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On the convergence of Dirichlet processes
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For a given weakly convergent sequence {X"} of Dirichlet processes we show weak convergence of
the sequence of the corresponding quadratic variation processes as well as stochastic integrals driven
by the X" values provided that the condition UTD (a counterpart to the condition UT for Dirichlet
processes) holds true. Moreover, we show that under UTD the limit process of {X"} is a Dirichlet
process, too.
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1. Introduction

Let {X"} be a sequence of semimartingales defined on possibly different probability spaces
(Q", F", P") and adapted to different filtrations .7 ", i.e. every X" can be decomposed into
the sum of two processes:

X' = M"+ A", te[o, T, (1)

where M" is an .7 " local martingale and 4" is an .7 " adapted process with locally bounded
variation. In the theory of convergence of semimartingales and stochastic integrals the
condition UT introduced by Stricker (1985) has turned out to be very useful. In terms of
conditional expectations it has the form:

UT: lim sup P"[6"™" < T] =0 and for everyN € N the family of random variables

N—+oo

k
DB = XN T ) 0=sg<...<si=T,keN,neN

j=1

is bounded in probability. Here o™V = inf{z; |X”| = N} and X"V denotes the process X"
stopped at o™V, n € N.

Under this condition, Jakubowski et al. (1989) proved a functional limit theorem for
stochastic integrals. Next, with the use of UT, stability theorems for the stochastic
differential equations were proved in the series of papers by Mémin and Stominski (1991)
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and Stominski (1989; 1996). On the other hand Kurtz and Protter (1991a, b) showed that
employing an UT-like condition (“good sequences of semimartingales™) leads to similar
results on the convergence of stochastic integrals and solutions of stochastic differential
equations (SDEs).

A simple example of stability theorem under UT is the following. Assume that {X"} is a
sequence of continuous semimartingales and X" — X in distribution in C([0, 7], R). Then
UT reduces to the condition

{var(4")r; n € N} is bounded in probability

(where var(A4")r denotes the variation of 4" on the interval [0, 7]) and implies that X is a
semimartingale with respect to its natural filtration .7 % and (X", [X"]) — (X, [X]) in
distribution in C([0, T, R?) (see, for example, Jacod (1980), Stricker (1985) and Jakubowski
et al. (1989)).

In Section 2 we introduce a counterpart of the condition UT for sequences of continuous
Dirichlet processes in the sense of Follmer (1981) (we call it condition UTD) and we give
simple characterizations of UTD. Let {D;} be a sequence of subdivisions of [0, 7], such
that the mesh size |Dy| = maxyep,|tiy1 — #;| tends to 0 as k — +oo. Assume now that
{X"} is a sequence of Dirichlet processes along Dy, i.e. X" has the decomposition of the
form (1), where M" is an .7 " local martingale but 4" is only an .7 " adapted process such
that

E |AZ—AZI|2—>0 as k — oo.
LI
t,€Dy p

As an example we can show that, if {sup,<7|X7|; n € N} is bounded in probability, then
UTD is satisfied if and only if

{sup|A:’|; ne N} is bounded in probability )
=T
and
lim supP" ( > lap—4; P >e> =0, >0 €))
% n €Dy

Section 3 contains some stability theorems for continuous Dirichlet processes as well as
for stochastic integrals driven by Dirichlet processes satisfying UTD. Suppose that X" — X
in distribution in C([0, T], R), where {X"} is a sequence of Dirichlet processes satisfying
(2) and (3), and hence UTD. Then in Theorem 1 we show that X is a Dirichlet process with
respect to some filtration & such that .7 ¥ C ¥ and (X", [X"]) — (X, [X]) in distribution
in C([0, T], R?). If we want to make X a Dirichlet process with respect to the given
filtration .7, it is sufficient to assume that all Dirichlet processes X" are adapted with
respect to the same filtration .7 and X” — X in probability in C([0, 7], R) (see Theorem
2).

In Section 5 we consider Dirichlet processes satisfying UTD and such that the family of
random variables
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{Z|A;_A:‘.]|P;O:SO$ o.Ssp=1T,s;€ Dy, m, k, nEN} 4
i=1

is bounded in probability for some p € [1, 2]. In this case we say that a sequence {X"}
satisfies UTD(p) (note that UTD(1) is equivalent to UT). Assume that X, Yare two Dirichlet
processes adapted to the same filtration and satisfying the above condition with p <2 and
p = 2, respectively. By using a stochastic version of some inequality of Young (1936) we
prove in Theorem 3 that then it is possible to construct a stochastic integral fo X;dY,. As a
consequence we generalize slightly Bertoin’s (1989) result on construction of stochastic
integral for processes with bounded p variation. Next, we prove a stability theorem for
sequences of such stochastic integrals.

In Sections 4, 6 and 7 we give examples of sequences of processes satisfying UTD and
UTD(p). We study functionals of Dirichlet processes, functionals of semimartingales and
solutions of some special SDEs driven by continuous semimartingales. The case of diffusion
processes corresponding to operators in divergence form was considered by Rozkosz and
Stominski (1998).

Now, we introduce some notation used throughout the paper. C([0, T], R¥) is the space
of continuous mappings x, x: R — R*, with the topology of uniform convergence on
compact subsets of R*. In this paper we consider exclusively processes X with trajectories
in C([0, T], R¥) or their discretizations, which are strictly jumping processes. Unless
otherwise stated, we assume that X(0) = 0; however, our results are also true without this
restriction. Denote D} = D N[0, ¢], D}* = D{\D} for all £, s € [0, T], t < s, k € N. For a
given process X we use also the notation AX,, = X, — X, ,,5; € Dy, i, k € N, and [X]
denotes a quadratic variation process of X along Dy, i.e. for ¢t € [0, T], [X],; is a limit in
probability of the sequence {}_;cp|AX} |>} en. Finally, — and —p denote convergence
in law and in probability, respectively.

2. Dirichlet processes and condition UTD

Definition 1. We call X an .7 Dirichlet process if it admits the decomposition
Xt:Mt+Ata IG[O, T]9 (5)

where M is an .7 local martingale and A is an .7 adapted process of 0-quadratic variation
along Dy, i.e.

Z |AA4, |? —0, as k — 400. (6)

t;€Dy,

Note that, in the original definition of Follmer (1981), M and A4 in the decomposition (5)
are square integrable and (6) has the form EY_,cp,|A4,[> — 0.
In the paper we also consider processes with bounded p variation in the following sense.

Definition 2. We say that an .7 Dirichlet process X = M + A is of class P for p € [1, 2] if
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additionally the family of random variables
{Z|AAS‘-|I);0:S()$...$Sm:T,S,'EDk,m,k€N} (7)
i=1

is bounded in probability.

Note that Bertoin (1986, 1989) developed a theory of Dirichlet processes assuming
instead of (6) and (7) slightly more restrictive assumptions

+00
lim EY |[X,, — Xy, > =0, 8
\-71|IEO ;| 0 i | (3)
for all subdivisions [0, 7] by sequences of .7, stopping times .7 =(0=0¢ <0 <
. < T) such that |7 | = Esup;(0; —0,-1) — 0 and
+00 1/p

supE(Z [ Xo, —Xo”l”> < oo, ©)

7 i=1

respectively.

It is clear that the families of Dirichlet processes 277 introduced above have the
following simple properties: &' is a family of .7 semimartingales and for 1 < p < p’ <2
we have P C &P C 2. It is also straightforward to observe that &/? consists of
Dirichlet processes X such that the family of random variables

{Z AX,
i=1

is bounded in probability. Note that the class of Dirichlet processes is larger than &2, as the
following deterministic example shows.

2;0:sos...<sm:T,s,»eDk,m,keN}

Example 1. Take the sequence of dyadic subdivisions of [0, 1]: Dy = {j27%, 0 < j < 2%}
and let X be the process defined for all integer p = 1 by

22p
v AU +2172p) if te[l—21"%2r1-2727],
P
N _22p+l
Xe= — (= 14+277) i e[l -2, 1272,
P
0 otherwise.

Then, X is a piecewise affine function, equal to 0 at each =1 —2!"2” and such that
X, =1/p'/? for t =1—-272P If Sy = {1 =272k, k < 2N}, then Sy C D,y and

1
SAx =2 ) T

$;ESN I<i<N
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This sum is of order in N, which is unbounded; hence X does not belong to &2. On the other
hand, we can explicitly compute the 2-variation of X along Dy:

k/2)
Saxp=Y[ Y anps Y janp
€Dy p=1 _1,6[172’2F+‘,172’2P]QD;¢ ti€[1-2-2pr,1-2-2r-11NDy
w2 [ 0\ 2 1\ 2
B Z 2k72p 22p k +2k72p71 22p+1 k
- P2 P2
p=1 |
[£/2] 52
2 P
=3x27Fy ",

Now, for fixed ¢ >0 and every integer /, 4¢ < [ <k/2,

sz 227 1 & 2p—k k k

- ‘< p— i

2 Z » \l+1 21212 + 27 Z <2+2 X constant
r= p=I+

and, for £ sufficiently large,
[k/2] 52
22p
27k — =g,

i.e. X is a Dirichlet process.

Let {X"} be a sequence of continous processes defined possibly on different probability
spaces (Q", F", P") and adapted to different filtrations .7 ", n € N. We say that the
sequence {X"} satisfies the condition UTD if

UTD: (i) NliT sup P"(c ™Y <T)=0 and
" 2
> EMAXENT )| >e =0, €>0, N eN,

i 1.t
u;EDj’ 1:1i

lim supsup P” Z

k—+o00 5 j=k HEDy

where o™ = inf{t; |X"| = N} and X™" denotes the process X" stopped at o™V,
and D, C Dy, keN,

(ii) { S IAX;P kone N} is bounded in probability.

t, €Dy
Similarly we say that a sequence of continous processes {X "} satisfies UTD(2) if
UTD(2): the condition (i) of UTD holds and the family of random variables
{Z|AX§.|2;0=SO$ . =<s,=T,s; € Dy, m, k, nGN}
i=1

is bounded in probability.
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Remark 1. By using the arguments from Follmer (1981) one can prove that if the condition
UTD is satisfied then for every n € N, X" is an . " Dirichlet process in the sense of
Definition 1, i.e.

X'=M!'+4",  te[0, Tl

n

where M" is an .# " local martingale and A" is an .7
variation along Djy.

adapted process of 0-quadratic

Proposition 1. Let {X"} be a sequence of .7 | adapted processes. The following two
conditions are equivalent.

(1) {X"} satisfies UTD (on UTD(2)).

(ii) {X" = M" + A"} is a sequence of Dirichlet processes such that (3) holds true and
the families of random variables {[M"]r}, {sup,<r|A4|} are bounded in probability (on (3)
and (4) with p =2 hold true and {[M"]r} is bounded in probability).

Proof. (ii) = (i) By the boundedness in probability of {[M"}7}, {sup,<r|4}|} we deduce
that the sequence {sup,<r|X”|} is bounded in probability as well, and in particular,

Jim_sup P (o mN < T) =0, (10)

where o V" = inf{#; |4} \>N}/\0"N, n, N € N. In the sequel for every n, N € N we
write XN MmNt gm N to denote the processes X", M", A" stopped at o™ v
By 1t0’s formula,

> AMIN ] =2 > J (MY — MY AM Y (MY g, neN,
ti€Dy €Dy Y (tim1,ti]

and for every C, N, by the Chebyshev inequality, P”(Z,ieDk|AM;'I’N*|2>C) < 4N?/C2.
Therefore

4N? *
P"(Z AXZ|2>2C> $F+P”(o”’N’ <T)+P”<Z |AA;|2>C>;

t; €Dy t;, €Dy

hence the condition (i*i) of UTD follows by (32 and (10).
If we denote yp" =inf{z; Zt,eD;\AA?,’N |?>1} for n, k, N €N, then using once
more (3) and (10) it is clear that

Jim sup PN <T) =0, N eN, (11)
and that
li E” AA™NT 12 = 0, N eN. 12
Jm sipE? 2 AT "
t,sy”‘

On the other hand, by standard arguments, for j = £,
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2
E” E E E"(AX |7Z; 1
€Dk 1¢iED[]."’1'l“,u,§y7’N*
2
n E”" n,N n n,N* 2
=<2E g g (AXW T ) — DAy +2E E |AA™ |
ti€Dx uieD;[’l’ri,ztlsy;'J t,SyZ’N*
* —~ * *
<2B" > E"AALN |70 )= AN P +2B" Y A4
u; GD fio1:1i Ml<}/n N*¥ tig}/z,N*
* *
<2E" > AN PY 2B Y A4
lt,-ED;."’l’l“,u/Sy]'.”N* tiSyZ’N*
Therefore, by (12),
2
supsup E” g g v 7)) =0, as k — +oo,
n ]21{ t:€Dg

ti_q.t; V*
u,-EDj.’ ! ’,u,éy]”"

which gives the condition (i) of UTD, when combined with (10) and (11).
Assume additionally that the condition (4) is satisfied with p = 2. Since for every
subdivision 0 = sg < s < ... <15, = T such that s;, € Dy, m, k € N

n 4N? * n
(Siariroe) <4 i n ()

i=1 i=1

it follows by (10) that the condition UTD(2) holds true.

(i) = (ii) by the method previously used by Follmer (1981) one can show that, for every
neN, X" is an 7" Dirichlet process, i.e. X7 = M7} + A}, where M" is an .7 " local
martingale and 4" is an .7 " adapted process of 0-quadratic variation along Dj such that

S ENAXPNT ) - AN >
t;€D,

k—+oo g I<T

lim sup P” (sup 5) =0, >0, NeN,

which implies that

2

lim sup P" | sup » >c| =0, €>0,NeN. (13)

k—+o00 t<TtED’

E"AXPNTY ) — AApN

Therefore
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~ N2 < €
supP”<Z|AA”N2>e> supP”(Z 20E"AXPNTY ) AA,I_N|2>§>

t;€Dy t;€ Dy

t, €Dy

n n n,N|n 2 € .
+51ipP ( E 2[E"AXTN T ) >2>,
hence we conclude from (13) that

lim sup P” AA”N2>6 < 11m sup P” 2>
Jim _sup (ZI ) ip (tEDk b=

t;€Dy

Applying (i) of UTD yields (3). Similarly, for every C € R™,

e,
>7

> EMAXpNT )| >

t;,eD},

pP" (sup|A;”N|2 > C) hm mf P"| sup2

t<T t<T

Let 6Zg—mf{t ZteDf|AX”N\2 C'?} for n, k, N €N and C € R*. By applying
Doob’s inequality to the discrete martingale ,cp {E"(AX]; nN |77 ) —AX ;’;N } we have

2
c
P"(sup2| Y E"AXPNT) ) )| >3
I<T ;€D
N N 2 C NZ C
<p" su1;4 S {EMAXPNTL ) - AX VY > +P”(su1;4|X" ?> >
= €D} =

4 c
< P'Ofe <T)+5E" > [AXEYP + P <§1<11;4|Xf’N|2 >Z>

—5nN
tl\ék,C

< PO} <T)+— (cl/2 +4N?),
provided that C = 16N2. Since owing to UTD (ii)
lim supsupP(éZ]g<T)—O N eN,

C—+oo [
it follows by (12) that 1imcﬂ+oosup,,P"(sup,gT|A:”N\2 >(C) =0, N € N. Consequently, the
families of random variables {sup,<r|47|} as well as {sup,<y|M?7|} are bounded in
probability (by UTD (i) limc_ 4o sup, P"(sup,<r|X7|> C) =0). Hence we deduce also
boundedness in probability of {[M"]r} and the first assertion is proved.
Now, assume additionally that the family of random variables

m
{Z|AX;’I_|2;OZSO$...Ssm:T,sieDk, m, k,nEN}

i=1

is bounded in probability. Since boundedness in probability of
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{ZAM;’[|2;0:s0$...Ssm:T,s,«,ESk, m, k,nEN}

i=1

is implied by the boundedness of {sup,<7|M?|}, the condition (4) with p = 2 holds true and
the proof is complete. ]

It is possible to give a slightly simpler characterization of UTD in the case when the
sequence {X"} is such that {sup,<y|X”|; n € N} is bounded in probability.

Corollary 1. Assume that {X"} is a sequence of processes such that {sup,<r|X7|; n € N} is
bounded in probability. {X"} satisfies UTD (or UTD(2)) if and only if (2) and (3) hold true
(or (4) with p =2 and (3) hold true).

Proof. From the boundedness in probability of {sup,<r|X7|} and {sup,<r|4}|} we deduce
the same property also for {{M"]r}. Owing to Proposition 1 the proof is complete. O

3. Stability of Dirichlet processes

In this section the main stability theorems for a sequence of Dirichlet processes {X"} are
given. First, we consider the case when the sequence {X"} is weakly convergent.

Theorem 1. Assume that {X"} is a sequence of Dirichlet processes satisfying UTD (or
UTDQ)). If X" — ., X in C([0, T], R) then

(i) X is a & Dirichlet process for some filtration & such that 7% C & (or X € &?)
and

X", [X”])7(X, [X]) in C([0, T], R?),
(i) if £ €%, then
(X", J f(X?)dX;’) - (X , ff(Xs) dXs) in C([0, T], R?),
0 z 0

(iii) if {Y"} is another sequence of Dirichlet processes satisfying UTD with respect to
the same filtrations as {X"} and (X", Y") —., (X, Y) in C([0, T], R?), then

(X7 YO XU YL X0 YD) — (XL Y (X (YD [X YD) in €0, T, R®).

Proof.
(i) Let us start by proving that

> IAXP - [x,

tieD;,

sup P" (sup >c> — 0, as k — +oo. (14)
n t<T
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It is evident that

STIAXIE =T AME 42 Y AMEAAL + Y [A4LR.

t;,€D}, t;,€D;, tieDy, tieDy,

Owing to Proposition 1,

Z AXT2 —

t t
tieD}, €D}

t<T

sup P (sup 2 >e> — 0, as k — +oo. (15)

On the other hand by It6’s formula for ¢ € Dy,
=M= Y AP -2 Y [ nr - yau
tieD}, eD!, (ti-1,t1]

By tightness of {X"} and by (3), sup, P"(max,ep,|AM}|>¢) — 0, as k — +oo. Denote
N;’i = SUPse(s, 01| MY — M:’H|, neN, t; € Dy. We shall also show that

supP" (max|N7|>¢e) — 0, as k — +oo. (16)
n [,GDk ti

Assume for simplicity that sup,<r|M”| < C, n € N. By the lemma of Dvoretzky for every
€,0>0

t;€D,
t;€Dy,

P" (max|N”|>€) < 6+P”<Z P”(Nz>e|.j7;’il)>6>.

Since, owing to the Chebyshev inequality for continuous martingales, for every €, >0,

S PN )<t > E(ME - M) N )
€Dy tieD},
<yt Y E(M) - M PLT )
t;,€D},
+QOP Y PIIMY - M| >l T )
t, €Dy

and E"ZtieDkP”ﬂMf[ M7 |>nl7] ) = P"(max,ep,|M] — M} [|>1), the property
(16) follows. Therefore
e) =0, >0,
and the proof of (14) is completed.
On the other hand note that, for every k € N, {3, cp |[AX 7|*} is a sequence of strictly
jumping processes with cadlag trajectories. Since X" —, X in C([0, 7], R),

[ -
(ti1,t4] .

lim sup P" (sup Z

k=400 p t<T
t;,€D},
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> |Ax;§|2 > IAx, P keN, (17)
t,eD; t€D;
in the Skorokhod topology J; (see, for example, Jacod and Shiryaev (1987, Chapter VI)). The
task is now to observe that X is a process possessing the quadratic variation process [X]. Let
j = k. Then, by (17) and (14),

P sup Z IAX,)* — Z Z ul®
tieD, reDkueD“"
L T DOUSTIED DD Doy

t,eD}, tieD}, 141€D;l’1’l'

X"= > > |Axg P

t.eD! ti 1.t
i k u1€D/

< sup 2P" | sup
n t<T

— 0, as k — oo.

Hence {},cp:|AX >} ken is @ Cauchy sequence for the distance in probability and there
exists a process [X], such that Sup;<T|Z,th |AX,|* — [X],] —p 0. Using once more (17)
and (14) we obtain the convergence

X" XD~ (X XD in €([0, T, R?).

Since [X] is the process with continuous trajectories and [M"] = [X "], for every sequence
{t,} of stopping times, 7, < T and, for every sequence of constants {J,} such that §, | 0,

[Mn](rnJrén)/\T - [Mn]rn ? 0.
In view of the Aldous (1978) criterion the sequence {[M"]} is tight in C([0, 7], R), which
implies that
{(x", M™)} is tight in C([0, T], R?).

Assume that along some subsequence (n') C (n)(X", M") —_, (X, M). Then it is easily
seen that M is a local martingale with respect to & = .7 “™) and the process 4 = X — M
satisfies the condition Y, cp,|A4,[* — p 0, and the proof of (i) is finished.

(ii) It is sufficient to use It6’s formula for Dirichlet processes proved by Follmer (1980)
for a function F(y) = [ f(x)dx. If f € Z!, then F € £? and we have

t t
PO = PO+ | rornaxs +4f rrocnane,
and exactly the same decomposition of F(X). Owing to the continuity of F, f”,
(0, PO | O — (6 PO, | 7r00dn,

which completes the proof of (ii).
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(iii) It is evident that the sequences {X” + Y"} and {X" — Y"} also satisfy UTD. On
the other hand (X", Y", X"+ Y", X" -Y") —_ (X, Y, X+ Y, X - 7Y) in C([0, T], RY).
Finally, by (i),

(Xn’ Yn’ [Xn]a [Yn]a [Xn+Yn]a [Xn_ Yn]);>(X, Ys [X]a [Y]s [X+Y]a [X_ Y])
in C([0, T, R®) and (iii) follows. O

We do not know whether from (i) one can deduce that X is an .7 ¥ Dirichlet process. If
we want to ensure that X is a Dirichlet process with respect to the given filtration .7 it is
sufficient to assume that all processes {X"} are adapted to .7 and to use the following
theorem.

Theorem 2. Assume that {X"} is a sequence of .7 Dirichlet processes satisfying UTD (or
UTD (2)). If

sup|X;’fX,|?0

I=<T
then X is an 7 Dirichlet process (or X € 2/%) and we have the convergences

sup|Mf’—M,\;>0, and Sup|Af—At|;>O,

t<T t<T
where M", M and A", A are martingale and O0-quadratic variation parts of X", X,

respectively.

Proof. Let {N,} be a sequence of real numbers such that N, | +oo and
o™ N =inf{r; |X"| = N,} = inf{t; |X?|>N,}, m€N. Then owing to Lemma 1.2 of
Stroock and Varadhan (1979) and by the continuous mapping theorem for every
meN, t; € Dy, k € N we have

AXZ»Nm?AX?jm and E(AXZ’N/"L?,H)—;E(AXﬁY”'\.?,H)

Therefore, for j = k,

2
P> | > EAXYNTu)| >e¢
ti€ Dy u;ED;.H o
2
Ea] N om a2
$lyllrlli}’:)lofp Z Z EQAX |7 u )| >¢
ti€Dy uleD;i—l ol
< supsup P Z Z E(AX”N'”
n j=k €Dy uleD’_i—l Sl
J

— 0, as k — —+o00. (18)
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Thus, by the arguments of Follmer (1981), {ZtieDrkE(AX?i/"' F 1. )}ken is a Cauchy
sequence for the distance in probability and for every m € N there exists a process A(m)
such that

sup
I<T

> EAXT L) — A(m), —0.

t;€D,

One can prove that A(m), = A(m+1), for T <o"». Define A, = A(m+1); for
tefoNn, oNm1[, meN and M; = X, — A;. Thus M, is a local martingale and applying
(18) we deduce that >, cp,|A4,,|*> —p 0. As a consequence, X is a Dirichlet process with
respect to .7 and the sequence {X” — X} also satisfies UTD. Since sup,<r| X} — X,| —, 0,
it follows from Theorem 1 (i) that

[Mn—M]T:[Xn—X]T?O.

Hence sup,<r|M} — M,| —p 0 and the proof is completed. O

4. Functionals of Dirichlet processes
In what follows for a given locally integrable function f, we set F,(y) = joy Su(x)dx, n € N.

Proposition 2. Let {X"} be a tight in C([0, T, R) sequence of processes satisfying UTD (or
UTD (2)). Then, for every sequence {f,} of functions uniformly bounded and equicontinuous
on all compact subsets of R, the sequence {F,(X")} is also a sequence of Dirichlet
processes, tight in C([0, T], R) satisfying UTD (or UTD (2)).

Proof. By Proposition 1, {X" = M" + A"} is a sequence of Dirichlet processes such that (3)
holds true and the families of random variables {[M"]r} and {sup,<7|47%|} are bounded in
probability. If we denote

t
NI = J fu(XydM”  and B! =F,(X")— N,  teR",
0

then it is clear that {N"} is a sequence of local martingales and the families of
random variables {[N"],}, {sup,<,|B}|} are bounded in probability. Therefore, owing to
Proposition 1, in order to verify that {F,(X") = N" + B"} satisfies UTD, it is sufficient to
check that

lim supP”(Z |AB;|2>6> =0, ¢>0. (19)

k—+o00 HEDy

Since {X"} satisfies UTD and the functions f, are uniformly bounded,

t;€ Dy

kETwsgpP”<Z fi(X;’)|AA;|2>e> =0, ¢>0.
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On the other hand by the tightness of {X"} and by the equicontinuity of {f,} we have

2
li P >c|l=0 >0,
i s (5 SO

t;€Dy

tit1
j FolXT) — fo(XT)dM?
and

11m supP”(Z |Fu(X] ) = Fu(X]) = [u(X )X —Xg)|2>c>

t;€Dy
2
>,

< lim sup P" max - sup |fu(u) — fu(X7 )|2 Z |AXZ|2>€>,

k—+o0 5 €Dy Xi<u<xi, ey

J ) — fu(X7) du

00
k=t n t:€Dy ’i

= lim sup P" (Z

=0, e>0.

Hence the proof of (19) is completed. By similar arguments we can prove that (4) with p = 2
implies that the family of random variables

{Z|B; B! [ 0=s0<..<syu=T,s €D m, k,neN} (20)

i=1

is bounded in probability and thus the proof is completed. Ol

Corollary 2. Assume that f is a continuous function and F(y) = foy fX)dx. If X =M+ A is
an .7 Dirichlet process (or X € &?), then also F(X) is an .7 Dirichlet process (or
F(X) € %) and the local martingale part of F(X) is equal to Jo f(X)dM,.

Proof. Let {f,} be a sequence of functions such that f,, € 2 and
sup | fu(x) — f(x)] — 0, ke N.

|x|<k

Then, owing to Proposition 2, { F,,(X)} satisfies UTD (or UTD (2)) and in view of Theorem
2 the result follows. ]

Corollary 3. If X, Y are .7 adapted Dirichlet processes (or X, Y € &?), then XY is an .7
Dirichlet process (or XY € 7).

Proof. Let X, Y be Dirichlet processes admitting decompositions of the form X =
M+ A, Y = N + B. Clearly MN is an .7 semimartingale and, by the inequality

> " IAMAB),* < 2sup|4,* > |AB,* +2sup| B, Y A4,
t t

€Dy <T €Dy =T 1,€Dy
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AB is an .7 adapted process of 0-quadratic variation; hence it remains to prove that MB
and AN are .7 Dirichlet processes. To this end, observe that, by applying Corollary 2
with f(x) =2x, (M + B)*> is an .7 adapted Dirichlet process. Therefore, MB =
%{(M + B)?> — M?* — B} is also an .7 Dirichlet process. Similarly we show that AN is an
.7 Dirichlet process and the first assertion is proved.

Now, assume that X, ¥ € 2. Since for every subdivision 0 = sy <s; < ... <5, =T,
such that s; € Dy, m, k € N

m m m
D IAXY), [P < su};\X,|2 S IAY P+ 2sug|Y,\2 > IAx P
i=1 = i=1 = i=1

and XY is a Dirichlet process it is evident that also XY € &2, O

5. Stability of Dirichlet processes of class 7, p <2

The existence of a stochastic integral for two .7 adapted Dirichlet processes, X, Y satisfying
(8) and (9) was proved by Bertoin (1989). Below we generalize slightly his results for
processes of class Z77. As a main tool in the proof we use a stochastic version of some
inequality proved by Young (1936).

Let Ay,..., Ay, By, ..., B, be random variables such that E|4;|?, E|B;|? <+oc,
i=1,...,n Let §,, be the largest value of the products

m 1/p m 1/q
> E[dy]” STEBT) .
k=1 k=1

for which Ay=A;1 +...+ A;,,, and By=B;,, +...+ Bi,,, where 1=i<
e <ip<...ipy1 = m, m < n, are the corresponding sums of successive random variables
A; and B;, respectively.

Lemma 1. Assume that 1/p+1/q>1. Then

(1) there exists an index k (1 < k < n), such that

1o 1/p 1 1/q
E|A Byl = | — E|A4,|? — E|B.|? ,
418 (n;; | |> (n;; |

1 1
= (e g s

Proof. We follow step by step the proof of the unequalities 2.1 and 5.1 of Young (1936).
[

(i)

E

Z A, B,

Isr<s<n

where §(s) =YX n~%, s> 1.
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Theorem 3. Let X, Y be two .7 adapted Dirichlet processes such that X € %, Y € P for
some p € [1,2). Then there exists an .7 Dirichlet processes [ X;dYs € &P such that

sup D

t
X,  AY, — J X, dy,
0

— 0.
P
t,»eD’k

Proof. Let X, Y be two .7 Dirichlet processes admitting decompositions of the form
X=M+4,Y=N+B. Since the stochastic integrals [, X,dN, and [ M,dB, =
MB — [, B;dM are well defined, i.e.

t t
> X, AN, HJ X,dN,  and > M, AB, HJ M, dB,,
P g

t;,eD;, 0 tieDy, 0

it is sufficient to show that the sequence

Z AIHABH
tieDL keN

is convergent in probability. For simplicity of notation we may and shall assume that
Dy C Dy, and that there exists a constant K for which

ED A4, <K, (21)
i=1

m 2
E(Z |ABS,_|P> <K, (22)
i=1
provided that 0 = sy < ... <5, =T, s; € Dy, m, k € N. Then, for j = £,

> A AB,— > Ay AB, =Y Y (4, — A4, )AB,

t;,€D}, u €D tieD} u,eD;’*I‘”
= g E AA4,,AB,, — E g AA,,AB,,.
€D} yep'i-1"" HE€D)  UIStm,
J

™o
upun €D

Therefore by the Holder inequality, (21) as well as by Lemma 1 (ii), for » € (p, 2),
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Esup| > A4, AB, — > A, AB,
=Tl ep! teD:!
< sup ZE‘ > AAL,IABu,+ZE‘ > AA4,AB,,
=T HED], lll€D;iilﬁti ti€D} ul:g;j‘iwf
upUmED;
12 1 kyi,j
cen(x 0y mang) ey {ag(le ) s
t;€Dy uleD;i—l”i t;€Dy

ki
where Sz;j is the largest value of the products

m 1/2 m 1/r
(Z E|AAS”2> (Z E|ABS”|r> ,
n=1 n=1

for tiii=s0<...<sy=1t,5, €Z;meN On the other hand by (22) we deduce that

2
> 2 1aBP <k > > JAB,|P) <K

LE€Dk e pli-1"i LE€Dk yyepli-1
J J

and, for p' =2p/r>p,

(;;MZMBS | ) < E(t;”zm& | )

Since we can assume that p > 1, the uniform integrability property for the respective families
of random variables follows. Moreover, by continuity of trajectories of B,

kgrfoosupz Z E|AB, > — 0,

JZk i €Dy u,ED‘ 1t

and

lim sup Z S;LZ

k—+00 =k ey

0.

Thus, in partlcular Do pi Ay AB, tren is a Cauchy sequence, and hence convergent in
probability. Let Io Az dBy denote its limit. Note that in fact we have proved that

t;
> |4 AB,I.—J A;dB| —0 (23)
ti€ Dy tio1
Let 7% denote a set of subdivisions of [0, 7] such that 0—s0 s‘S ...y (; =T,

sil — sf < 0 where s, € Dy, m®, k € N. The proof of (23) gives more, namely for every
€ >0 there exists >0, with the property
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o

mé
supP| Y|4 ABg —Ja A, dB;

a0 i=1 iy

=c]| =

Now, let ot denote a set of all subdivisions of [0, 7] such that 0 =sy =51 < ... <5, =T
and s; € Dy, m, k € N. Since the process B satisfies (7), for every ¢ >0,

m P
lim sup sup P <Z = 2C>
P
= C)

C—4o0 & i—1
< lim sup sup P < Z
{is]si—si—1|<0}
p
= C>

C—+oc0 @
< ¢ + limsup sup P Z |4 Z |AB,,|P =27PC —¢”
Codoo 7 (<T i=1
p T)_l
=277<) C
(5

and the condition (7) for the integral fd Ay dBg holds true, too. Moreover, since the local
martingale M satisfies (7) with p = 2, we deduce that fo X,dB, = fo MydB, + Jo AgdBy-
satisfies (7). Finally,

J‘ 4, dB,

Si—1

J ' A,dB,

Si-1

J " 4,dB,

Si-1

+ lim sup sup P Z
{is]sisic1| >0}

C—+o0 @

t
J A, dB,
0

+ lim sup sup P (Z

C—t+o0 7 =T

=¢

J'XS dy, = J X, dN, + J X, dB,,
0 0 0

where [; X dN; is a local martingale and [; X, dBy satisfies (4), and hence [, d¥; € Z7.
]

Corollary 4. Let X, Y be .7 adapted Dirichlet processes such that X € %, Y € IP, for
some p € [1, 2). Then there exists an .7 Dirichlet process fYS dX, € ? such that

t
Z Y,  AX, —J Y, dX,
0

sup
=Tl ept

— 0.
P

Proof. By Corollary 3, XY € &2, Moreover, it follows from Theorem 3 that the process
Jo Ys dX defined by the formula

t t
J Y,dX, = Y.X, - J X,dY, — [X, Y], 1 € [0, T,
0 0

has the desired properties. ]
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Corollary 5. Let K, X, Y be .7 adapted Dirichlet processes such that K, X € %, Y € &P,
Jor some p €[1,2) and let Z = [; X,dY. Then

t t
J K,dZ, = J K, X,dY,, t €0, T).
0 0

Proof. By Theorem 3 and Corollary 4 the integrals fot K,dZ, and fot K. X,dY, are well
defined as limits in probability of the sums {}_,cp: Kr, , AZ,} and {32, ep Kr X1, AY ),
respectively. Assume that Y admits the decomposition of the form Y = N + B and let
C = [;X;dB,. Since the associativity formula for stochastic integrals driven by local
martingales is well known, we need to show only that

t t
J K, dC, = J KX,dB,,  te[0,T].
0 0

By the definition, fot K,dC, and f(; K, X, dB, are limits of the sums {3, cp: Ky, AC,} and
{2 10K X+, AB,}, respectively. On the other hand,

Z Kti—l ACti - Z Kt,-,lth-,l ABt, = Z |K1i—1|

ti€D}, tieD;, t;€D,

ti
J X,dB,— X,  AB,|;
1

i
hence the results follows by (23). O
If we want to make sure that a limit process is a Dirichlet of class &7, p € [1, 2), it is

convenient to consider the following UTD(p) condition. We say that a sequence of Dirichlet
processes {X" = M" + A"} satisfies UTD(p) condition for p € [1, 2) if

UTD(p): the families of random variables {[M"]r} and
{Z|A§i—A;’”|p;O—so <..<sy=T,5€D,mknc N}
i=1
are bounded in probability.

Remark 2. Since in the case of continuous semimartingales (UT) is satisified if and only if
the families of random variables

{[M"1r}, {var(4")r} are bounded in probability
(see, for example, Kurtz and Protter (1991a) and Mémin and Stominski (1991)), the condition
UTD(1) is exactly equivalent to UT.
Corollary 6. Assume that {X"}, {Y"} are two sequences of Dirichlet processes satisfying
the conditions UTD(2) and UTD(p) for some p € [1, 2).

) IfY"—, Y in C(0, T], R), then Y is a % Dirichlet process for some filtration &
such that 7Y C ¥, Y € P and

YYD (L[Y)in €0, T), R,
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(i) If (X", Y") =, (X, ¥) in C([0, T], R?), then

(Xn:v Yn’ J X:’ dY;l! [Xn’ Yn]) 7<X9 Y7 J\XSdYS’ [X’ Y]) ln (]:([03 T]’ R4)'
0 7 0

Proof. By using the estimations from the proof of Theorem 3 we observe that, for every
>0,

t
lim sup P" | sup Z Y?,IAY?-_J Y,dY,|>e| =0 (24)
k—+o00 5 <T tieDZ ! ! 0
and
t
li P X7 AY? — | XydY| > =0. 25
Jim sup " sup| 32 7 AY] - | oan ] @

tieD,

In view of (24) and the integration-by-parts formula

> IAYIP = (Y],

€D},

>e> =0

and the proof of (i) is finished. Finally we deduce (ii) by (i) and (25). O

lim sup P"{ sup
k—+oo 5 (<T

Note that UTD(p) for p € [1, 2) need not imply UTD. Indeed, (3) need not hold true!
However, by the above corollary we deduce that, if {X" = M"+ 4"} is tight in
C([0, T], R), then UTD(p) = UTD(2). Namely, by Corollary 6 (i), {[M"] = [X"]} is tight
in C([0, T], R). Hence {M"} and {A4"} are tight in C([0, 7], R), too. Therefore in
particular

lim supP(max|AA;’|>e) =0, €>0,
k—+o00 5 t;€ Dy !
and in this case (3) is a consequence of (4).

Corollary 7. Assume that {X"} is a sequence of .7 Dirichlet processes satisfying UTD(p). If
sup| X7 — X/| ?O,

I<T
then X is an .7 Dirichlet process of class DP and we have the convergences

sup|M;’—M,|;>O and sup|A;’—A,|;>0,

t<T t<T

where M", M and A", A are martingale and O0-quadratic variation parts of X", X,
respectively.

Proof. This easily follows because of Corollary 6. U
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6. Functionals of semimartingales
Given y € (0, 1] and {L;} C R*, 1!°°(y; {L;}) denotes the class of functions f such that

@) =fDI= Lile =31, I, [y <k keN.

Proposition 3. Let {X"} be a tight-in-C([0, T], R) sequence of semimartingales satisfying
UT. If {f,} is a sequence of functions such that {f,} C '°2/p —1; {Li}) for some
p €L, 2),{L} CRY and |f,(0)| < C, n €N, for some constant C >0, then {F,(X")} is
a tight-in-C([0, T], R) sequence of Dirichlet processes satisfying processes satisfying
UTD(p).

Proof. Following the notation from the proof of Proposition 2 and according to the definition

of UTD(p) it is sufficient to prove (20). Without loss of generality we may and shall assume

that |f,|, varA}, [M"]r, sup,<r|X} <K for some constant K>0. Fix 0=s¢ =<
<s,=1T,s; € Dy, and m, k, n € N. Then, by the Jensen inequality,

D FEXDIAALY < KP(var A})P < K7,
i1
Next by the Burkholder—Davis—Gundy and the Hdolder inequalities we have
m

> E

i=1

P

J LX) — £y dM?

i

it r/2
=c, ZE(J XD — Fu X M L)

<, ZE sup  |fu(X7) = SuXDIP(AM" ., — [M"]5)P

§isSs<Siyg

@-p»/2 s r/2
<ZE sup | fu(X") — f,,(X;,)|2P/<2P>> (Z E([M"]s,-ﬂ—[M"]s[)) :

SisSS<Sit] i=1

Since {f,} are Holder equicontinuous with exponent 2/p — 1,

§m3 ( sup [ fu(X2) = fu(X 1[PPI 1’>>

i—1 §;=<5<Si4|
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Z sup - X

i=1 Vz\"<ﬁ+1

m
2L{j ( sup ~M'P+E sup |A§A;’i|2)

s,\s<sl+1 SisSS<Siy1
<2L)> {4E(M"],,, — [M"],) + E(var 47  —var A7)’}
Sitl Si Sitl S

< constant(E[M"]r + ECvar 47).

Finally

DS IFAXL ) = Fa(X2) = fu(XI)(XE = XD)|P

i=1

p

X
j ")~ £(X0) du

n n

=Szt [ 0 - el d
XIAXT

i=1 si s

m n n

sLKZmX;@VHJ L = X du
i=1

XIAXY

< Lg Y |AX] [PV AX][PP|AX]
=1

=Ig zm: |AX
=1

and the condition UT implies boundedness in probability of the last sum. By using the above
(20) easily follows. ]

Corollary 8. Assume that f € l]_1°°(2/p —1; {L}) and set F(y)= [} f(x)dx. If X is an .7
semimartingale, then F(X) is an .7 Dirichlet process of class 7.

Proof. By analogy to the proof of Corollary 2 from Proposition 3 and Theorem 2 the result
follows. [

If X is a Wiener process, i.e. X = W, then it was observed by Wang (1977) and F(W) is
a Dirichlet process assuming only that
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J f2(x)dx <400 for every compact subset of R. (26)
K

We shall show that in fact F(W) € &%, Owing to Theorem 3 and Corollary 2 this fact can be
useful for construction of stochastic integral driven by F(W).

Corollary 9. Assume that f satisfies (26) and denote F(y) = on f(x)dx. If Wis a Wiener
process, then F(W) € 2.

Proof. By Follmer et al. (1995), F(W), = M, + A,, where

t t

A= rwy, W1, = J 1Ty & W, — J £ AW,
0 0
=4 - 4%, teR",

and 4' = [;(W,)d* W, is a backward integral of f(W;) driven by W,. Then it is a simple
matter to check that A' and 42 satisfy (7) with p = 2. O

7. Convergence of solutions to stochastic differential equations

Let {Z"} be a sequence of continuous semimartingales. Consider a sequence of solutions to
SDEs of the form

t t
Yy = J o,(YHdZ! —|—J 0,0,(YNHd[Z"];, t€RT, 27)
0 0

where 0, is a function having a continuous derivative o, n € N.

Proposition 4. Assume that {Z"} is a sequence of semimartingales satisfying UT and
Z" —_, Z. Let {Y"} be a sequence of solutions to SDE (27), where ¢ < 0, < K for some
constants ¢, K>0. If 6, — o uniformly on compact subsets of R and o is a continuous
function (or o* € 1Q2/p—1;{Li}) for some p€[l,2),{Li} CRY), then {Y"} is
C([0, T], R) tight and its every limit process Y is an .7 ¥ Dirichlet process of class 7* (or
Y € &) and satisfies the equation

t
Y, = J 0(Y)dZ,+ 4,, teR". (28)
0

Proof. Define G,(y) = foyaf(u) du, n € N. Then, for every n € N, X" = G,(Y") is a
solution to the SDE

t
X" = J g, (X" dZ", teRT,
0

where g,(x)=1/0,0 G;l(x) because G, is a transformation which allows elimination of
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drift. One can see that K~! < g, < ¢! and g, — g uniformly on compact subsets of R.
Therefore {X"} is C([0, T], R) tight and satisfies UT. We may and shall assume that

(X", Z”)(—;(X, Z), in C([0, T], R?).

Then, owing to Theorem 2 from Mémin and Stominski (1991) for example, X satisfies the
equation

t
X, = J o \(F(Xy)dz,, teR", (29)
0

where F is the inverse function of G, G(-) = fd 0 ~%(u) du. Obviously X is a semimartingale
and by Stricker’s theorem it is a semimartingale with respect to its natural filtration .7 ¥. Let
F, denote the inverse function of G,. Since F, — F uniformly on compact subsets of R,
Y" = Fy,(X") =, F(X). On the other hand by a simple calculation it is easy to verify that
F(x) = [ f(u)du, where f(u)= 0?0 F(u). Since f is continuous, so, by Corollary 2,
Y = F(X) € &? with respect to filtration .7 ¥ = .7 X. Similarly, if 62 € 1'°(2/p — 1; {L}),
then, owing to corollary 8, Y € &/?. Finally, by (28),

Y, = F(X,) = J;a%F(XS)) dX; + 4,

t
= J o(Yy)dZ,+ 4,, te€]0,T],
0
i.e. Y satisfies (28). O

NOTE ADDED IN PROOF

In the proof of equivalence of UTD and the condition (ii) of Proposition 1 we have used the
fact that Dy C Dy, for & € N. However, in all the subsequent proofs making use of UTD
we have used only its characterisation given in Proposition 1. Therefore, if we adopt the
condition (ii) of Proposition 1 as the definition of UTD, then all the results of Sections 3—7
remain true irrespective of the fact whether Dy C Dy, for £k € N or not.
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