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For a given weakly convergent sequence fX ng of Dirichlet processes we show weak convergence of

the sequence of the corresponding quadratic variation processes as well as stochastic integrals driven

by the X n values provided that the condition UTD (a counterpart to the condition UT for Dirichlet

processes) holds true. Moreover, we show that under UTD the limit process of fX ng is a Dirichlet

process, too.
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1. Introduction

Let fX ng be a sequence of semimartingales de®ned on possibly different probability spaces

(Ùn, F n, Pn) and adapted to different ®ltrations F n, i.e. every X n can be decomposed into

the sum of two processes:

X n
t � M n

t � An
t , t 2 [0, T ], (1)

where M n is an F n local martingale and An is an F n adapted process with locally bounded

variation. In the theory of convergence of semimartingales and stochastic integrals the

condition UT introduced by Stricker (1985) has turned out to be very useful. In terms of

conditional expectations it has the form:

UT: lim
N!�1

sup
n

Pn[ó n,N , T ] � 0 and for everyN 2 N the family of random variables

Xk

j�1

jE n(X n,N
s j
ÿ X n,N

s jÿ1
jF n

s jÿ1
)j; 0 � s0 < : : : < sk � T , k 2 N, n 2 N

8<:
9=;

is bounded in probability. Here ó n,N � infft; jX n
t j > Ng and X n,N denotes the process X n

stopped at ó n,N , n 2 N.

Under this condition, Jakubowski et al. (1989) proved a functional limit theorem for

stochastic integrals. Next, with the use of UT, stability theorems for the stochastic

differential equations were proved in the series of papers by MeÂmin and SøominÂski (1991)
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and SøominÂski (1989; 1996). On the other hand Kurtz and Protter (1991a, b) showed that

employing an UT-like condition (`̀ good sequences of semimartingales'') leads to similar

results on the convergence of stochastic integrals and solutions of stochastic differential

equations (SDEs).

A simple example of stability theorem under UT is the following. Assume that fX ng is a

sequence of continuous semimartingales and X n ! X in distribution in C([0, T ], R). Then

UT reduces to the condition

fvar(An)T ; n 2 Ng is bounded in probability

(where var(An)T denotes the variation of An on the interval [0, T ]) and implies that X is a

semimartingale with respect to its natural ®ltration F X and (X n, [X n])! (X , [X ]) in

distribution in C([0, T ], R2) (see, for example, Jacod (1980), Stricker (1985) and Jakubowski

et al. (1989)).

In Section 2 we introduce a counterpart of the condition UT for sequences of continuous

Dirichlet processes in the sense of FoÈllmer (1981) (we call it condition UTD) and we give

simple characterizations of UTD. Let fDkg be a sequence of subdivisions of [0, T ], such

that the mesh size jDk j � max t i2Dk
jti�1 ÿ tij tends to 0 as k ! �1. Assume now that

fX ng is a sequence of Dirichlet processes along Dk , i.e. X n has the decomposition of the

form (1), where M n is an F n local martingale but An is only an F n adapted process such

that X
t i2Dk

jAn
ti
ÿ An

tiÿ1
j2!

pn
0 as k !1:

As an example we can show that, if fsup t<T jX n
t j; n 2 Ng is bounded in probability, then

UTD is satis®ed if and only if

sup
t<T

jAn
t j; n 2 N

n o
is bounded in probability (2)

and

lim
k!1

sup
n

Pn
X
t i2Dk

jAn
ti
ÿ An

tiÿ1
j2 . E

 !
� 0, E. 0: (3)

Section 3 contains some stability theorems for continuous Dirichlet processes as well as

for stochastic integrals driven by Dirichlet processes satisfying UTD. Suppose that X n ! X

in distribution in C([0, T ], R), where fX ng is a sequence of Dirichlet processes satisfying

(2) and (3), and hence UTD. Then in Theorem 1 we show that X is a Dirichlet process with

respect to some ®ltration G such that F X � G and (X n, [X n])! (X , [X ]) in distribution

in C([0, T ], R2). If we want to make X a Dirichlet process with respect to the given

®ltration F , it is suf®cient to assume that all Dirichlet processes X n are adapted with

respect to the same ®ltration F and X n ! X in probability in C([0, T ], R) (see Theorem

2).

In Section 5 we consider Dirichlet processes satisfying UTD and such that the family of

random variables
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Xm

i�1

jAn
si
ÿ An

siÿ1
j p; 0 � s0 < . . . < sm � T , si 2 Dk , m, k, n 2 N

( )
(4)

is bounded in probability for some p 2 [1, 2]. In this case we say that a sequence fX ng
satis®es UTD( p) (note that UTD(1) is equivalent to UT). Assume that X, Y are two Dirichlet

processes adapted to the same ®ltration and satisfying the above condition with p , 2 and

p � 2, respectively. By using a stochastic version of some inequality of Young (1936) we

prove in Theorem 3 that then it is possible to construct a stochastic integral
� :

0
X s dYs. As a

consequence we generalize slightly Bertoin's (1989) result on construction of stochastic

integral for processes with bounded p variation. Next, we prove a stability theorem for

sequences of such stochastic integrals.

In Sections 4, 6 and 7 we give examples of sequences of processes satisfying UTD and

UTD( p). We study functionals of Dirichlet processes, functionals of semimartingales and

solutions of some special SDEs driven by continuous semimartingales. The case of diffusion

processes corresponding to operators in divergence form was considered by Rozkosz and

SøominÂski (1998).

Now, we introduce some notation used throughout the paper. C([0, T ], Rk) is the space

of continuous mappings x, x: R� ! Rk , with the topology of uniform convergence on

compact subsets of R�. In this paper we consider exclusively processes X with trajectories

in C([0, T ], Rk) or their discretizations, which are strictly jumping processes. Unless

otherwise stated, we assume that X (0) � 0; however, our results are also true without this

restriction. Denote Dt
k � Dk \ [0, t], Dt,s

k � Ds
knDt

k for all t, s 2 [0, T ], t < s, k 2 N. For a

given process X we use also the notation ÄX si
� X si

ÿ X siÿ1
, si 2 Dk , i, k 2 N, and [X ]

denotes a quadratic variation process of X along Dk , i.e. for t 2 [0, T ], [X ] t is a limit in

probability of the sequence fP t i2D t
k
jÄX n

ti
j2gk2N . Finally, !D and !P denote convergence

in law and in probability, respectively.

2. Dirichlet processes and condition UTD

De®nition 1. We call X an F Dirichlet process if it admits the decomposition

X t � M t � At, t 2 [0, T ], (5)

where M is an F local martingale and A is an F adapted process of 0-quadratic variation

along Dk, i.e. X
t i2Dk

jÄAti
j2!

P
0, as k ! �1: (6)

Note that, in the original de®nition of FoÈllmer (1981), M and A in the decomposition (5)

are square integrable and (6) has the form E
P

t i2Dk
jÄAti

j2 ! 0.

In the paper we also consider processes with bounded p variation in the following sense.

De®nition 2. We say that an F Dirichlet process X � M � A is of class D p for p 2 [1, 2] if
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additionally the family of random variablesXm

i�1

jÄAsi
j p; 0 � s0 < . . . < sm � T , si 2 Dk , m, k 2 N

( )
(7)

is bounded in probability.

Note that Bertoin (1986, 1989) developed a theory of Dirichlet processes assuming

instead of (6) and (7) slightly more restrictive assumptions

lim
jT j!0

E
X�1
i�1

jXó i
ÿ Xó iÿ1

j2 � 0, (8)

for all subdivisions [0, T ] by sequences of F t stopping times T � (0 � ó0 < ó1 <
. . . < T ) such that jT j � E supi(ó i ÿ ó iÿ1)! 0 and

sup
T

E
X�1
i�1

jXó i
ÿ Xó iÿ1

j p
 !1= p

,�1, (9)

respectively.

It is clear that the families of Dirichlet processes D p introduced above have the

following simple properties: D 1 is a family of F semimartingales and for 1 < p < p9 < 2

we have D p � D p9 � D 2. It is also straightforward to observe that D 2 consists of

Dirichlet processes X such that the family of random variablesXm

i�1

jÄX si
j2; 0 � s0 < . . . < sm � T , si 2 Dk , m, k 2 N

( )
is bounded in probability. Note that the class of Dirichlet processes is larger than D 2, as the

following deterministic example shows.

Example 1. Take the sequence of dyadic subdivisions of [0, 1]: Dk � f j2ÿk , 0 < j < 2kg
and let X be the process de®ned for all integer p > 1 by

X t �

22 p

p1=2
(t ÿ 1� 21ÿ2 p) if t 2 [1ÿ 21ÿ2 p, 1ÿ 2ÿ2 p],

ÿ22 p�1

p1=2
(t ÿ 1� 2ÿ2 pÿ1) if t 2 [1ÿ 2ÿ2 p, 1ÿ 2ÿ2 pÿ1],

0 otherwise:

8>>>>>><>>>>>>:
Then, X is a piecewise af®ne function, equal to 0 at each t � 1ÿ 21ÿ2 p and such that

X t � 1=p1=2 for t � 1ÿ 2ÿ2 p. If SN � f1ÿ 2ÿ2k , k < 2Ng, then SN � D2N�1 andX
s j2SN

jÄX s j
j2 � 2

X
1<i<N

1

i
:
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This sum is of order in N, which is unbounded; hence X does not belong to D 2. On the other

hand, we can explicitly compute the 2-variation of X along Dk :X
ti2Dk

jÄX ti
j2 �

X[k=2]

p�1

X
ti2[1ÿ2ÿ2 p�1,1ÿ2ÿ2 p]\Dk

jÄX ti
j2 �

X
t i2[1ÿ2ÿ2 p,1ÿ2ÿ2 pÿ1]\Dk

jÄX ti
j2

" #

�
X[k=2]

p�1

2kÿ2 p 22 pÿk

p1=2

 !2

� 2kÿ2 pÿ1 22 p�1ÿk

p1=2

 !2
24 35

� 3 3 2ÿk
X[k=2]

p�1

22 p

p
:

Now, for ®xed E. 0 and every integer l, 4E < l , k=2,

2ÿk
X[k=2]

p�1

22 p

p
<

1

l � 1

X[k=2]

p� l�1

22 pÿk � 2ÿk
Xl

p�1

22 p

p
<

E
2
� 2ÿk 3 constant

and, for k suf®ciently large,

2ÿk
X[k=2]

p�1

22 p

p
< E,

i.e. X is a Dirichlet process.

Let fX ng be a sequence of continous processes de®ned possibly on different probability

spaces (Ùn, F n, Pn) and adapted to different ®ltrations F n, n 2 N. We say that the

sequence fX ng satis®es the condition UTD if

UTD: (i) lim
N!�1

sup
n

Pn(ó n,N , T ) � 0 and

lim
k!�1

sup
n

sup
j>k

Pn
X
t i2Dk

���� X
ul2D

tiÿ1, t i
j

E n(ÄX n,N
ul
jF n

u lÿ1
)

����2 . E

0@ 1A � 0, E. 0, N 2 N,

where ó n,N � infft; jX n
t j > Ng and X n,N denotes the process Xn stopped at ó n,N ,

and Dk � Dk�1, k 2 N,

(ii)
X
t i2Dk

jÄX n
ti
j2; k, n 2 N

( )
is bounded in probability.

Similarly we say that a sequence of continous processes fX ng satis®es UTD(2) if

UTD(2): the condition (i) of UTD holds and the family of random variablesXm

i�1

jÄX n
si
j2; 0 � s0 < . . . < sm � T , si 2 Dk , m, k, n 2 N

( )
is bounded in probability.
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Remark 1. By using the arguments from FoÈllmer (1981) one can prove that if the condition

UTD is satis®ed then for every n 2 N, X n is an F n Dirichlet process in the sense of

De®nition 1, i.e.

X n
t � M n

t � An
t , t 2 [0, T ],

where M n is an F n local martingale and An is an F n adapted process of 0-quadratic

variation along Dk .

Proposition 1. Let fX ng be a sequence of F n
t adapted processes. The following two

conditions are equivalent.

(i) fX ng satis®es UTD (on UTD(2)).

(ii) fX n � M n � Ang is a sequence of Dirichlet processes such that (3) holds true and

the families of random variables f[M n]Tg, fsup t<T jAn
t jg are bounded in probability (on (3)

and (4) with p � 2 hold true and f[M n]Tg is bounded in probability).

Proof. (ii)) (i) By the boundedness in probability of f[M ngTg, fsup t<T jAn
t jg we deduce

that the sequence fsup t<T jX n
t jg is bounded in probability as well, and in particular,

lim
N!�1

sup
n

Pn(ó n,N� , T ) � 0, (10)

where ó n,N� � infft; jAn
t j. Ng ^ ó n,N , n, N 2 N. In the sequel for every n, N 2 N we

write X n,N� , M n,N� , An,N� to denote the processes X n, M n, An stopped at ó n,N� .
By ItoÃ's formula,X

ti2Dk

jÄM n,N�
ti
j2 � 2

X
ti2Dk

�
( t iÿ1, t i]

(M n,N�
s ÿ M n,N�

t iÿ1
) dM n,N�

s � [M n,N�]T , n 2 N,

and for every C, N, by the Chebyshev inequality, Pn(
P

ti2Dk
jÄM n,N�

t i
j2 . C) < 4N 2=C2.

Therefore

Pn
X
t i2Dk

jÄX n
ti
j2 . 2C

 !
<

4N2

C2
� Pn(ó n,N ,� , T )� Pn

X
ti2Dk

jÄAn
ti
j2 . C

 !
;

hence the condition (ii) of UTD follows by (3) and (10).

If we denote ãn,N�
k � infft;

P
ti2Dt

k
jÄAn,N�

t i
j2 . 1g for n, k, N 2 N, then using once

more (3) and (10) it is clear that

lim
k!1

sup
n

Pn(ãn,N�
k , T ) � 0, N 2 N, (11)

and that

lim
k!�1

sup
n

E n
X

ti<ãn, N�
k

jÄAn,N�
t i
j2 � 0, N 2 N: (12)

On the other hand, by standard arguments, for j > k,
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E n
X
ti2DK

���� X
ui2D

tiÿ1, t i
j

, ul<ãn, N�
j

E n(ÄX n,N�
u l
jF n

u lÿ1
)

����2

< 2E n
X

ti2DK

���� X
ui2D

tiÿ1, t i
j

, ul<ãn, N�
j

E n(ÄX n,N�
u l
jF n

ulÿ1
)ÿ ÄAn,N

u l

����2
0@ 1A� 2E n

X
t i<ãn, N�

k

jÄAn,N�
t i
j2

< 2E n
X

ui2D
tiÿ1, t i
j

, ul<ãn, N�
j

jE n(ÄAn,N�
ul
jF n

u lÿ1
)ÿ ÄAn,N�

ul
j2

0@ 1A� 2E n
X

t i<ã n, N�
k

jÄAn,N�
t i
j2

< 2E n
X

ui2D
tiÿ1, t i
j

, ul<ãn, N�
j

jÄAn,N�
ul
j2

0@ 1A� 2E n
X

t i<ãn, N�
k

jÄAn,N�
t i
j2:

Therefore, by (12),

sup
n

sup
j>k

E n
X

ti2DK

���� X
ui2D

tiÿ1, t i
j

, ul<ãn, N�
j

E n(ÄX n,N�
u l
jF n

u lÿ1
)

����2 ! 0, as k ! �1,

which gives the condition (i) of UTD, when combined with (10) and (11).

Assume additionally that the condition (4) is satis®ed with p � 2. Since for every

subdivision 0 � s0 < s1 < . . . < sm � T such that si 2 Dk , m, k 2 N

Pn
Xm

i�1

jÄX n
si
j2 . 2C

 !
<

4N 2

C2
� Pn(ó n,N� , T )� Pn

Xm

i�1

jÄAn
si
j2 . C

 !
,

it follows by (10) that the condition UTD(2) holds true.

(i)) (ii) by the method previously used by FoÈllmer (1981) one can show that, for every

n 2 N, X n is an F n Dirichlet process, i.e. X n
t � M n

t � An
t , where M n is an F n local

martingale and An is an F n adapted process of 0-quadratic variation along Dk such that

lim
k!�1

sup
n

Pn sup
t<T

���� X
t i2D t

k

E n(ÄX n,N
ti
jF n

tiÿ1
)ÿ An,N

t

����. E
 !

� 0, E. 0, N 2 N,

which implies that

lim
k!�1

sup
n

Pn sup
t<T

X
t i2D t

k

����E n(ÄX n,N
ti
jF n

tiÿ1
)ÿ ÄAn,N

ti

����2 . E

0@ 1A � 0, E. 0, N 2 N: (13)

Therefore
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sup
n

Pn
X
t i2Dk

jÄAn,N
ti
j2 . E

 !
< sup

n

Pn
X
t i2Dk

2jE n(ÄX n,N
ti
jF n

tiÿ1
)ÿ ÄAn,N

ti
j2 .

E
2

 !

� sup
n

Pn
X
ti2Dk

2jE n(ÄX n,N
ti
jF n

tiÿ1
)j2 .

E
2

 !
;

hence we conclude from (13) that

lim
k!�1

sup
n

Pn
X
ti2Dk

jÄAn,N
ti
j2 . E

 !
< lim

k!�1
sup

n

Pn
X
t i2Dk

jEn(ÄX n,N
ti
jF n

tiÿ1
)j2 .

E
2

 !
:

Applying (i) of UTD yields (3). Similarly, for every C 2 R�,

Pn sup
t<T

jAn,N
t j2 . C

� �
< lim inf

k!�1
Pn sup

t<T

2

���� X
t i2Dt

k

E n(ÄX n,N
ti
jF n

tiÿ1
)

����2 .
C

2

0@ 1A:
Let än,N

k,C � infft;
P

t i2Dt
k
jÄX n,N

ti
j2 . C1=2g for n, k, N 2 N and C 2 R�. By applying

Doob's inequality to the discrete martingale
P

ti2Dt
k
fE n(ÄX n,N

ti
jF n

tiÿ1
)ÿ ÄX n,N

ti
g we have

Pn sup
t<T

2

���� X
ti2Dt

k

E n(ÄX n,N
ti
jF n

tiÿ1
)

����2 .
C

2

0@ 1A
< Pn sup

t<T

4

���� X
ti2D t

k

fE n(ÄX n,N
ti
jF n

tiÿ1
)ÿ ÄX n,N

ti
g
����2 .

C

4

0@ 1A� Pn sup
t<T

4jX n,N
t j2 .

C

4

� �

< Pn(än,N
k,C , T )� 4

C
E n

X
ti<än, N

k,C

jÄX n,N
ti
j2 � Pn sup

t<T

4jX n,N
t j2 .

C

4

� �

< Pn(än,N
k,C , T )� 4

C
(C1=2 � 4N 2),

provided that C > 16N 2. Since owing to UTD (ii)

lim
C!�1

sup
k

sup
n

Pn(än,N
k,C , T ) � 0, N 2 N,

it follows by (12) that limC!�1supn Pn(sup t<T jAn,N
t j2 . C) � 0, N 2 N. Consequently, the

families of random variables fsup t<T jAn
t jg as well as fsup t<T jM n

t jg are bounded in

probability (by UTD (i) limC!�1 supn Pn(sup t<T jX n
t j. C) � 0). Hence we deduce also

boundedness in probability of f[M n]Tg and the ®rst assertion is proved.

Now, assume additionally that the family of random variablesXm

i�1

jÄX n
si
j2; 0 � s0 < . . . < sm � T , si 2 Dk , m, k, n 2 N

( )
is bounded in probability. Since boundedness in probability of
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Xm

i�1

jÄM n
si
j2; 0 � s0 < . . . < sm � T , si, 2 Sk , m, k, n 2 N

( )
is implied by the boundedness of fsup t<T jM n

t jg, the condition (4) with p � 2 holds true and

the proof is complete. u

It is possible to give a slightly simpler characterization of UTD in the case when the

sequence fX ng is such that fsup t<T jX n
t j; n 2 Ng is bounded in probability.

Corollary 1. Assume that fX ng is a sequence of processes such that fsup t<T jX n
t j; n 2 Ng is

bounded in probability. fX ng satis®es UTD (or UTD(2)) if and only if (2) and (3) hold true

(or (4) with p � 2 and (3) hold true).

Proof. From the boundedness in probability of fsup t<T jX n
t jg and fsup t<T jAn

t jg we deduce

the same property also for f[M n]Tg. Owing to Proposition 1 the proof is complete. u

3. Stability of Dirichlet processes

In this section the main stability theorems for a sequence of Dirichlet processes fX ng are

given. First, we consider the case when the sequence fX ng is weakly convergent.

Theorem 1. Assume that fX ng is a sequence of Dirichlet processes satisfying UTD (or

UTD(2)). If X n !D X in C([0, T ], R) then

(i) X is a G Dirichlet process for some ®ltration G such that F X � G (or X 2 D 2)

and

(X n, [X n])!
D

(X , [X ]) in C([0, T ], R2),

(ii) if f 2 C 1, then

X n,

�:
0

f (X n
s ) dX n

s

� �
!
D

X ,

�:
0

f (X s) dX s

� �
in C([0, T ], R2),

(iii) if fY ng is another sequence of Dirichlet processes satisfying UTD with respect to

the same ®ltrations as fX ng and (X n, Y n)!D (X , Y ) in C([0, T ], R2), then

(X n, Y n, [X n], [Y n], [X n, Y n])!
D

(X , Y , [X ], [Y ], [X , Y ]) in C([0, T ], R5):

Proof.

(i) Let us start by proving that

sup
n

Pn sup
t<T

���� X
ti2Dt

k

jÄX n
ti
j2 ÿ [X n] t

����. E
 !

! 0, as k ! �1: (14)
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It is evident thatX
ti2Dt

k

jÄX n
ti
j2 �

X
t i2D t

k

jÄM n
ti
j � 2

X
ti2Dt

k

ÄM n
ti
ÄAn

ti
�
X
t i2Dt

k

jÄAn
ti
j2:

Owing to Proposition 1,

sup
n

Pn sup
t<T

���� X
t i2D t

k

jÄX n
ti
j2 ÿ

X
ti2Dt

k

jÄM n
ti
j2
����. E

 !
! 0, as k ! �1: (15)

On the other hand by ItoÃ's formula for t 2 Dk,

[X n] t � [M n] t �
X
t i2Dt

k

jÄM n
ti
j2 ÿ 2

X
t i2Dt

k

�
( tiÿ1, t i]

(M n
s ÿ M n

tiÿ1
) dM n

s :

By tightness of fX ng and by (3), supn Pn(max ti2Dk
jÄM n

ti
j. E)! 0, as k ! �1. Denote

N n
ti
� sups2( t iÿ1, t i]jM n

s ÿ M n
tiÿ1
j, n 2 N, ti 2 Dk . We shall also show that

sup
n

Pn max
ti2Dk

jN n
ti
j. E

� �! 0, as k ! �1: (16)

Assume for simplicity that sup t<T jM n
t j < C, n 2 N. By the lemma of Dvoretzky for every

E, ä. 0

Pn max
ti2Dk

jN n
ti
j. E

� �
< ä� Pn

X
ti2Dk

Pn(N n
ti

. EjF n
tiÿ1

) . ä

 !
:

Since, owing to the Chebyshev inequality for continuous martingales, for every E, ç. 0,X
t i2Dk

Pn(N n
ti

. EjF n
tiÿ1

) < Eÿ4
X
t i2D t

k

E n(jM n
ti
ÿ M n

tiÿ1
j4jF n

tiÿ1
)

< ç2Eÿ4
X
ti2Dt

k

E n(jM n
ti
ÿ M n

tiÿ1
j2jF n

tiÿ1
)

� (2C)4Eÿ4
X
t i2Dk

Pn(jM n
ti
ÿ M n

tiÿ1
j. çjF n

tiÿ1
)

and E n
P

ti2Dk
Pn(jM n

ti
ÿ M n

tiÿ1
j. çjF n

tiÿ1
) � Pn(max t i2Dk

jM n
ti
ÿ M n

tiÿ1
j. ç), the property

(16) follows. Therefore

lim
k!�1

sup
n

Pn sup
t<T

X
t i2D t

k

�����
( t iÿ1, t i]

(M n
s ÿ M n

tiÿ1
) dM n

s

����. E
 !

� 0, E. 0,

and the proof of (14) is completed.

On the other hand note that, for every k 2 N, fP t i2D t
k
jÄX n

ti
j2g is a sequence of strictly

jumping processes with cadlag trajectories. Since X n !D X in C([0, T ], R),
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X
t i2D :

k

jÄX n
ti
j2!

D

X
t i2D :

k

jÄX ti
j2, k 2 N, (17)

in the Skorokhod topology J1 (see, for example, Jacod and Shiryaev (1987, Chapter VI)). The

task is now to observe that X is a process possessing the quadratic variation process [X ]. Let

j > k. Then, by (17) and (14),

P sup
t<T

���� X
t i2D t

k

jÄX ti
j2 ÿ

X
ti2Dt

k

X
ul2D

tiÿ1, t i
j

jÄX ul
j2
����. E

0@ 1A
< lim inf

n!�1 Pn sup
t<T

���� X
t i2D t

k

jÄX n
ti
j2 ÿ

X
ti2Dt

k

X
ul2D

tiÿ1, t i
j

jÄX n
u l
j2
����. E

0@ 1A
< sup

n

2Pn sup
t<T

����[X n] t ÿ
X
ti2Dt

k

X
ul2D

tiÿ1, t i
j

jÄX n
u l
j2
����. E

0@ 1A
! 0, as k !1:

Hence fP t i2D t
k
jÄX ti

j2gk2N is a Cauchy sequence for the distance in probability and there

exists a process [X ] t such that sup t<T j
P

t i2D t
k
jÄX ti

j2 ÿ [X ] tj !P 0. Using once more (17)

and (14) we obtain the convergence

(X n, [X n])!
D

(X , [X ]) in C([0, T ], R2):

Since [X ] is the process with continuous trajectories and [M n] � [X n], for every sequence

fông of stopping times, ôn < T and, for every sequence of constants fäng such that än # 0,

[M n](ôn�än)^T ÿ [M n]ô n
!
P

0:

In view of the Aldous (1978) criterion the sequence f[M n]g is tight in C([0, T ], R), which

implies that

f(X n, M n)g is tight in C([0, T ], R2):

Assume that along some subsequence (n9) � (n)(X n9, M n9)!D (X , M). Then it is easily

seen that M is a local martingale with respect to G � F (X ,M) and the process A � X ÿ M

satis®es the condition
P

ti2Dk
jÄAti

j2 !P 0, and the proof of (i) is ®nished.

(ii) It is suf®cient to use ItoÃ's formula for Dirichlet processes proved by FoÈllmer (1980)

for a function F(y) � � y

0
f (x) dx. If f 2 C 1, then F 2 C 2 and we have

F(X n
t ) � F(X n

0 )�
� t

0

f (X n
s ) dX n

s � 1
2

� t

0

f 9(X n
s ) d[X n]s

and exactly the same decomposition of F(X ). Owing to the continuity of F, f 9,

(X n, F(X n),

�:
0

f 9(X n
s )d[X n]s)!

D
(X , F(X ),

�:
0

f 9(X s)d[X ]s),

which completes the proof of (ii).
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(iii) It is evident that the sequences fX n � Y ng and fX n ÿ Y ng also satisfy UTD. On

the other hand (X n, Y n, X n � Y n, X n ÿ Y n)!D (X , Y , X � Y , X ÿ Y ) in C([0, T ], R4).

Finally, by (i),

(X n, Y n, [X n], [Y n], [X n � Y n], [X n ÿ Y n])!
D

(X , Y , [X ], [Y ], [X � Y ], [X ÿ Y ])

in C([0, T ], R6) and (iii) follows. u

We do not know whether from (i) one can deduce that X is an F X Dirichlet process. If

we want to ensure that X is a Dirichlet process with respect to the given ®ltration F it is

suf®cient to assume that all processes fX ng are adapted to F and to use the following

theorem.

Theorem 2. Assume that fX ng is a sequence of F Dirichlet processes satisfying UTD (or

UTD (2)). If

sup
t<T

jX n
t ÿ X tj!

P
0

then X is an F Dirichlet process (or X 2 D 2) and we have the convergences

sup
t<T

jM n
t ÿ M tj!

P
0, and sup

t<T

jAn
t ÿ Atj!

P
0,

where M n, M and An, A are martingale and 0-quadratic variation parts of X n, X ,

respectively.

Proof. Let fNmg be a sequence of real numbers such that Nm " �1 and

ó n,Nm � infft; jX n
t j > Nmg � infft; jX n

t j. Nmg, m 2 N. Then owing to Lemma 1.2 of

Stroock and Varadhan (1979) and by the continuous mapping theorem for every

m 2 N, ti 2 Dk , k 2 N we have

ÄX n,Nm

ti
!
P
ÄX Nm

ti
and E(ÄX n,Nm

ti
jF t iÿ1

)!
P

E(ÄX Nm

ti
jF t iÿ1

):

Therefore, for j > k,

P
X
ti2Dk

���� X
u l2D

tiÿ1, t i
j

E(ÄX Nm

ul
jF ulÿ1

)

����2 . E

0@ 1A
< lim inf

n!�1 P
X
t i2Dk

���� X
ul2D

tiÿ1, t i
j

E(ÄX n,Nm

u l
jF ulÿ1

)

����2 . E

0@ 1A
< sup

n

sup
j>k

P
X
t i2Dk

���� X
ul2D

tiÿ1, t i
j

E(ÄX n,Nm

u l
jF u lÿ1

)

����2 . E

0@ 1A
! 0, as k ! �1: (18)
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Thus, by the arguments of FoÈllmer (1981), fP t i2D t
k
E(ÄX Nm

ti
jF tiÿ1

)gk2N is a Cauchy

sequence for the distance in probability and for every m 2 N there exists a process A(m)

such that

sup
t<T

���� X
ti2Dt

k

E(ÄX Nm

ti
jF tiÿ1

)ÿ A(m) t

����!P 0:

One can prove that A(m) t � A(m� 1) t for T < ó Nm. De®ne At � A(m� 1) t for

t 2 [ó Nm , ó Nm�1 [, m 2 N and M t � X t ÿ At. Thus M t is a local martingale and applying

(18) we deduce that
P

t i2Dk
jÄAti

j2 !P 0. As a consequence, X is a Dirichlet process with

respect to F and the sequence fX n ÿ Xg also satis®es UTD. Since sup t<T jX n
t ÿ X tj !P 0,

it follows from Theorem 1 (i) that

[M n ÿ M]T � [X n ÿ X ]T!
P

0:

Hence sup t<T jM n
t ÿ M tj !P 0 and the proof is completed. u

4. Functionals of Dirichlet processes

In what follows for a given locally integrable function f n we set Fn(y) � � y

0
f n(x) dx, n 2 N.

Proposition 2. Let fX ng be a tight in C([0, T ], R) sequence of processes satisfying UTD (or

UTD (2)). Then, for every sequence f f ng of functions uniformly bounded and equicontinuous

on all compact subsets of R�, the sequence fFn(X n)g is also a sequence of Dirichlet

processes, tight in C([0, T ], R) satisfying UTD (or UTD (2)).

Proof. By Proposition 1, fX n � M n � Ang is a sequence of Dirichlet processes such that (3)

holds true and the families of random variables f[M n]Tg and fsup t<T jAn
T jg are bounded in

probability. If we denote

N n
t �

� t

0

f n(X n
s ) dM n

s and Bn
t � Fn(X n

t )ÿ N n
t , t 2 R�,

then it is clear that fN ng is a sequence of local martingales and the families of

random variables f[N n]qg, fsup t<qjBn
t jg are bounded in probability. Therefore, owing to

Proposition 1, in order to verify that fFn(X n) � N n � Bng satis®es UTD, it is suf®cient to

check that

lim
k!�1

sup
n

Pn
X
t i2Dk

jÄBn
ti
j2 . E

 !
� 0, E. 0: (19)

Since fX ng satis®es UTD and the functions f n are uniformly bounded,

lim
k!�1

sup
n

Pn
X
t i2Dk

f 2
n(X n

t )jÄAn
ti
j2 . E

 !
� 0, E. 0:
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On the other hand by the tightness of fX ng and by the equicontinuity of f f ng we have

lim
k!�1

sup
n

Pn
X
ti2Dk

����� ti�1

t i

f n(X n
s )ÿ f n(X n

ti
) dM n

s

����2 . E

 !
� 0, E. 0,

and

lim
k!�1

sup
n

Pn
X
t i2Dk

jFn(X n
ti�1

)ÿ Fn(X n
ti
)ÿ f n(X n

ti
)(X n

ti�1
ÿ X n

ti
)j2 . E

 !

� lim
k!�1

sup
n

Pn
X
ti2Dk

�����X n
ti�1

X n
ti

f n(u)ÿ f n(X n
ti
) du

����2 . E

 !
,

< lim
k!�1

sup
n

Pn max
t i2Dk

sup
X n

ti
<u,X n

ti�1

j f n(u)ÿ f n(X n
ti
)j2
X
t i2Dk

jÄX n
ti
j2 . E

 !
,

� 0, E. 0:

Hence the proof of (19) is completed. By similar arguments we can prove that (4) with p � 2

implies that the family of random variablesXm

i�1

jBn
si
ÿ Bn

siÿ1
j2; 0 � s0 < . . . < sm � T , si 2 Dk , m, k, n 2 N

( )
(20)

is bounded in probability and thus the proof is completed. u

Corollary 2. Assume that f is a continuous function and F(y) � � y

0
f (x) dx. If X � M � A is

an F Dirichlet process (or X 2 D 2), then also F(X ) is an F Dirichlet process (or

F(X ) 2 D 2) and the local martingale part of F(X ) is equal to
� :

0
f (X s) dM s.

Proof. Let f f ng be a sequence of functions such that f n 2 C 2 and

sup
jxj<k

j f n(x)ÿ f (x)j ! 0, k 2 N:

Then, owing to Proposition 2, fFn(X )g satis®es UTD (or UTD (2)) and in view of Theorem

2 the result follows. u

Corollary 3. If X, Y are F adapted Dirichlet processes (or X , Y 2 D 2), then XY is an F
Dirichlet process (or XY 2 D 2).

Proof. Let X , Y be Dirichlet processes admitting decompositions of the form X �
M � A, Y � N � B. Clearly MN is an F semimartingale and, by the inequalityX

t i2Dk

jÄ(AB) t i
j2 < 2 sup

t<T

jAtj2
X
t i2Dk

jÄBti
j2 � 2 sup

t<T

jBtj2
X
t i2Dk

jÄAti
j2,
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AB is an F adapted process of 0-quadratic variation; hence it remains to prove that MB

and AN are F Dirichlet processes. To this end, observe that, by applying Corollary 2

with f (x) � 2x, (M � B)2 is an F adapted Dirichlet process. Therefore, MB �
1
2
f(M � B)2 ÿ M2 ÿ B2g is also an F Dirichlet process. Similarly we show that AN is an

F Dirichlet process and the ®rst assertion is proved.

Now, assume that X , Y 2 D 2. Since for every subdivision 0 � s0 < s1 < . . . < sm � T ,

such that si 2 Dk , m, k 2 NXm

i�1

jÄ(XY )si
j2 < sup

t<T

jX tj2
Xm

i�1

jÄYsi
j2 � 2 sup

t<T

jYtj2
Xm

i�1

jÄX si
j2,

and XY is a Dirichlet process it is evident that also XY 2 D 2. u

5. Stability of Dirichlet processes of class D p, p , 2

The existence of a stochastic integral for two F adapted Dirichlet processes, X , Y satisfying

(8) and (9) was proved by Bertoin (1989). Below we generalize slightly his results for

processes of class D p. As a main tool in the proof we use a stochastic version of some

inequality proved by Young (1936).

Let A1, . . . , An, B1, . . . , Bn be random variables such that EjAij p, EjBijq ,�1,

i � 1, . . . , n. Let S p,q be the largest value of the products

Xm

k�1

EjAk j p
 !1= p Xm

k�1

EjBk jq
 !1=q

,

for which Ak � Ai k�1 � . . . � Aik�1
and Bk � Bi k�1

� . . . � Bik�1
, where 1 � i1 ,

. . . , ik , . . . im�1 � m, m < n, are the corresponding sums of successive random variables

Ai and Bi, respectively.

Lemma 1. Assume that 1=p� 1=q . 1. Then

(i) there exists an index k (1 < k < n), such that

EjAk Bk j < 1

n

Xn

k�1

EjAk j p
 !1= p

1

n

Xn

k�1

EjBk jq
 !1=q

,

(ii)

E

���� X
1<r<s<n

Ar Bs

���� < 1� æ
1

p
� 1

q

� �� �
S p,q,

where æ(s) �P�1n�1 nÿs, s . 1.

Proof. We follow step by step the proof of the unequalities 2.1 and 5.1 of Young (1936).

u
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Theorem 3. Let X, Y be two F adapted Dirichlet processes such that X 2 D 2, Y 2 D p for

some p 2 [1, 2). Then there exists an F Dirichlet processes
�

X s dYs 2 D p such that

sup
t<T

���� X
t i2D t

k

X tiÿ1
ÄYti

ÿ
� t

0

X s dYs

����!P 0:

Proof. Let X , Y be two F Dirichlet processes admitting decompositions of the form

X � M � A, Y � N � B. Since the stochastic integrals
� :

0
X s dNs and

� :
0

M s dBs �
MBÿ � :

0
Bs dM s are well de®ned, i.e.

X
ti2Dt

k

X tiÿ1
ÄNti

!
P

� t

0

X s dNs and
X
ti2Dt

k

M tiÿ1
ÄBti

!
P

� t

0

M s dBs,

it is suf®cient to show that the sequence

X
t i2D t

k

Atiÿ1
ÄBti

( )
k2N

is convergent in probability. For simplicity of notation we may and shall assume that

Dk � Dk�1 and that there exists a constant K for which

E
Xm

i�1

jÄAsi
j2 < K, (21)

E
Xm

i�1

jÄBsi
j p

 !2

< K, (22)

provided that 0 � s0 < . . . < sm � T , si 2 Dk , m, k 2 N. Then, for j > k,

X
t i2D t

k

Atiÿ1
ÄBti

ÿ
X

u l2D t
j

Aulÿ1
ÄBu l

�
X
t i2Dt

k

X
ul2D

tiÿ1, t i
j

(Atiÿ1
ÿ Au lÿ1

)ÄBul

�
X
t i2Dt

k

X
ul2D

tiÿ1, t i
j

ÄAu l
ÄBu l

ÿ
X
t i2D t

k

X
ul<u m,

u l ,u m2D
tiÿ1, t i
j

ÄAul
ÄBum

:

Therefore by the HoÈlder inequality, (21) as well as by Lemma 1 (ii), for r 2 ( p, 2),
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E sup
t<T

���� X
t i2Dt

k

Atiÿ1
ÄBti

ÿ
X
ti2Dt

j

Au lÿ1
ÄBu l

����
< sup

t<T

X
ti2Dt

k

E

���� X
u l2D

tiÿ1, t i
j

ÄAu l
ÄBu l

����� X
t i2D t

k

E

���� X
u l<u m,

ul ,u m2D
tiÿ1, t i
j

ÄAul
ÄBu m

����
0B@

1CA
< K1=2

X
t i2Dk

X
ul2D

tiÿ1, t i
j

EjÄBu l
j2

0@ 1A1=2

�
X
ti2Dk

1� æ
1

2
� 1

r

� �� �
S

k,i, j

2,r ,

where S
k,i, j

2,r is the largest value of the products

Xm

n�1

EjÄAs n
j2

 !1=2 Xm

n�1

EjÄBsn
jr

 !1=r

,

for tiÿ1 � s0 < . . . < sm � ti, sn 2 D j m 2 N. On the other hand by (22) we deduce that

E
X
t i2Dk

X
ul2D

tiÿ1, t i
j

jÄBul
j2

0@ 1A p

< E
X
t i2Dk

X
ul2D

tiÿ1, t i
j

jÄBu l
j p

0@ 1A2

< K

and, for p9 � 2 p=r . p,

E
X
t i2Dk

Xm

n�1

jÄBs n
jr

 ! p9

< E
X
ti2Dk

Xm

n�1

jÄBsn
j p

 !2

< K:

Since we can assume that p . 1, the uniform integrability property for the respective families

of random variables follows. Moreover, by continuity of trajectories of B,

lim
k!�1

sup
j>k

X
t i2Dk

X
ul2D

tiÿ1, t i
j

EjÄBu l
j2 ! 0,

and

lim
k!�1

sup
j>k

X
ti2Dk

S
k,i, j

2,r ! 0:

Thus, in particular fP t i2Dt
k
Atiÿ1

ÄBti
gk2N is a Cauchy sequence, and hence convergent in

probability. Let
� t

0
As dBs denote its limit. Note that in fact we have proved thatX

t i2Dk

����Atiÿ1
ÄBti

ÿ
� ti

t iÿ1

As dBs

����!P 0: (23)

Let ðä denote a set of subdivisions of [0, T ] such that 0 � sä0 < sä1 < . . . < sä
mä � T ,

säiÿ1 ÿ säi < ä where säi 2 Dk , mä, k 2 N. The proof of (23) gives more, namely for every

E. 0 there exists ä. 0, with the property
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sup
ðä

P
Xmä

i�1

����Asä
iÿ1

ÄBsä
i
ÿ
� säi

sä
iÿ1

As dBs

���� > E

0@ 1A < E:

Now, let ð denote a set of all subdivisions of [0, T ] such that 0 � s0 < s1 , . . . , sm � T

and si 2 Dk , m, k 2 N. Since the process B satis®es (7), for every E. 0,

lim sup
C!�1

sup
ð

P
Xm

i�1

����� si

siÿ1

As dBs

���� p

> 2C

 !

< lim sup
C!�1

sup
ð

P
X

fi;jsiÿsiÿ1j<äg

����� si

siÿ1

As dBs

���� p

> C

 !

� lim sup
C!�1

sup
ð

P
X

fi;jsi siÿ1j. äg

����� si

siÿ1

As dBs

���� p

> C

 !

< E� lim sup
C!�1

sup
ð

P
X
t<T

jAtj
Xm

i�1

jÄBsi
j p > 2ÿ pC ÿ E p

 !

� lim sup
C!�1

sup
ð

P
X
t<T

����� t

0

As dBs

���� p

> 2ÿ p T

ä

� �ÿ1

C

 !
< E

and the condition (7) for the integral
� :

0
As dBs holds true, too. Moreover, since the local

martingale M satis®es (7) with p � 2, we deduce that
� :

0
X s dBs �

� :
0

M s dBs �
� :

0
As dBs

:

satis®es (7). Finally, � :
0

X s dYs �
�:

0

X s dNs �
�:

0

X s dBs,

where
� :

0
X s dNs is a local martingale and

� :
0

X s dBs satis®es (4), and hence
� :

0
dYs 2 D p.

u

Corollary 4. Let X, Y be F adapted Dirichlet processes such that X 2 D 2, Y 2 D p, for

some p 2 [1, 2). Then there exists an F Dirichlet process
�

Ys dX s 2 D 2 such that

sup
t<T

���� X
t i2D t

k

Ytiÿ1
ÄX ti

ÿ
� t

0

Y s dXs

����!P 0:

Proof. By Corollary 3, XY 2 D 2. Moreover, it follows from Theorem 3 that the process� :
0

Ys dX s de®ned by the formula� t

0

Ys dX s � Yt X t ÿ
� t

0

X s dYs ÿ [X , Y ] t, t 2 [0, T ],

has the desired properties. u
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Corollary 5. Let K, X, Y be F adapted Dirichlet processes such that K, X 2 D 2, Y 2 D p,

for some p 2 [1, 2) and let Z � � :
0

X s dYs. Then� t

0

Ks dZs �
� t

0

Ks X s dYs, t 2 [0, T ]:

Proof. By Theorem 3 and Corollary 4 the integrals
� t

0
Ks dZs and

� t

0
Ks X s dYs are well

de®ned as limits in probability of the sums fP ti2Dt
k
K tiÿ1

ÄZ ti
g and fP t i2D t

k
K tiÿ1

X tiÿ1
ÄYti
g,

respectively. Assume that Y admits the decomposition of the form Y � N � B and let

C � � :
0

X s dBs. Since the associativity formula for stochastic integrals driven by local

martingales is well known, we need to show only that� t

0

Ks dCs �
� t

0

KsXs dBs, t 2 [0, T ]:

By the de®nition,
� t

0
Ks dCs and

� t

0
Ks X s dBs are limits of the sums fP ti2Dt

k
K tiÿ1

ÄCti
g and

fP t i D t
k
K tiÿ1

X tiÿ1
ÄBti
g, respectively. On the other hand,���� X

t i2D t
k

K tiÿ1
ÄCti

ÿ
X
t i2D t

k

K tiÿ1
X tiÿ1

ÄBti

���� <
X
ti2Dt

k

jK tiÿ1
j
����� t i

t iÿ1

X s dBs ÿ X tiÿ1
ÄBti

����;
hence the results follows by (23). u

If we want to make sure that a limit process is a Dirichlet of class D p, p 2 [1, 2), it is

convenient to consider the following UTD( p) condition. We say that a sequence of Dirichlet

processes fX n � M n � Ang satis®es UTD( p) condition for p 2 [1, 2) if

UTD( p): the families of random variables f[M n]Tg andXm

i�1

jAn
si
ÿ An

siÿ1
j p; 0 � s0 < . . . < sm � T , si 2 Dk , m, k, n 2 N

( )
are bounded in probability.

Remark 2. Since in the case of continuous semimartingales (UT) is satisi®ed if and only if

the families of random variables

f[M n]Tg, fvar(An)Tg are bounded in probability

(see, for example, Kurtz and Protter (1991a) and MeÂmin and SøominÂski (1991)), the condition

UTD(1) is exactly equivalent to UT.

Corollary 6. Assume that fX ng, fY ng are two sequences of Dirichlet processes satisfying

the conditions UTD(2) and UTD( p) for some p 2 [1, 2).

(i) If Y n !D Y in C([0, T ], R), then Y is a G Dirichlet process for some ®ltration G
such that F Y � G , Y 2 D p and

(Y n, [Y n])!
D

(Y , [Y ]) in C([0, T ], R2):
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(ii) If (X n, Y n)!D (X , Y ) in C([0, T ], R2), then

X n, Y n,

�:
0

X n
s dY n

s , [X n, Y n]

� �
!
D

X , Y ,

�:
0

X s dYs, [X , Y ]

� �
in C([0, T ], R4):

Proof. By using the estimations from the proof of Theorem 3 we observe that, for every

E. 0,

lim
k!�1

sup
n

Pn sup
t<T

���� X
ti2Dt

k

Y n
tiÿ1

ÄY n
ti
ÿ
� t

0

Ys dYs

����. E

0@ 1A � 0 (24)

and

lim
k!�1

sup
n

Pn sup
t<T

���� X
t i2D t

k

X n
tiÿ1

ÄY n
ti
ÿ
� t

0

X s dYs

����. E

0@ 1A � 0: (25)

In view of (24) and the integration-by-parts formula

lim
k!�1

sup
n

Pn sup
t<T

���� X
t i2D t

k

jÄY n
ti
j2 ÿ [Y ] t

����. E
 !

� 0

and the proof of (i) is ®nished. Finally we deduce (ii) by (i) and (25). u

Note that UTD( p) for p 2 [1, 2) need not imply UTD. Indeed, (3) need not hold true!

However, by the above corollary we deduce that, if fX n � M n � Ang is tight in

C([0, T ], R), then UTD( p)) UTD(2). Namely, by Corollary 6 (i), f[M n] � [X n]g is tight

in C([0, T ], R). Hence fM ng and fAng are tight in C([0, T ], R), too. Therefore in

particular

lim
k!�1

sup
n

P max
ti2Dk

jÄAn
ti
j. E

� � � 0, E. 0,

and in this case (3) is a consequence of (4).

Corollary 7. Assume that fX ng is a sequence of F Dirichlet processes satisfying UTD( p). If

sup
t<T

jX n
t ÿ X tj!

P
0,

then X is an F Dirichlet process of class D p and we have the convergences

sup
t<T

jM n
t ÿ M tj!

P
0 and sup

t<T

jAn
t ÿ Atj!

P
0,

where M n, M and An, A are martingale and 0-quadratic variation parts of X n, X,

respectively.

Proof. This easily follows because of Corollary 6. u
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6. Functionals of semimartingales

Given ã 2 (0, 1] and fLkg � R�, Lloc(ã; fLkg) denotes the class of functions f such that

j f (x)ÿ f (y)j < Lk jxÿ yjã, jxj, jyj < k, k 2 N:

Proposition 3. Let fX ng be a tight-in-C([0, T ], R) sequence of semimartingales satisfying

UT. If f f ng is a sequence of functions such that f f ng � Lloc(2=pÿ 1; fLkg) for some

p 2 [1, 2), fLkg � R� and j f n(0)j < C, n 2 N, for some constant C . 0, then fFn(X n)g is

a tight-in-C([0, T ], R) sequence of Dirichlet processes satisfying processes satisfying

UTD( p).

Proof. Following the notation from the proof of Proposition 2 and according to the de®nition

of UTD( p) it is suf®cient to prove (20). Without loss of generality we may and shall assume

that j f nj, var An
T , [M n]T , sup t<T jX n

t < K for some constant K . 0. Fix 0 � s0 <
. . . < sm � T , si 2 Dk , and m, k, n 2 N. Then, by the Jensen inequality,

Xm

i�1

f p
n (X n

si
)jÄAn

si
j p < K p(var An

T ) p < K2 p:

Next by the Burkholder±Davis±Gundy and the HoÈlder inequalities we have

Xm

i�1

E

����� si�1

si

f n(X n
s )ÿ f n(X n

si
) dM n

s

���� p

< C p

Xm

i�1

E

� si�1

si

j f n(X n
s )ÿ f n(X n

si
)j2 d[M n]s

 ! p=2

< Cp

Xm

i�1

E sup
si<s , si�1

j f n(X n
s )ÿ f n(X n

si
)j p([Mn]si�1

ÿ [Mn]si
) p=2

< Cp

Xm

i�1

E sup
si<s , si�1

j f n(X n
s )ÿ f n(X n

si
)j2 p=(2ÿ p)

 !(2ÿ p)=2 Xm

i�1

E([Mn]si�1
ÿ [Mn]si

)

 ! p=2

:

Since f f ng are HoÈlder equicontinuous with exponent 2=pÿ 1,

Xm

i�1

E sup
si<s,si�1

j f n(X n
s )ÿ f n(X n

si
)j2 p=(2ÿ p)

� �
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<
Xm

i�1

L
p
k E sup

si<s,si�1

jX n
s ÿ X n

si
j2

< 2L
p
k

Xm

i�1

E sup
si<s,si�1

jM n
s ÿ M n

si
j2 � E sup

si<s,si�1

jAn
s ÿ An

si
j2

� �

< 2L
p
k

Xm

i�1

f4E([Mn]si�1
ÿ [Mn]si

)� E(var An
si�1
ÿ var An

si
)2g

< constant(E[Mn]T � ECvar An
T ):

Finally

Xm

i�1

jFn(X n
si�1

)ÿ Fn(X n
si

)ÿ f n(X n
si

)(X n
si�1
ÿ X n

si
)j p

�
Xm

i�1

�����X n
si�1

X n
si

f n(u)ÿ f n(X n
si

) du

���� p

<
Xm

i�1

jÄX n
si
j pÿ1

�X n
si
_X n

si�1

X n
si
^X n

si�1

j f n(u)ÿ f n(X n
si

)j p du

< LK

Xm

i�1

jÄX n
si
j pÿ1

� X n
si
_X n

si�1

X n
si
^X n

si�1

juÿ X n
si
j2ÿ p du

< LK

Xm

i�1

jÄX n
si
j pÿ1jÄX n

si
j2ÿ pjÄX n

si
j

� LK

Xm

i�1

jÄX n
si
j2

and the condition UT implies boundedness in probability of the last sum. By using the above

(20) easily follows. u

Corollary 8. Assume that f 2 Lloc(2= pÿ 1; fLkg) and set F(y) � � y

0
f (x) dx. If X is an F

semimartingale, then F(X ) is an F Dirichlet process of class D p.

Proof. By analogy to the proof of Corollary 2 from Proposition 3 and Theorem 2 the result

follows. u

If X is a Wiener process, i.e. X � W , then it was observed by Wang (1977) and F(W ) is

a Dirichlet process assuming only that
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�
K

f 2(x) dx ,�1 for every compact subset of R: (26)

We shall show that in fact F(W ) 2 D 2. Owing to Theorem 3 and Corollary 2 this fact can be

useful for construction of stochastic integral driven by F(W ).

Corollary 9. Assume that f satis®es (26) and denote F(y) � � y

0
f (x) dx. If W is a Wiener

process, then F(W ) 2 D 2.

Proof. By FoÈllmer et al. (1995), F(W ) t � Mt � At, where

At � 1
2
[ f (W ), W ] t �

� t

0

f (Ws) d�Ws ÿ
� t

0

f (Ws) dWs,

� A1
t ÿ A2

t , t 2 R�,

and A1 � � :
0
(Ws) d�Ws is a backward integral of f (Ws) driven by Ws. Then it is a simple

matter to check that A1 and A2 satisfy (7) with p � 2. u

7. Convergence of solutions to stochastic differential equations

Let fZ ng be a sequence of continuous semimartingales. Consider a sequence of solutions to

SDEs of the form

Y n
t �

� t

0

ó n(Y n
s ) dZ n

s �
� t

0

ó nó 9n(Y n
s ) d[Z n]s, t 2 R�, (27)

where ó n is a function having a continuous derivative ó 9n, n 2 N.

Proposition 4. Assume that fZ ng is a sequence of semimartingales satisfying UT and

Z n !D Z. Let fY ng be a sequence of solutions to SDE (27), where E < ó n < K for some

constants E, K . 0. If ó n ! ó uniformly on compact subsets of R and ó 2 is a continuous

function (or ó 2 2 Lloc(2=pÿ 1; fLkg) for some p 2 [1, 2), fLkg � R�), then fY ng is

C([0, T ], R) tight and its every limit process Y is an F Y Dirichlet process of class D 2 (or

Y 2 D p) and satis®es the equation

Yt �
� t

0

ó (Ys) dZs � At, t 2 R�: (28)

Proof. De®ne Gn(y) � � y

0
óÿ2

n (u) du, n 2 N. Then, for every n 2 N, X n � Gn(Y n) is a

solution to the SDE

X n
t �

� t

0

gn(X n
s ) dZ n

s , t 2 R�,

where gn(x) � 1=ó n � Gÿ1
n (x) because Gn is a transformation which allows elimination of

On the convergence of Dirichlet processes 637



drift. One can see that Kÿ1 < gn < Eÿ1 and gn ! g uniformly on compact subsets of R.

Therefore fX ng is C([0, T ], R) tight and satis®es UT. We may and shall assume that

(X n, Z n)!
D

(X , Z), in C([0, T ], R2):

Then, owing to Theorem 2 from MeÂmin and SøominÂski (1991) for example, X satis®es the

equation

Xt �
� t

0

ó ÿ1(F(Xs)) dZs, t 2 R�, (29)

where F is the inverse function of G, G(:) � � :
0
ó ÿ2(u) du. Obviously X is a semimartingale

and by Stricker's theorem it is a semimartingale with respect to its natural ®ltration F X . Let

Fn denote the inverse function of Gn. Since Fn ! F uniformly on compact subsets of R,

Y n � Fn(X n)!D F(X ). On the other hand by a simple calculation it is easy to verify that

F(x) � � x

0
f (u) du, where f (u) � ó 2 � F(u). Since f is continuous, so, by Corollary 2,

Y � F(X ) 2 D 2 with respect to ®ltration F Y � F X . Similarly, if ó 2 2 Lloc(2=pÿ 1; fLkg),
then, owing to corollary 8, Y 2 D p. Finally, by (28),

Yt � F(X t) �
� t

0

ó 2(F(X s)) dX s � At

�
� t

0

ó (Ys) dZs � At, t 2 [0, T ],

i.e. Y satis®es (28). u

NOTE ADDED IN PROOF

In the proof of equivalence of UTD and the condition (ii) of Proposition 1 we have used the

fact that Dk � Dk�1 for k 2 N. However, in all the subsequent proofs making use of UTD

we have used only its characterisation given in Proposition 1. Therefore, if we adopt the

condition (ii) of Proposition 1 as the de®nition of UTD, then all the results of Sections 3±7

remain true irrespective of the fact whether Dk � Dk�1 for k 2 N or not.
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