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Statistical inference in the linear model based on the concept of regression rank scores is invariant to
the nuisance regression; hence regression rank-scores tests need no estimation of the nuisance
parameters. Such tests, already available in the literature, are manageable, asymptotically distribution-
free and have many convenient properties, but they are either censored or applicable only to light-
tailed distributions. To extend the universality of regression rank-scores tests, we propose modified
tests applicable to heavy-tailed distributions including Cauchy. Depending on the alternative we want
to treat by the test, we censor the score generating function but the censoring is asymptotically
negligible. The proposed tests, being asymptotically distribution-free, are as efficient as the ordinary
rank tests without nuisance parameters, for a broad class of density shapes.
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1. Introduction

Consider the linear regression model

Yn :Xnﬁ+Ena (11)
where Y, =Y = (Y}, ..., Y,)" is a vector of observations, X, = X is an (n X p) known
design matrix, § € R” is an unknown parameter and E, = (Ey, ..., E,)" is the vector of

i.i.d. errors with (generally unknown) distribution function F. We assume that (; is an
intercept, that is, the first column of X, is 1,,.

Regression rank (RR) scores, introduced by Gutenbrunner (1986) and studied by
Gutenbrunner and JureCkova (1992), are defined as the optimal solution a,(a)=
(am(a), ..., a(a)) of the parametric linear program

Y'a(a) := max
X'@@)— (1 —a)l,=0 (1.2)
a(a) €0, 1", O0<a<l.

They are dual to the regression quantiles of Koenker and Bassett (1978) in the sense of linear
programming: the regression a-quantile f,(a) (0 <a <1) for the model (1.1) is a solution of
the minimization
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S pul¥i - xit) := min (1.3)
i=1

with respect to t € R?, where x; is the ith row of X,, and
pa(z) = 2W4(2), Wo(z) = a — I[z<0], ze R (1.4)
the minimization (1.3) could be further written in the parametric linear programming form

al,rt +(1 — a)l),r~ := min
Xp+rt—r =Y (1.5)
B, r",r) e R? X R XR”, 0<a<l

and the regression quantile ﬁ(a) coincides with the component f§ of the optimal solution.
In the location submodel with X =1, we have a,;(a) = aj(R,-, a), where R; is the rank
of ¥; among Yy, ..., Y, and

0 if Ri<na
af(R,a)={ Ri—na if (Ri—1)/n<a<Ri/n (1.6)
1 ifa<(Ri—1)/ni=1,...,n.

Rank scores a’(R;, a) were first used by Héajek (1965) as a starting point for nonlinear rank
tests. Summarizing, we could say that the RR scores and regression quantiles are dual in the
linear programming sense, but this duality also extends the duality of ranks and of order
statistics from the location to the linear regression model.

Gutenbrunner and Jureckova (1992) proposed some tests based on RR scores generated
by truncated score functions. A general class of RR tests, parallel to such classical rank
tests as the Wilcoxon, normal scores and median, was constructed in Gutenbrunner et al.
(1993). The same paper also considers the computational aspects of regression quantiles and
RR scores, applies the proposed tests to the tobacco data of Steel and Torrie (1960) and
numerically compares the tests with the aligned rank tests of Adichie (1984), along with a
sensitivity study of the situation when the nuisance parameters in the aligned tests are
estimated by means of least squares. The detailed description of the computational
algorithms can be found in Koenker and d’Orey (1987; 1994) and in Osborne (1992).
Moreover, RR tests of the Kolmogorov—Smirnov type were proposed by Jureckova (1992)
and tests of homoscedasticity in the linear model based both on RR scores and regression
quantiles were proposed by Gutenbrunner (1994). Typically, the tests based on RR scores
apply to the model

Y=XB+Z0+E (1.7)
with X of order n X p and Z of order n X g, where one wants to test the hypothesis
Hy: 8 =0, B unspecified. (1.8)

The test criteria depend on RR scores calculated under H,, that is, under the submodel (1.1).
By (1.2), a,(a) is invariant to the regression with the matrix X in the following sense:

an(a, Y+ Xb) = a,(a, Y) VbeR?; (1.9)
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this property is parallel to the invariance of the ordinary ranks to the shift in location. Hence,
the tests based on a,(a) are equally invariant and as such they do not require an estimation of
the nuisance . The parallel with the rank tests goes even further; choosing a non-decreasing,
square-integrable score generating function ¢: (0, 1) — R! as the Wilcoxon, median or
inverse normal, we compute the scores l;nl e B,m generated by ¢ in the following way

1
b = —J (1) dai(u), i=1,...,n (1.10)
0

The tests are then based on the linear regression rank-scores statistics S, = nl/ ZZ?:ldnii?ni
with appropriate coefficients d,;. We are able to prove that, under some regularity conditions,
the asymptotic behaviour of S, is analogous to that of the simple linear rank statistics, a basis
of rank tests; in fact both statistics admit the same asymptotic representations. This in turn
implies that the Pitman efficiencies of the tests based on RR scores coincide with those of the
corresponding rank tests being used under § = 0 (or under known ). We believe that the
regularity conditions leading to our results could still be weakened; simulation studies (see
Hallin et al. 1997) show that the tests work well even under densities not covered by our
conditions.

While the tests proposed by Gutenbrunner and Jureckova (1992), Gutenbrunner et al.
(1993) and Jureckova (1992) are constructed under a deterministic regression matrix, the
situation that either of the matrices X, Z in (1.7) is random is treated by Picek (1997). Koul
and Saleh (1995) extended the RR scores and regression quantiles to the autoregressive time
series model, introducing the autoregression rank scores. Hallin and Jureckova (1996)
considered the tests of the linear hypotheses in the autoregressive models, based on
autoregression rank scores, and derived their asymptotic properties under the innovation
densities with exponentially decreasing tails. The good performance of the tests is illustrated
in Hallin ef al. (1997) on the simulated AR series with the normal, Laplace and Cauchy
innovation densities; the tests are then applied to the dataset of daily maximum
temperatures, measured in three stations in South Moravia in the period 1961-90. The
tests of independence of two time series based on autoregression rank scores, extensions of
the Spearman rank correlation and other tests, are constructed in Hallin et al. (1999).

The tests described in Gutenbrunner and Jureckova (1992) and Gutenbrunner (1994) are
generated by censored score functions and thus cannot compete with the usual rank tests.
On the other hand, the regularity conditions of Gutenbrunner et al. (1993) and of Jureckova
(1992) exclude distribution shapes with the tails of the ¢ distribution with 4 degrees of
freedom and heavier and Hallin and JureCkova (1996) cover only the distributions with
exponentially decreasing tails. Noting this situation, we take as a primary goal of the
present paper the extension of the universality of the RR tests as close as possible to that of
the rank tests. A modified definition of RR criteria, along with refined asymptotics, makes
the tests applicable to heavy-tailed distributions including Cauchy. In this respect, the RR
tests could compete well with the aligned rank tests studied by Adichie (1984) and by Puri
and Sen (1985) or with the tests based on R-estimates studied by Hettmansperger (1984);
and this not only theoretically, but also in applications.

We restrict our considerations to the heavy-tailed alternatives with tails heavier than the ¢
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distribution with 5 degrees of freedom. The score function of the test is censored according
to the tails which we want to cover by the test. The censoring is asymptotically negligible
as n — o0, and due to this fact the tests are as asymptotically efficient (and distribution-
free) as the ordinary rank tests without nuisance parameters. Notice that, in the case of
heavy-tailed alternatives, the eventual estimator of the nuisance parameter cannot be the
least-squares estimator but a highly robust estimator. If it is sufficient to test (1.8) against
the alternatives with lighter tails, we use the uncensored tests described in Gutenbrunner et
al. (1993).

The asymptotic properties of a,(«) and of linear RR statistics are derived in Section 3.
The proofs of two technical lemmas are postponed to the Appendix. The main tool is the
chaining argument combined with probability inequalities for bounded random wvariables
specified to heavy-tailed densities. The tests of H, and their asymptotic behaviour are
described in Section 4.

2. Asymptotic behaviour of regression rank scores

Consider the linear model (1.1) with i.i.d. errors Ey, ..., E, with a common distribution
function F, on which we impose the following regularity conditions:

(F.1) F is absolutely continuous with absolutely continuous, positive and bounded density
f(x) and the derivatives f’, f” of f are bounded almost everywhere in x € R'.
(F2) f is monotonically decreasing to 0 as x — —oo and x — oo,

lim —cloef®™ o zaleed — F)) .1
x—-c0  log|x]| x—00 logx
for some a (the same in each tail), 0 <a <oo.
Fix b satisfying 0<0 < b —a < a+ 0, and denote
o = p~ 11120 (2.2)
and
_ (e —a)' 0<a<l. 2.3)

Oa =" >
S(F~ ()
The following regularity conditions will be imposed on the design matrix X:
XD xp=1, i=1,...,n

(X.2) lim,—.D, =D, where D, = n~ !X, X, and D is a positive definite (p X p) matrix.
(X.3) n 0 Xt = O(1) as n — oc.

(X.4) max;<i=,|[x.|| = O(n®) as n — oo, where
b—a—90

Notice that A <1

2 actually,
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b—a-0 1_ 1426
1+2b 4  1+2b

While a could be characterized as the tail-exponent of the distribution (for example, a = 1
for the Cauchy distribution and a = 1/m for the ¢ distribution with m degrees of freedom),
censoring at the point (2.2) with b > a allows us to be less restrictive to ||x,|s (cf. (X.4)),
which is convenient in some situations and models.

The following lemma describes some properties of densities satisfying (F.1) and (F.2),
which we shall use below.

<0.

Lemma 2.1. Let the density f satisfy (F1) and (F2). Then

. . f(F’l(u)il S(F~Yu) 1
@ }}E(l) witl g’ u—1 (1 — u)atl a’ 2.5
(ii) lim (=) F(x) = 1, 1me1/a(1 —Fx)=1; (2.6)
- fFET W) : —f'(F ') _
Proof. (i) We obtain, from (F.2),
—alogu (2.8)

lim——2 8% _ _
] log(—F~'(u))

hence using 1’Hopital’s rule leads to the first part of (i); the second part is analogous.
(i) By (2.5) and (2.8),

m w1 lim (—ax&> =1
e (F)™ @ xese\ TRE) T
hence
VACI -
a4 x——o0 (F(x))et! o —ax(F(x))*’

and this gives the first part of (2.6); the second part is analogous.
(iii) By (2.5) and by I’Hopital’s rule,

FET@) aHl o u
| = = 1
o FAF @) T a e fF )
and this gives the first part of (2.7). The second part is analogous. O

Let ﬁn(a) be the a-regression quantile in the model Y = X + E. The first theorem gives
an asymptotic representation of B,(a), uniform over af <a <1—a}, and the rate of
consistency of f,(a). It extends Theorem 3.1 of Gutenbrunner et al. (1993) to a broad class
of distributions covered by conditions (F.1)—(F.2). Generally, the heavier the tails of the
distribution we admit, the more restricted is the interval [a, 1 — a’].
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Theorem 2.1. Under (F1)—(E2) and (X.1)—(X.4),
sup o' (Ba(a) — B(@)] = 0,(n2C,) 2.9)

*<g<l—*
at<a<l-a}

and
n'20  (Ba(c) — B(e) = n (a1l — @)D, Z Xnitpa( Eia) + 0p(1) (2.10)
i=1

uniformly —in o <as<1-—a¥, where Pla)=Bi+F a),pBa....Bp) s Eiw=
E; — F~'(a) and C, = C(loglog n)'/?, 0 < C < .

The second theorem gives an approximation of the RR scores process by an empirical
process, uniform on [a:‘, 1 fa:f]. Let d, =(du1, ..., du) be a sequence of vectors
satisfying

(D.1) T2 =n'|d, —d,|?> = T? as n — 00, 0<T <oo where d, = X,(X,X,)"'X,d,.

(D2) n 'S0 |di — dyl* = O(1) as n — oo.
(D.3) max <icn|dn — dni| = O(n™) with A(<1/4) of (X.4).

Theorem 2.2. Under (E1)—(E2), (X.1)—(X.4) and (D.1)—(D.3),

sup n!/?
af<a<l-a¥

n

D duian(@) = (1 = @) = (dyi — d)ai(@)]

i=1

} = 0p(Cy(log n)'/*n~t%)

as n— oo, (2.11)

where

ai(a) = I[E;> F~Y(a)], 0<a<l, i=1,...,n (2.12)

The third theorem extends the uniform approximation of the RR process to the whole
segment [0, 1]; the price paid for this extension is a more restrictive condition on the
distribution tails — but still weaker than in Gutenbrunner et al. (1993). Fortunately, the tests
constructed in Section 4 do not need this stronger result and thus their asymptotics hold
under the conditions of Theorem 2.2 (and under a Chernoff—Savage type condition on the
score generating function).

Theorem 2.3. Assume conditions (E1)—(F2), (X.1)—(X.4) and (D.1)—(D.3) with constants a,
b, 0 satisfying additional restrictions

0<a<b<l 0<b-a-0<i-b (2.13)

Then, as n — 00,

sup ¢ n 12
O=<a=<l

D Tduian(@) = (1 = @) = (dy — d,)ai(@)]
i=1

}io. (2.14)
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Moreover, the process
{ran > duian(@) — (1 —@):0<a=< 1} (2.15)
i=1

converges to the Brownian bridge in the Prokhorov topology on C[0, 1].
Before proving Theorems 2.1-2.3, we shall first state a crucial approximation of the
criterion in (1.3) by a quadratic function of t, uniform in an appropriate neighbourhood of f§

and for a € [a}, 1 — ]

Lemma 2.2. For t € R? and a € (0, 1), denote

n
rn(t, (X) = 0;1 Z[pa(Eia - n71/20(1X;t) - p(x(Ei(z)]
i=1

+n 2t ii;xi%(E,-a) - %(a(l —a))'t'D,t, (2.16)
with
Yo(2) = a — I[z<0], zeR! (2.17)
and
Eiq = E; — F (a), i=1,...,n 0<a<l. (2.18)
Then, as n — oo,
sup{|ru(t, a): aF <a<1-a’, |t|<C,} = O,,(Ci/z(log n)/2 i), (2.19)

As a consequence, we obtain the following approximation:

Lemma 2.3. Let {d,},’, be a sequence of vectors satisfying (D.1)—(D.3). Then, under the
(E1)—(E2) and (X.1)—(X.4),

sup n1/?
[t|<Cnat<asl-a¥

> (di = du)Wa(Eia—n""00xit) = Yu(Eia)]
i=1

— 0,(Cy(log n)"/*n %) as n — co. (2.20)
Lemmas 2.2 and 2.3 are proved in the Appendix.
Proof of Theorem 2.1. The theorem follows from Lemma 2.2 by convexity arguments due to

Pollard (1991) similarly as in the proof of Theorem 3.1 in Gutenbrunner et al. (1993). Hence,
we omit the details. O
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Proof of Theorem 2.2. First, note that S 1dm =0 by (D.1) and that (1.2) implies that
P 1d,,,(a,,,(oc) (1 —a)) =0. Then we obtain (2.11) if we insert nl/zoa(ﬁ(a) B(a))
[= Oy((loglog n)'/?)] in (2.20) and note that

n
sup{ n\/? de-l[Y,- =X}
=1

Proof of Theorem 2.3. By Theorem 2.2, it is sufficient to consider the behaviour of the
process in (2.14) on the intervals [0, a’] and [l —a), 1], where we have (with
d* = dm - dm)

<1- ajj} = 0,(n D), (2.21)

O

sup n1/? Zdji&m(a) = sup n1/? Zd:i(l — 21,,,-(0())‘
O=<as<a? i—1 O<a<a? i—1
= 0’y = o(1) (2.22)
and
sup |n I/Zdea (@)= sup |n Vdem(l —a;(a) + a)
Osasa} Osasa?
< max |d}.[0,([a;(1 — a;)]'?) = 0,(1); (2.23)
we obtain analogous bounds for 1 —a* < a < 1. O

3. Linear regression rank statistics and regression rank tests

The close correspondence of RR scores to Hajek scores (defined in (1.6)), calculated for the
(unobservable) errors E;, explains why tests based on RR scores are as Pitman efficient as the
corresponding ordinary rank tests. This relation is characterized in the following crucial
theorem.

Theorem 3.1. Let R,, ..., R, denote the ranks of errors E\, ..., E, and let a’:(R,-, a),
i=1,...,n 0=<a=<1, denote the Hijek scores defined in (1.6). Then:
(i) Under the conditions of Theorem 2.2,

sup (02 [dyani(@) = (dy — duw)ay(Ri, @)]| 50, asn—oo.  (3.1)

*<g<]—*
at<asl-a}

(ii) Under the conditions of Theorem 2.3,

sup |n” 2 [dyit(@) = (dw — du)ay(Ri, ]| 0, asn—oo.  (32)

O=a=<l
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Proof. The propositions follow from Theorems 2.2 and 2.3 and from approximations in
Hajek (1965). O

We are now in a position to define the modified tests based on linear RR statistics and
show that they are asymptotically distribution-free for the class of distributions covered by
(F.1)—(F.2). Choose a score generating function ¢(¢), non-decreasing and square-integrable
on (0, 1); let @, be ¢ censored at a, 1 —a’, that is,

pa’), if 0<t<a¥,
on(t) =< o(0), if a:’: st<1-— a:f, 3.3)
(1 —a’), ifl—af<t<1.

Let Aﬁn(a) = (an(a), ..., am(a))’ be the RR corresponding to the model Y = Xp + E and
let b,; = (b1, ..., buy)' be the scores generated by ¢, in the following way:

1
b = —J @ n(£) dai(0), i=1,...,n (3.4)
0

Let {dn}?;l be a sequence of n-dimensional vectors d, orthogonal to X,,, n=1, 2, ....
Consider the linear RR statistics

Sun=n""2>"dyiby, n=1,2.... (3.5)
i=1

The results of Section 2 enable us to derive an asymptotic representation of S,, by a sum of
independent summands, parallel to that derived by Hajek (1961). This, in combination with
Theorem 3.1, enables us to incorporate Hajek’s results into the asymptotic theory of tests
based on regression rank scores.

The asymptotic representation of linear RR statistics will be derived for score generating
functions satisfying a condition of Chernoff—Savage type, including the inverse normal
distribution function.

Theorem 3.2. Let ¢(t), 0<t<1, be a non-decreasing square-integrable function such that
@'(1) exists for 0<t<ay and 1 —ay<t<1, 0<ay <L in this domain ¢'(t) satisfies

(0] < e(e(1 = )7, (3:6)
where ¢ >0 and 0<6* < (1 + 2a)/8. Then, under (F1)—(E2), (X.1)—(X.4) and (D.1)—(D.3),
Spn = Ty + 0p(1) as n — 00, 3.7

where

Ty = 1S dyp(F(ED). (3.8)
i=1

Proof. Notice that a,;(¢) — a;,(t) =0 at t =0, 1. Integrating by parts, we obtain
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1 1
—Lwn(r) A1) — (1)) = L(&m(o ~ a(1) dgn()

1-a*
= J (ani(1) — a(t)) do(2). (3.9)
ay
By Theorem 2.2 and by the dominated convergence theorem,
n 1—ayp
n1/2 Z dmj (an(t) — ai(1))de, (1) = o0,(1). (3.10)
i=1 Ao

Moreover,

=

u1/2 i dniJao (ani(t) — ai(£)) dp (1)
i=1 a’t

ru(t(l — )y Z dnilan(t) — a(n)] dt
ajy i=1

< K|l 1% o (C2og m) 20 H) = 0,(1), (3.11)

and we obtain an analogous conclusion for the integral over (1 —ag, 1 —a’). Thus,
combining (3.9)—(3.11), we obtain

Sun = Tun + 0p(1) (3.12)

as — 0o, where
n 1 n
Ty = n'/2 dej a1 dpa(t) = 12 S dupa(F(E)). (3.13)
i=1 0 i=1

Furthermore,

n af, 1
var(Tyy — T, < n”' Zdi,{L [p(1) — @) dt + L o) — (1 — ai’:)]zdr}
i=1 —a

=T%0(1) asn— oo. (3.14)

(3.12) and (3.14) then imply (3.7). O
Let us now consider the extended model (1.7) and the problem of testing the hypothesis
Hy: 8 =0, B unspecified. Let a,(a) denote the regression rank scores corresponding to the
model (1.1) under the hypothesis. Choose a score generating function ¢ satisfying the

conditions imposed in Theorem 3.1; let ¢, be the function defined in (3.3) and let b,; be
the scores defined in (3.4). Consider the vector of linear regression rank-scores statistics

Snn = n_l/z(Zn - Zn)’lA)ns (315)
where Z, = X, (X, X,)"'X},Z,. Furthermore, denote

Q,= n_l(Zn - Zn),(Zn - Zn) (3.16)
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We propose the statistic
Vi = S1Q;, 'S/ A% (o), (3.17)

with 4%(¢) = [} (p(u) — ) du, @ = [} @(u)du, as the test criterion for Hy. The following
theorem shows that the test of H, based on V,, which rejects H, provided V, exceeds the
critical value of the xf] distribution, is asymptotically distribution-free for the class of
distributions satisfying (F.1)—(F.2) and its Pitman efficiency coincides with that of the
ordinary rank test with the same score function.

Theorem 3.3. Consider the model Y, = X, + Z,0 + E,, where X,, is of order (n X p), Z,
is of order (n X q), X, satisfies (X.1)—(X.4), and X,, and 7, satisfy

max ||z, = O(n®), (3.18)

with A from (X.4), z,; being the ith row of Z,, and
Q,.—Q as n — oo, (3.19)

where Q is a positive definite (¢ X q) matrix. Assume that the distribution function F of the
errors satisfies (F1)—(FE2). Then:

(i) under Hy, the statistic V, defined in (3.17) has asymptotically y* distribution with
df.;

(ii) if, moreover, F has positive and finite Fisher information,

’ 2
0< I(F) = J(f (x)) dF(x) < oo,

)

then, under H,: & = n~'28,, &y € R? fixed, p € R? unspecified, V, has an asymptotic
non-central x* distribution with q d.f. and non-centrality parameter

7 = 86Qd [y (¢, F)/A(9)], (3.20)
with

1
Y, F) = —L(p(r) 4f(F (1), (3.21)

Proof. Part (i) follows from Theorem 3.2. Part (ii) follows from Theorem 3.1 with an
application of the contiguity and the asymptotic theory of rank tests under contiguous
alternatives (Hajek 1962). Il
As an illustration, apply the above results to the k-sample model
)/l]:ﬁ0+ﬂl+Ey9 jzla"'ania izl)"'aka (322)

with 8 = 0. We want to test the hypothesis H: 3; = 0, and admit that the distribution of the
errors may be as heavy as Cauchy. The regression rank scores under the submodel of (3.22)
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with 81 = B = 0 are such that (a;;(a), ..., a;,,) generate the same ranks of the ith sample
Yit, ..., Yin,, i=2, ..., k—1, as the Hajek scores, while
(@n(@), ..., ayp (@), ap (), ..., agm (@)

analogously generate the ranks in the combined first and kth samples. On the other hand,
a = 1 in (F2) for the Cauchy tails and hence a* = n~1/G+29 5> 0. If we take the Wilcoxon
score function ¢(a) = a — %, 0 < a = 1, we finally obtain the two-sample Wilcoxon test of
the shift between the first and the kth samples, censored for the observations with the ranks
below [na*]+ 1 or above n — [na*].

Appendix: Proofs of Lemmas 2.2 and 2.3

Proof of Lemma 2.2. For a fixed t € R”, denote
e =& =n oxit, i=1,..., n. (A1)

Notice that maxls,-g,,|8,-0gl| = O(n’%+A) by (2.4). Moreover, we obtain from Lemma 2.1 that

oa(a(l — )™ — a, asa — 0, 1, (A2)
and hence, noting (X.3) and (X.4),
max |¢;| = O(Cn ™™ a(l —a)) 7%  asa—0, 1. (A3)
Denote, for i =1, ..., n,
Oit, @) = 0i = 0, [pa(Eia — 1) — pa(Eia) + ePal(Eia)]. (A4)
Then we obtain by simple arithmetic that
0 = 0, {(Eia — €)I[e; < Eiq <0] + (¢ — Ei)I[0 < E; <&;]}. (A.5)

Hence, by (A.1)-(A.5), for ¢; >0,

F~Ya)+te;

0,EQ, = J (6 — x + F (@) dF(x)
F~Y(a)
F~Ya)+e; px
=J J F()dydx
Flay JF1@
F~Ya)+e; F~ N a)+e; y
- f(F“(a))j (x— F“(a))dx+j J J F'(@)dzdydy  (A6)
F1() Fl@ JFY @) F

f(Fl(a))%’z'+JFl(a)+£ir Jy £'(z)dzdydx.

F~Ya) F~Ya)) F-Y(a)

Thus, by Lemma 2.1(iii), given 7 > 0, there exists o such that, for 0 <a < ay,
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&?
0uBQ — f(F @)

F~Ya)+e; px FO) f(F-1
J J JEW 4,4y dx:
F~(a)

a u

s (1 +n)(l+ a)JFl( :

and further by Lemma 2.1(i), for 0 <a < ay,

&2 F\@ter x F(»)
04,EQ; —f(F_l(a))E’ < Ki(1 +77)2J J J u’dudydx

F-Y(a) F-Ya)Ja

< Ko[F(F (@) + &))" "%}

< Kza""¢3,
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(A.7)

(A.8)

where K, K, K3 are positive constants. We obtain analogous inequalities for &; <0,

i=1,...,n
Hence, combining (A.1), (A.2), (A.6)—(A.8), we arrive at

n

> [EQ,— - faalf(Fl(a))} l = O0(C3n (a1 — a))™)

i=1

uniformly for ¢} < a <1—a}, as n — co. We shall first prove that

g

for any # >0 and n = ng, where

Bn _ n71/4+A/2C:’;L/2(10g n)l/Z.

n
Z(Ql —EQ)| = 77311} = 27[7’72/3»
i=1

Actually, by the Bernstein—Bennett inequality (see (2.13) in Hoeffding 1963),

P{Z(Qi —EQ)> nt} < exp{—th(A)},
i=1
for t<b, provided Q; —EQ; < b, i =1, ..., n, where

_nt bt , 1 A
1—3, /'L—p, o —nizzlvarQ,, h(/l)_Z(l—i—%ﬂ.)'

By (A.5) and (A.8), as n — oo,
O, < n ¢, EQ < n 1ACN(1 +o(1)

uniformly in ¥ < a <1 - a¥, hence

b=b>b,= K1n71/2+AC,, for n = ny.
Moreover, (A.5) and (A.8) imply
var Q; < EQ? < o;1|ei|EQ,~, i=1,...,n

hence

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)
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02 < Kn?C3 for n = ny. (A.16)

Put nt, =nB,, that is, t =1, = 17n’5/4+A/2C§,/2(10g n)'/2. Then t,<b,, A= but,/o? and
(4.12) gives

- nt%l 1
P{Z(Qi —EQy)) = 773")} <exp) -t —p
i=1 52 +?
2 2
< exp {—g%-logn} <n P (A17)

for n = ny. Because Q; are non-negative random variables, we obtain an analogous inequality
for P> (0 —EQ) < —nB,) < n /3 and thus we arrive at (A.10). Hence, finally,
regarding (2.16), (A.1), (A.9), (A.11) and (A.10), we get

P{|ra(t, @)| = (i + 1)B,} < 2077/ (A.18)
for n = ny, any >0 and B, of (A.11).
Let us now choose intervals [a,, a,1] of length n~> covering [a*, | — @] and balls of

radius n~> covering {t: |[t| < C,}. Let (a1, a2) € (@, @y11) and let ty, t, lie in the same
ball. Then, by (A.2),

(00, /0a) = 1] = O(n™*- 1001200, (A.19)
For fixed i, 1 < i < n, write
|0i(t2, az) — Oilt1, ar)| < [Oilta, @2) — Oi(tr, ao)| + |Oilty, a2) — Oi(ty, a2)|  (A.20)
and consider the terms on the right-hand side separately. By (A.20), (A.1) and (2.4),

|0i(ta, a2) — Oi(t1, @2)| < 0, |€ists — Eicnry| < 172X}t — )| = O(n™>%).  (A21)

For the corresponding centring term we obtain the bound

1
~(€yry — €y ) (F @2))o | = O(Cin 32y = O(n > ). (A.22)

2 iayty

Consider the second term on the right-hand side of (A.20), which we denote Q™ for the sake
of brevity. We should distinguish two cases:

1) If €igyry, <Eie, <0 and €jg,1, < Eigy <0 (or 0< Ej, < &jeyr, and 0 < Ejg, < Ejy1y)s
then

|Q*‘ < |O;21 - 0;11”81'0!2&' + O;II(‘F_l(OQ) - F_l(al)l + |8iaztl = Eiay 1y D
<21 Pl = (04 /0u)lxiti]| + 0, (jaa — | [f(F (@) + o(n™)  (A23)

_ O(Cnn74.5+A) — O(n742).

(11) If Eiay 1y < Eia2 <0 and Eia1 <€ia1f1 <0 (or Eia, 1y < Eia1 <0 and Eiaz <8ia2[1 <0),
then
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10 = 0, |Eiw, = i | = 00, | Eiey + F (1) = F (@) = iy |  (A24)
= O(:zl(|8ialtl - siazlzl + |F_1(a2) - F_l(al)l) = O(n_4A2)

by analogous considerations as in (i).

Moreover, we obtain for the centring terms in both cases
30 o) € f(F 1 (@2)) = 0, €ia 0, f(F (1)) = O(n ™). (A.25)

Let us fix one set S, in the decomposition of the set [a), | —a] X {t: |[t|] < C,}; the
number of such sets is at most (2C,)?n>»*D_ It follows from (A.19)—(A.25) that

sup|r(tz, az) — ra(ty, an)| < Kyn™>, (A.26)

v

where 0 < K| <oo. By (A.18),

P{sup|r,(t, @) = ( + 1)B,} < 20" P?, (A27)
Sv

and finally

P{ sup [t )| =207 + I)Bn} <y P{sup|rn<t, )| =207 + 1>Bn}
lel=Cpeci=a=1-a} s
< 4CPR* PO B = o (1) (A.28)
for 7> > 15(p + 1); and this entails
sup{|ru(t, a)|: t] < Cpy 0¥ <a<1-0a*} = 0,(B,)
= 0,(C3(log n)!/2n~1/4+4/2) (A.29)

as n — oo. O

Proof of Lemma 2.3. Consider the model Y = X*p* + E with X* = (X (d, —d,)) and
ﬁ* = (ﬂl: sy ﬂp, ﬂp+l)’. Then

XX 0
X* - (O (dn - an),(dn - an))

and the conditions of Lemma 2.2 are also satisfied when replacing X by X* and t by
t* € R”*!. Now, denoting

A, = C'/?B, = C(log n)"*(log log n)n="/4+4/2 (A.30)

we obtain from Lemma 2.2 (see (A.29)) that



674 J. Jureckova

{ sup

_%nfl(a(l o a))l/z(t*)’(X*)’X*t*

n

0" [palEia — 0 2o = pa(Ei)] + 172 D xf yu(Eia)
i=1

i=1

< Choaf<as<1- aj;} = 0,(4,) (A31)
as n — oo. Hence, also (denoting d;k =d;—d;, i=1,...,n, for the sake of brevity),

n
o;l Z[pa(Eia - nil/ZOa(xzr't + d;k tp+1)) - pa(Eia - nil/zaaxét)]
i=1

_ . 1 ,
+n l/ztp+1Zd;k1p(E,-a)—En Ya(l = )22, (@%)d*| = oy(4,)  (A32)
i=1

I

uniformly in [[t| < C,, a® < a <1 — a®. Expression (A.32) further implies that, for any
0<0<C,,
o " )
sup J {_"l/z 2 4 el Eia = mVouxit + djw) - wa(Eia)]} du
[t|<Cpat=<asi-azlJo —

]
—(a(1 = a))l/zr,,J udu
0

< A, (A.33)

with probability at least 1 — 5 for n = ny, where €, # >0 are arbitrary numbers; we could
give similar statement for the integration over (—0, 0). Notice that both integrands in (A.33)
are non-decreasing in u. Then (A.33) implies

— 0 2N A [@a(Eig — 1 00X1) = Ya(Eia)] (A.34)
i=1

é n
< aflj {—n‘” > df Ya(Eia — n ' Poa(xit + dfu) — wu(Emﬂ} du
0 i=1

o A, A,
< (a1 - @)1, 5+ 5 8

< KO + 5

and analogously we obtain

Y [ E — o) — pulEa)] = —Ko —

i=1

(A.35)

Hence, if we put 6 = (Ane)l/2 we obtain that, for n > ny,

g

n 2 A a(Eia — n o axit) — po(Ei)]| >(K + 1>(Ane)‘/2} <7.
i=1
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