not complete under the norm induced by the scalar product. The

existence of the orthogonal projection of w 2 Bq onto V 1
q is not ensured but, if the

projection wj1 exists, then it is unique; moreover, given a splitting such that w � w1 � w2,

then w2j1 de®ned as

w2j1 � wj1 ÿ w1

is the orthogonal projection of w2 onto V 1
q.

The following proposition shows how to characterize w2j1 with the partitioned Fisher

information operator.

Proposition 30. If w � w1 � w2 and ~wi � wi ÿ Eq[wi], for i � 1, 2, then ~w � ~w1 � ~w2. If

there exists w2j1 2 V 1
p such that the normal equation

I11( p, q)w2j1 � I12( p, q)w2 (19)

is satis®ed, then ~w2j1 � w2j1 ÿ Eq[w2j1] is the orthogonal projection of ~w2 2 V 2
q onto V 1

q.

Proof. If (19) holds true, then for any w1 2 V 1
p we have, from (18) and using the Fisher

information operator,
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h~w2 ÿ ~w2j1, ~w1iq � h~w2, ~w1iq ÿ h~w2j1, ~w1iq
� hI12( p, q)w2, w1i�, p ÿ hI11( p, q)w2j1, w1i�, p

� 0:

This ends the proof. u

De®nition 31. Let B1, B2 be Banach spaces, and let F be a C k parametrization of A, an

open subset of M(X , X , ì), on B1 3 B2:

A 3 q 7! F(q) � (F1(q), F2(q)) 2 B1 3 B2:

We consider the pair of regular curves

]a, b[ 3 t 7! qi(t) 2 A, i � 1, 2,

such that 0 2 ]a, b[ and

q1(0) � q2(0) � q and Fi(q j(t)) � constant, i 6� j, t 2 ]a, b[: (20)

We shall say that the two parameters F1 and F2 are orthogonal at q 2 A if each such pair of

curves is orthogonal at q, i.e. _q1(0) is orthogonal to _q2(0). If this is true for all q 2 A, then

we shall say that the two parameters are orthogonal.

Theorem 32 (Mixed parametrization). Given a splitting V 1
p, V 2

p of Bp, the mapping

F: U p 3 q 7! (ç1, u2) 2 (V 1
p)� 3 V 2

p

with q � euÿK p(u) p, u � u1 � u2, ui 2 V i
p, i � 1, 2, and

ç1 � @1 K p(u)

is an orthogonal C1 parametrization of U p.

Note that, from (17) and (7),

ç1(v) � hç1, vi�, p � DK p(u) P1(v) � DK p(u) v1 � Eq[v1];

so the present parametrization will be called mixed parametrization, as in the parametric

case (Barndorff-Nielsen and Cox 1989; 1994, p. 62).

Proof. First we show that the mapping q � euÿK p(u) p 7! (@1 K p(u), u2) is one to one. In (9),

if u � u1 � u2 and u2 � u2, then uÿ u equals u1 ÿ u1 and, denoting eèuÿK p(èu) p by pè, we

have
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�1

0

dè var pè(uÿ u) � fDK p(u)ÿ DK p(u)g(u1 ÿ u1)

� f@1 K p(u)ÿ @1 K p(u)g(uÿ u)

� hç1 ÿ ç1, uÿ ui�, p:

If @1 K p(u) � @1 K p(u) and u2 � u2, then uÿ u � constant and u1 � u1, because u and u

are centred random variables.

Let u(i), i � 1, 2, be the representation in the chart sp of the regular curves through q in

De®nition 31, corresponding to the mixed parameter (ç1, u2):

qi(t) � eu(i)( t)ÿK p(u(i)( t)) p, i � 1, 2:

Because of the second condition of (20) the ®rst curve leaves the second parameter constant,

u
(1)
2 (t) � u2, and the second curve leaves the ®rst parameter constant, i.e., for any w 2 Bp,

@1 K p(u(2)(t))w � constant. If we take the derivative of the last equation with respect to t we

get

D2 K p(u(2)(t))(P1(w), _u(2)(t)) � 0: (21)

The condition on the ®rst curve can be written as P2(u(1)(t)) � u2 and derivation gives

P2( _u(1)(t)) � 0. Consequently, _u(1)(t) � P1( _u(1)(t)) and substituting w in (21) with _u(1)(t) we

get

D2 K p(u(2)(t))( _u(1)(t), _u(2)(t)) � 0:

We denote by ~u(i)(t) the coordinate of qi(t) with respect to the chart sq:

~u(i)(t) � u(i)(t)ÿ u(i)(0)ÿ Eq[u(i)(t)ÿ u(i)(0)];

then ~_u(i)(t) � _u(i)(t)ÿ Eq[ _u(i)(t)]. If t � 0, it follows from (17) and De®nition 29 that

h~_u(1)(0), ~_u(2)(0)iq � hI( p, q) _u(1)(0), _u(2)(0)i�, p

� D2 K p(u(2)(0))( _u(1)(0), _u(2)(0))

� 0:

So q1(t) and q2(t) are orthogonal at q. u

7. Transformation of the sample space

The problem that we consider in this section is the action of a transformation of the sample

space on the manifold structure. Let us ®rst introduce some notation. Let a measurable

mapping on the sample space be given:
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j: (X , X , ì)! (Y , Y , í), (22)

i.e.

j: X ! Y , jÿ1: Y ! X , í � ì � jÿ1:

If p 2M(X , X , ì), then the image under j of the probability measure p . ì is

characterized by

( p . ì) � jÿ1(B) �
�
jÿ1(B)

p dì �
�
jÿ1(B)

Eì[ pjjÿ1(Y )] dì, B 2 Y :

By the Doob lemma,

Eì[ pjjÿ1(Y )] � p̂ � j, (23)

where p̂ is de®ned up to sets of í-measure 0. We shall write p̂ � Eí[ pjj], so that

( p . ì) � jÿ1(B) �
�
jÿ1(B)

p̂ � j dì �
�

B

Eí[ pjj] dí, B 2 Y ,

and the sample space transformation j induces a transformation ĵ on M(X , X , ì) given by

ĵ: M(X , X , ì) 3 p 7! p̂ � Eí[ pjj] 2M(Y , Y , í):

7.1. Transformation

The basic result about the kind of smoothness of the mapping ĵ: p 7! p̂ that we are able to

prove is shown by the following Proposition 33. We refer to the book by Lang (1995) for an

introduction to the basic notions regarding the differentiability and regularity of mappings

between differentiable manifolds. In particular we shall mention the notion of submersion.

This notion is connected with the stability of the rank of a mapping. Note that there is misuse

of the language because the derivative mapping of the transformation is a linear continuous

mapping between the tangent spaces, but we are able to prove the continuous differentiability

in a weaker sense only.

The given regularity results are not connected in any way with the regularity of the

mapping j itself, nor with any algebraic or topological property of the spaces X or Y. The

possible relations between the differentiable structure of the exponential statistical manifold

and the regularity of the densities themselves are not dealt with at all in the present paper

and suggest different research work. A special ad hoc condition is introduced in (27) to

prove the Gateaux regularity of the mapping between the exponential statistical manifolds.

We do not discuss examples of application here. We just mention the fact that this condition

is easily shown to be true in trivial cases, such as constant or injective transformation, or Y

with a ®nite number of atoms.

Differentiability of higher order could be proved under the analogous conditions. We

shall not discuss this topic further as we are not going to use it.
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Proposition 33 (Sample space transformation). Let us consider a space transformation j as

in (22) and let

ĵ: M(X , X , ì) 3 p 7! ĵ( p) � p̂ 2M(Y , Y , í)

denote the action of j on the exponential statistical manifolds. Then we have the following.

(a) ĵ is onto and it is injective if and only if the mapping j is ì-almost surely injective,

i.e. it generates the ó-algebra X up to ì-null sets.

(b) The coordinate form

ĵ p � s p̂ � ĵ � ep, p̂ � ĵ( p),

of the mapping ĵ around the point p is given by

ĵ p(u) � K p̂(ujj)ÿ E p̂[K p̂(ujj)], (24)

where

K p̂(ujj) � log E p̂[e ujj] (25)

in a neighbourhood of 0. Such a mapping is continuous from an open neighbourhood of 0

of Bp to B p̂; so the mapping ĵ is of class C0 from the manifold M(X , X , ì) to the

manifold M(Y , Y , í). Moreover for all á > 1 the mapping ĵ p is continuously differentiable

as a mapping in Lá(Y , Y , p̂ . í) and its derivative at u 2 V p in the direction v 2 Bp is

given by

Dĵ p(u)v � Eq̂[vjj]ÿ E p̂[Eq̂][vjj]], q � ep(u): (26)

(c) The derivative mapping in (26) is a linear continuous operator from Bp to B p̂. If

moreover u 2 Bp is such that, for all á > 1,

E p̂[euÿE p̂[ujj]jj] 2 Lá(Y , Y , p̂ . í), (27)

then the mapping ĵ p is Gateaux differentiable from Bp to B p̂ in the direction u.

(d) u 7! Dĵ p(u) is surjective and its kernel splits.

Proof.

(a) The surjectivity follows from the condition formula (23); in fact for each density

~p 2M(Y , Y , í), the density ~p � j in M(X , X , ì) and it is such that ĵ(~p � j) � ~p. If

jÿ1(Y ) � X ì-almost surely, then using (23)

p̂ � j � Eì[ pjjÿ1(Y )] � p:

If ĵ( p1) � ĵ( p2) � p̂, then p1 � p2 � p̂ � j. On the other hand, if jÿ1(Y ) � X is a proper

sub-ó-algebra, then there exists a density p which is not jÿ1(Y ) measurable, so that p and

p̂ � j are different and have the same image p̂.

(b) Let us compute the coordinate form of the mapping ĵ. Consider a density p, the

chart domain U p, and let q be a density representable in such a chart, q � euÿK p(u) p,

where iui p , 1. Then ĵ(q) � q̂ is given by
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q̂ � j � Eì[euÿK p(u) pjjÿ1(Y )]:

Now we compute the likelihood with respect to p̂:

q̂

p̂

� �
� j � q̂ � j

p̂ � j

� Eì[euÿK p(u) pjjÿ1(Y )]

Eì[ pjjÿ1(Y )]

� E p[euÿK p(u)jjÿ1(Y )]

� eÿK p(u) E p[eujjÿ1(Y )]:

The previous formula simpli®es to

q̂

p̂
� eÿK p(u) E p̂[eujj],

and we can write

q̂ � ĵ(q) � ĵ � ep(u) � eÿK p(u) E p̂[eujj] p̂:

We have to ®nd the coordinates of q̂ with respect to the chart on U p̂. If q̂ 2 U p̂, then

û � s p̂(q̂) � log
q̂

p̂

� �
ÿ E p̂ log

q̂

p̂

� �� �
� log E p̂[eujj]ÿ E p̂[log E p̂[eujj]]: (28)

Using the notation in (25), we get (24).

We shall show that û in (28) actually belongs to U p̂ if u belongs to a suitable

neighbourhood of zero. We start by showing that the mapping

V p 3 u 7! K p̂(ujj) 2 Lö1 ( p̂ . í) (29)

is de®ned and norm decreasing. In fact, using the de®nition of norm in (3), we take á such

that áiui p , 1 and á � 1=r . 1. From the convexity of the function

f (x) � 1
2
(xá � xÿá)

for á. 1, and the Jensen inequality, it follows that the norm

i K p̂(ujj)i p̂ � ilog E p̂[eujj]i p̂

can be bounded above. In fact,

cosh(á log E p̂[eujj])ÿ 1 � 1
2
(E p̂[eujj]á � E p̂[eujj]ÿá)ÿ 1

< E p̂[cosh(áu)ÿ 1jj]

and, taking the expected values, as 1 . 1=á � r . iui p,

E p̂[cosh(á log E p̂[eujj])ÿ 1] < E p[cosh(áu)ÿ 1] < 1: (30)
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As iui p , 1 and from (30), it follows that

i K p̂(ujj)i p̂ < iui p:

As the expectation is a contraction operator on the space of Lö1 ( p̂ . í), then û in (28) belongs

to the domain U p̂ of the chart at p̂ for u in a suitable neighbourhood of p.

To prove the continuity of ĵ p, consider the difference of the values of the function

K p̂(:jj) de®ned in (25) at two points u and v of the domain of ĵ p:

K p̂(vjj)ÿ K p̂(ujj) � log E p̂[evjj]ÿ log E p̂[eujj]

� log
E p̂[evjj]

E p̂[eujj]

 !

� log Eq̂[evÿujj],

where q � ep(u). The norm-decreasing property shown above, together with the equivalence

of Bq̂ and B p̂.í (see Proposition 5), now implies the continuity of K p̂(:jj) and in turn the

continuity of ĵ p. Finally ĵ is continuous because its chart representation is continuous.

For the differentiability the same argument as above shows that it is enough to show the

differentiability of the mapping u 7! K p̂(ujj) de®ned in (25).

Let us check ®rst the directional derivative. For u, v 2 Bp, u 2 V p, q � euÿK p(u) ì,

q̂ � ĵ(q), and t! 0, we want R(u, v, t) to go to 0, where

R(u, v, t) � tÿ1(K p̂(u� tvjj)ÿ K p̂(ujj))ÿ Eq̂[vjj]

� tÿ1 Kq̂(tujj)ÿ Eq̂[vjj]

� tÿ1 Kq̂(t(vÿ Eq̂[vjj])jj):

From the concavity of the log function we get

R(u, v, t) � tÿ1 log Eq̂[e t(vÿEq̂[vjj])jj]

> tÿ1Eq̂[log e t(vÿEq̂:í[vjj])jj]

� Eq̂[vÿ Eq̂[vjj]jj]

� 0:

We use now a classical argument from Hardy et al. (1952). When t decreases to 0, the

function

t 7! Eq̂[e t(vÿEq̂[vjj])jj]1= t

is decreasing and the same is true for t 7! R(u, v, t). From the inequality log x < xÿ 1 we

get
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R(u, v, t) < tÿ1(Eq̂[e t(vÿEq̂[vjj])jj]ÿ 1)

� Eq̂

e t(vÿEq̂:í[vjj]) ÿ 1

t

� �����j
" #

:
(31)

The right-hand side of (31) goes to 0 as t goes to 0, and it is eventually bounded in all Lá.

The same is true for negative t, as can be shown by changing v to ÿv. This and the addition

of the expected value show directional (Gateaux) differentiability at any point of the domain

of ĵ p and the form of the derivative.

Finally we consider the continuity of the derivative. We consider the difference

Eq̂[vjj]ÿ E p̂[vjj] � E p̂[v(euÿK p̂:í(ujj) ÿ 1)jj]:

The Lá norm of this difference is bounded by the Lá norm of

v(euÿK p(ujjÿ1(Y )) ÿ 1),

where K p(ujjÿ1(Y )) � log E p[eujjÿ1(Y )]. Now

iveuÿK p(ujjÿ1(Y )) iáLá( p) � E p[jvjá eá(uÿK p(ujjÿ1(Y )))]

< E p[jvj2á]1=2 E p[e2á(uÿK p(ujjÿ1(Y )))]1=2:

(32)

However, K p(:jjÿ1(Y )) is a contraction; then on the open set of V p where

2ái(uÿ K p(ujjÿ1(Y ))i p , 1 the second factor of (32) is bounded by 2. The ®rst factor

is bounded by a constant times iviáp.

(c) The linear mapping

v 7! Eq̂:í[vjj]

is a contraction from Lö1 (q) to Lö1 (q̂), because it is a conditional expectation. Then it is

continuous from Bp to B p̂ because of the equivalence of the B spaces.

Assume now the condition (27). Then, for all á. 1,

cosh(áR(u, v, t)ÿ 1) � 1
2
(Eq̂:í[e t(vÿEq̂[vjj])jj]á= t � Eq̂[e t(vÿEq̂[vjj])jj]ÿá= t)ÿ 1:

As t decreases to 0, this quantity has been shown to decrease to zero. If the expected value at

t � 1 is ®nite, then the bounded convergence theorem implies the convergence to zero of

expected values. This is precisely what is implied by the condition (27).

(d) We have shown that the derivative of the local coordinate form of the transformation

ĵ p at u 2 V p in the direction v 2 Bp is given by (26). This linear mapping in surjective; in

fact, for each v̂ 2 B p̂ we have v � v̂ � j 2 Bp and
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Dĵ p(u) v � Dĵ p(u) v

� Eq̂:í[v̂ � jjj]ÿ E p̂[Eq̂:í[v̂ � jjj]]

� v̂ÿ E p[v]

� v̂:

Let us now study the kernel of Dĵ p(u). This linear mapping can be written as

Dĵ p(u) � C � E(u), where

E � Eq̂[:jj]: Bp ! Lö1 ( p̂ . í)

and

C: Lö1 ( p̂ . í) 3 ŵ 7! ŵÿ E p̂[ŵ]:

The kernel of C is the set of constant random variables in Lö1 ( p̂ . í). The constant elements

v 2 Bp, such that this constant is 0, and we have shown that

ker Dĵ p(u) � fv 2 Bp: E p[vjjÿ1(Y )] � 0g:
As we have shown in the previous paragraphs (see the second example of submanifold in

Section 5.1), the kernel of the conditional expectation splits. u

Remark 34. If the mapping ĵ is of class C n from M(X , X , ì) to M(Y , Y , í), n > 1, then

the previous splitting property implies that this mapping is a submersion, and, for all

p̂ 2M(Y , Y , í), ĵÿ1(q̂) is a submanifold of M(X , X , ì) (Lang 1995, p. 25). This general

result cannot be applied directly, because we have not proved in general the C1 regularity.

Nevertheless it can be applied to special submanifolds. If we assume that N is a submanifold

of M(X , X , ì) such that the restriction of ĵ to N is C1, and the splitting property holds on

the submanifold, then the splitting result implies that ĵÿ1(q̂) \N is a submanifold of

M(X , X , ì).

The following sections show a different direct approach to the differential structure of

ĵÿ1(q̂), based on the idea of regular parametrization.

7.2. Bivariate densities with one marginal given

Let us assume in the remaining part of this section that the sample space (X , X , ì) is a

product space X � Y 3 Z, X � Y 
Z, ì � í
 ð. Let us denote by j1: Y 3 Z ! Y and

j2: Y 3 Z ! Z the two marginal mappings.

Proposition 35 (One marginal given).

(a) Let p1 � ĵ1( p) be given. For each q 2 U p, q � euÿK p(u) p, let q1 � ĵ1(q). Then we

have the following.

(i) The mapping U p 3 q 7! q1= p1 ÿ 1 2 �B p1
is C1 from M(X , X , ì) to B�p1

.
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(ii) The mapping

U p 3 q 7! q1

p1

ÿ 1, uÿ E p[ujjÿ1
1 (Y )]

� �
2 � B p1

3 ker E p[:jjÿ1
1 (Y )]

is an orthogonal parametrization of U p on B�p1
3 ker E p[:jjÿ1

1 (Y )].

(b) The set of all densities whose ®rst marginal is p1, i.e.

N p1
� fp 2M(X , X , ì): ĵ1( p) � p1g,

has a C1 parametrization on U p given by

N p1
3 p 7! uÿ E p[ujjÿ1

1 (Y )] 2 ker E p[:jjÿ1
1 (Y )]:

Proof.

(a) It is a particular case of Proposition 32 based on the splitting

Bp 3 u$ E p[ujjÿ1
1 (Y )]� (uÿ E p[ujjÿ1

1 (Y )]):

To identify the ®rst component ç1 of the orthogonal parametrization we compute, as in

Proposition 32, the partial derivative with respect to the ®rst component of the splitting. We

have

hç1, vi�, p � @1 K p(u)v

� DK p(u) P1(v)

� DK p(u) E p[vjjÿ1
1 (Y )]

� Eq[E p[vjjÿ1
1 (Y )]]

� Eq[E p1
[vjjÿ1

1 (Y )] � j1]

� Eq1
[E p1

[vjj1]]

� E p1

q1

p1

E p1
[vjj1]

� �
� E p

q1

p1

� j1E p[vjjÿ1
1 (Y )]

� �
� E p

q1

p1

� j1 v

� �
� E p

q1

p1

ÿ 1

� �
� j1 v

� �
:

We have characterized ç1 as (q1=p1 ÿ 1) � j1.

(b) q 2 N p1
\U p if and only if q1=p1 ÿ 1 � 0. u

Note that there is a one-to-one mapping between the bivariate densities with a given
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marginal and the set of conditional densities, i.e. the Bayes formula. This induces a

parametrization on the set of the corresponding conditional densities fp= p1: p 2 N p1
g.

7.3. Bivariate densities with two given marginals

De®nition 36 (FreÂchet class). Using the previous notation, the set of all densities whose

marginals are given, i.e.

N p1 p2
� fp 2M(X , X , ì): ĵi( p) � pi, i � 1, 2g (33)

is called the FreÂchet class with marginals p1, p2.

The following proposition shows that each FreÂchet class has a regular parametrization

and gives some details of its structure.

Proposition 37 (FreÂchet manifold). Let two marginal densities p1, p2 be given: we consider

the FreÂchet class N p1 p2
as in (33).

(a) Let p � p1 p2 be the product density, and let u 2 Bp be given. The formulae

u1 �
�

up2 dð,

u2 �
�

up1 dí,

u12 � uÿ u1 ÿ u2,

de®ne a splitting of Bp into the spaces (B p1
3 B p2

) and B12
p , where

B12
p � w 2 Bp:

�
wp2 dð �

�
wp1 dí � 0

� �
:

(b) The mapping

U p 3 q 7! q1

p1

ÿ 1,
q2

p2

ÿ 1

� �
, u12

� �
2 (�B p1

3 �B p2
) 3 B12

p (34)

is an orthogonal parametrization of U p on (B�p1
3 B�p2

) 3 B12
p .

(c) N p1 p2
\U p has a C1 parametrization given by q 7! u12 2 B12

p .

Proof. It is an application of the Proposition 32 based on the following projections:

Bp 3 u 7!
��

u(:, z) p2(z) dð dz,

�
u(y, :) p1(y)í dy, uÿ

�
u(:, z) p2(z)ð dz

�
�

u(y, :) p1(y)í dy

�
: u

Note that the term u12 has the character of an interaction term.
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7.4. An example

Rogantin (1996) developed in detail the application of the previous result to the case of ®nite

spaces and to Markov chains. In the present paper we give a very simple example aimed at

showing how each of the abstract results in the previous propositions correspond to the usual

objects of the statistical analysis of statistical dependence (Cox and Reid 1987).

Let us consider the sample space f0, 1g2; let us take as a reference measure the uniform

distribution, that is ìij � 1
4

for i, j 2 f0, 1g, and consider a neighbourhood of the unit

density, i.e. pij � 1 for i, j 2 f0, 1g. The sp coordinate of the generic density qij, with

i, j 2 f0, 1g, is given in matrix form by

u �
log q00 ÿ 1

4

X
ij

log qij log q01 ÿ 1
4

X
ij

log qij

log q10 ÿ 1
4

X
ij

log qij log q11 ÿ 1
4

X
ij

log qij

26664
37775

� 1

4

3 log q00 ÿ log q01 ÿ log q10 ÿ log q11 ÿlog q00 � 3 log q01 ÿ log q10 ÿ log q11

ÿlog q00 ÿ log q01 � 3 log q10 ÿ log q11 ÿlog q00 ÿ log q01 ÿ log q10 � 3 log q11

� �
:

We show in this example Proposition 34; the ®rst marginal is given, i.e. j1(i, j) � i. The

conditional mean value with respect to the ®rst margin is

E p[ujj1] � j1 � 1

4

log q00 � log q01 ÿ log q10 ÿ log q11 log q00 � log q01 ÿ log q10 ÿ log q11

log q10 � log q11 ÿ log q00 ÿ log q01 log q10 � log q11 ÿ log q00 ÿ log q01

� �

� 1

4
log

q00q01

q10q11

� �
1 1

ÿ1 ÿ1

� �
and

uÿ E p[ujj1] � j1 � 1

2

log
q01

q00

� �
log

q10

q11

� �
26664

37775 ÿ1 1

1 ÿ1

� �
:

If we introduce the transition probabilities á � q01=(q00 � q01) and â � q10=(q10 � q11),

then we ®nd that

uÿ E p[ujj1] � j1 � 1

2

log
á

1ÿ á

� �
log

â

1ÿ â

� �
26664

37775 ÿ1 1

1 ÿ1

� �
:

Thus this two-dimensional parameter coincides with the log-odds of the transition

probabilities and it is orthogonal to mean parameter q1 ÿ 1, where
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q1 � Eì[qjj1] � 1

2

4ÿ (q10 � q11)

q10 � q11

� �
:

Now we show Proposition 36; the marginals are given, i.e. j1(i, j) � i and j2(i, j) � j

and the splitting is u � u1 � u2 � u12, where

u1 � E p[ujj1] � j1 � 1

4
log

q00q01

q10q11

� �
1 1

ÿ1 ÿ1

� �
,

u2 � E p[ujj2] � j2 � 1

4
log

q00q10

q01q11

� �
1 ÿ1

1 ÿ1

� �
;

so u12 is given by

u12 � uÿ u1 ÿ u2 � 1

4
log

q01q10

q00q11

� � ÿ1 1

1 ÿ1

� �
:

In terms of transition probabilities,

log
q01q10

q00q11

� �
� log

á

1ÿ á

â

1ÿ â

� �
:

Then this parameter is orthogonal to the mean parameters q1 ÿ 1 and q2 ÿ 1, where q1 is

as above and

q2 � Eì[qjj2] � 1
2
[4ÿ (q01 � q11) q01 � q11]:
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