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Consider a diffusion in Rd (d > 2) whose generator has coef®cients independent of the distance to the

origin. Then there is a parameter á so that the origin is almost surely hit when á, 1 and almost

surely not hit when á. 1. Moreover, the process is transient to 1 for á. 1. We identify á in terms

of the diffusion coef®cients and a certain invariant measure. In some special two-dimensional cases we

explicitly compute the invariant measure and resolve the critical case á � 1. This work complements

and extends certain results of Pinsky (1995) and Williams (1985).
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1. Introduction

Bass and Pardoux (1987) study diffusions in Rd (d > 2) corresponding to uniformly elliptic

operators of the form

1

2

Xd

i, j�1

aij(x)
@2

@xi@xj

, (1:1)

where aij(x) � aij(x=jxj), x 6� 0. Here `uniformly elliptic' means (aij(x)) is a symmetric

matrix and, for some ë. 0,

ëjîj2 <
Xd

i, j�1

aij(x)îiî j <
1

ë
jîj2, x 6� 0, î 2 Rd :

One of their main results asserts that if the diffusion is uniquely determined up to the ®rst

hitting time of the origin, then the process can be uniquely extended to a diffusion for all

times. The major dif®culty they encounter arises from the intriguing possibility of the process

hitting 0 with positive probability. This is due (more or less) to the presence of a

discontinuity at 0 in the coef®cients aij (DeBlassie 1998). The authors provide an interesting

example in which the origin is hit almost surely. Under some regularity conditions on the aij,

among other interesting results, Pinsky (1995) shows that diffusions governed by (1.1) either

almost surely hit 0 or almost surely do not hit 0. There is a parameter whose sign determines

this behaviour. Pinsky also discusses transience and recurrence. See Theorem 3.1 and the

subsequent remarks in Section 6.3 of that book.
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We take a different approach, reducing assumptions on the coef®cients aij by assuming

uniqueness of the associated martingale problem, stopped upon hitting the origin. A

situation considered by Bass and Pardoux (piecewise constant coef®cients) falls under our

assumptions, whereas Pinsky's results do not apply.

The key property is Brownian-like scaling. We consider slightly more general uniformly

elliptic operators of the form

L � 1

2

Xd

i, j�1

aij(x)
@2

@xi@xj

�
Xd

i�1

1

jxj bi(x)
@

@xi

, (1:2)

where, for each i, j � 1, . . . , d,

aij(x) � aij(x=jxj), x 6� 0, (1:3)

bi(x) � bi(x=jxj), x 6� 0, (1:4)

are bounded and measurable. Let D � Sdÿ1 denote the set of discontinuities of a and b

regarded as functions on the unit sphere Sdÿ1. Let ì denote normalized (ì(Sdÿ1) � 1)

surface measure for d > 3 and arc length for d � 2, on Sdÿ1. We assume

ì(D) � 0: (1:5)

Note that the drift is given the speci®ed form so as to preserve the Brownian-like scaling.

Our ®nal assumption is that the martingale problem for L is well posed up to the ®rst hitting

time of 0. The precise meaning of this is given below in Section 2. Denote by X (t) the

corresponding diffusion.

Let (è, r) be polar coordinates in Rd :r � r(x) � jxj and è � è(x) is the point on Sdÿ1

corresponding to x=jxj, x 6� 0. By (1.2) and (1.3), L takes on the form

L � A(è)
1

2

@2

@ r2
� 1

2r
B(è)

@

@ r
� 1

r

@

@ r
L1 � 1

r2
L2

� �
(1:6)

where

A(è) � (a(x)x, x)=r2, (1:7)

B(è) � [tr a(x)� 2(x, b(x))=r]=[(a(x)x, x)=r2]ÿ 1 (1:8)

(in which (:, :) is the usual Euclidean inner product), and L1, L2 are ®rst- and second-order

differential operators, respectively, on C2(Sdÿ1).

Below we will show that the diffusion on Sdÿ1 corresponding to L2 is uniquely

determined and has a unique invariant probability measure í (see Theorems 2.2 and 3.2).

De®ne

á �
�

Sdÿ1

B(è)í(dè): (1:9)

Theorem 1.1. Assume that the martingale problem for L is well posed up to the ®rst hitting

time ô0 of 0, and suppose (1.3)±(1.5) are in effect. Let X 0 6� 0.
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(i) If á. 1 then X is transient to 1 and almost surely does not hit 0.

(ii) If á, 1 then on the set fô0 � 1g, Xt ! 0 as t!1.

(iii) If á, 1 and inf x 6�0[tr a(x)� 2x . b(x)=jxj] . 0 then ô0 ,1 almost surely.

Remarks. 1. If á, 1 and supx 6�0 [tr a(x)� 2x . b(x)=jxj] , 0, then the conclusion of (iii)

holds. The proof is similar.

2. If b � 0, then we are in the case Bass and Pardoux consider. By strict ellipticity,

inf tr a . 0, and so the hypothesis about the in®mum in (iii) holds automatically. Thus in

this case, the process either almost surely does not hit 0 (á. 1) or almost surely does hit 0

(á, 1).

3. We are able to resolve the critical case á � 1 only in special circumstances. See

Section 5 below.

The greatest source of dif®culty is evident from the form of L in (1.6): there is highly

non-trivial interaction between the radial and angular parts arising from the B(è) and L1

terms. Because of this, there is no skew product representation of the diffusion. With such a

representation, our results would be easy to derive.

The rest of our results are concerned with two-dimensional cases in which we are able to

identify á in explicit form and discuss the critical case á � 1. See Theorems 4.1 and 5.1

below.

A special case is covered by some work in Williams (1985). She studies Brownian

motion with polar drift, where L takes the form

1

2
Ä� ã(è)

2r

@

@ r
,

with ã(è) bounded and measurable. She shows

á �
�

S dÿ1

ã(è)dì(è)� d ÿ 1:

Moreover, when á � 1, the process almost surely does not hit 0 (starting away from 0) and is

®nely recurrent. Here the facts that L1 is absent and L2 is more or less the Laplacian on Sdÿ1

are crucial to obtaining these results. Pinsky (1995) also resolves the critical case á � 1

under further regularity hypotheses on the coef®cients.

The paper is organized as follows. The proof of Theorem 1.1 is given in Section 2,

assuming the existence of a unique invariant probability measure for a time change of the

angular part of X. The proof of the latter is the content of Section 3. In the course of the

proof, we show (roughly speaking) that uniqueness of the stopped martingale problem for L

implies uniqueness of the martingale problem for the angular part, a result of independent

interest. In Section 4 we explicitly identify the invariant probability measure for d � 2 in

the case of piecewise smooth coef®cients. Finally, in Section 5 we study the critical case

á � 1 for piecewise constant coef®cients in two dimensions.
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2. Proof of Theorem 1.1

Let Ùd � C([0, 1), Rd) and denote the coordinate process by Xt. De®ne

F t � ó (X s: 0 < s < t),

F � ó (X s: 0 < s ,1),

ô0 � infft > 0: X t � 0g:
Given x 2 Rdnf0g, a solution to the ô0-stopped martingale problem for L is a probability

measure Px on (Ùd , F ) such that

P0(X0 � 0) � 1; (2:1)

for each f 2 C2
0(R2),

f (X (t ^ ô0))ÿ
� t^ô0

0

(Lf )(Xs)ds (2:2)

is a Px-martingale;

Px(Xt � 0 for t > ô0) � 1: (2:3)

We call X (�) under Px the process absorbed at 0, or simply the absorbed process. As stated

above, throughout this paper we assume Px is uniquely determined for each x 6� 0. Let P0
x be

the law of X (�) under Px killed upon ®rst hitting 0:

P0
x

\m
i�1

fX (ti) 2 Big
 !

� Px

\m
i�1

fX (ti) 2 Bi, ô0 . tig
 !

:

Then P0
x is uniquely determined.

By uniform ellipticity and a change of time, it is enough to prove the theorem for the

operator

L � A(è)ÿ1 L,

where A(x) � A(x=jxj) is from (1.7). We write Px and P 0
x for the L-analogues of Px and P0

x,

respectively. Note that P 0
x is uniquely determined.

Lemma 2.1. Under Px with x 6� 0,�ô0

0

jX sjÿ2ds :� lim
t"ô0

� t

0

jX sjÿsds � 1 almost surely: (2:4)

Proof. Let ó : Rd ! Rd 
 Rd satisfy óó� � a. Then under Px we can write, for t , ô0,

X t � x�
� t

0

A(X s)
ÿ1=2ó (X s)dBs�

� t

0

A(X s)
ÿ1[b(X s)=jX sj]ds, (2:5)

where B is a standard d-dimensional Brownian motion. By ItoÃ's formula, for t , ô0,
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jX tj2� jxj2�
� t

0

2A(X s)
ÿ1=2(X s, ó (X s)dBs)�

� t

0

A(Xs)
ÿ1[tr a(X s)�2(X s, b(Xs))=jXsj]ds: (2:6)

De®ne

F(x) � (a(x)x, x)ÿ1=2, x 6� 0,

1, x � 0;

�
and set, for t , ô0,

â t �
� t

0

F(Xs)(X s, ó (X s)dBs):

Then for t , ô0 the quadratic variation of â is

hâi t �
� t

0

F(Xs)
2(a(X s)X s, Xs)ds � t:

Thus up to time ô0, â t is one-dimensional Brownian motion and (2.6) can be rewritten as

jXtj2 � jxj2 �
� t

0

2jX sjdâs �
� t

0

A(Xs)
ÿ1[tr a(X s)� G(X s)]ds (2:7)

for t , ô0, where G(x) � 2(x, b(x))=jxj, x 6� 0.

To analyse this, let xt be the square of a Bessel process with parameter ë � supx A(x)ÿ1

[tr a(x)� G(x)] ,1:

xt � jxj2 �
� t

0

2
������������
xs _ 0

p
dâs � ët

(See example 8.3 of Ikeda and Watanabe 1989, p. 237). Here we extend â to times t > ô0 in

the obvious way. Then by a comparison theorem (Theorem 1.1 of Ikeda and Watanabe 1989,

p. 437),

jX tj2 < xt, t , ô0(X ) a:s:

In particular, on the set fô0(X ) � 1g,�ô0(X )

0

jXsjÿ2 ds � lim
t"ô0(X )

� t

0

jXsjÿ2 ds

� lim
t"1

� t

0

jXsjÿ2 ds

> lim
t"1

� t

0

xÿ1
s ds

� 1,

(see DeBlassie 1988) as desired.

To handle the set fô0(X ) ,1g, note that, by ItoÃ's formula and (2.7), for t , ô0(X ),

Scale-invariant diffusions 593



logjX tj2 � logjxj2 �
� t

0

2jX sjÿ1 dâs �
� t

0

jX sjÿ2[A(Xs)
ÿ1ftr a(Xs)� G(X s)g ÿ 2]ds: (2:8)

Then (see Theorem 7.29 of Ikeda and Watanabe 1989, p. 91), on an extension of

(Ùd , F , Px), there is a one-dimensional Brownian motion ~â such that, for t , ô0(X ),

logjX tj2 � logjxj2 � ~â

� t

0

4jXsjÿ2 ds

� �
�
� t

0

jX sjÿ2[A(Xs)
ÿ1ftr a(X s)� G(X s)g ÿ 2]ds: (2:9)

Hence substituting ôä � infft > 0: jX tj � äg for t, we have, on fô0(X ) ,1g,

2 log ä � logjX ôä j2 � logjxj2 � ~â

�ôä
0

4jX sjÿ2 ds

� �

�
�ôä

0

jXsjÿ2[A(X s)
ÿ1ftr a(X s)� G(Xs)g ÿ 2]ds: (2:10)

If
� ô0

0
jX sjÿ2 ds ,1, then as ä! 0 both

~â

�ôä
0

4jX sjÿ2 ds

� �
and

�ôä
0

jX sjÿ2[A(X s)
ÿ1ftr a(Xs)� G(X s)g ÿ 2]ds

converge a.s. On the other hand, log ä! ÿ1 as ä! 0, giving a contradiction in (2.10).

Hence
� ô0

0
jXsjÿ2 ds � 1 on fô0 ,1g, as claimed. h

Now we use the polar coordinates (è, r) from Section 1. By Lemma 2.1, the function

ç t �
� t

0

jX sjÿ2 ds, t , ô0

is continuous and increasing with a continuous increasing inverse

çÿ1
t : [0, 1)! [0, ô0):

Hence the process

È(t) � è(X (çÿ1
t )), t > 0,

is well de®ned. The main properties of È we need are contained in the next theorem. Its

proof is deferred to Section 3.

Theorem 2.2. The process È has a unique invariant probability measure í on Sdÿ1 and the

following ergodic result holds:

lim
t!1

1

t

� t

0

f (Ès)ds �
�

Sdÿ1

f (è)í(dè) a:s:

for any bounded measurable function f : Sdÿ1 ! R.
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Now we complete the proof of Theorem 1.1.

Since G(x), A(x), and tr a(x) depend only on x=jxj, x 6� 0, writing G(è) and A(è)ÿ1tr a(è)

for è 2 Sdÿ1 should cause no confusion. By (2.9) and the de®nition of È,

logjX t^ôä j2 � logjxj2 � ~â

� t^ôä

0

4jX sjÿ2 ds

 !
�
� t^ôä

0

jX sjÿ2[A(X s)
ÿ1ftr a(Xs)� G(X s)g ÿ 2]ds

� logjxj2 � ~â

� t^ôä

0

4jX sjÿ2 ds

 !

�
� t^ôä

0

jXsjÿ2[A(È(çs))
ÿ1ftr a(È(çs))� G(È(çs))g ÿ 2]ds

� logjxj2 � ~â

� t^ôä

0

4jX sjÿ2 ds

 !
�
�ç( t^ôä)

0

[A(Ès)
ÿ1ftr a(Ès)� G(Ès)g ÿ 2]ds:

(2:11)

On the set fô0 � 1g, ôä !1 as ä! 0, so (2.11) becomes

logjX tj2 � logjxj2 � ~â

� t

0

4jX sjÿ2 ds

� �
�
�ç( t)

0

[A(Ès)
ÿ1ftr a(Ès)� G(Ès)g ÿ 2]ds:

Since ç t !1 on fô0 � 1g as t!1,

~â(4ç t)

ç t

! 0

1

ç t

�ç t

0

[A(Ès)
ÿ1ftr a(Ès)� G(Ès)g ÿ 2]ds!

�
S dÿ1

A(è)ÿ1ftr a(è)� G(è)gí(dè)ÿ 2

� áÿ 1 (by (1:7)±(1:9))

by Theorem 2.2. Hence (recall we never consider á � 1)

lim
t!1 logjX tj2 � logjxj2 �1 . sign(áÿ 1), on fô0 � 1g: (2:12)

First assume á. 1. By (2.12),

lim
t!1jXtj � 1 on fô0 � 1g: (2:13)

On the set fô0 ,1g, let t!1 in (2.11) to obtain

log ä2 � logjX ôä j2 � logjxj2 � ~â

�ôä
0

4jXsjÿ2 ds

� �

�
�ç(ôä)

0

[A(Ès)
ÿ1ftr a(Ès)� G(Ès)g ÿ 2]ds: (2:14)
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Since ç(ôä)! ç(ô0) � 1 (by Lemma 2.1) as ä! 0,

~â(4ç(ôä))

ç(ôä)
! 0

1

ç(ôä)

�ç(ôä)

0

[A(Ès)
ÿ1ftr a(Ès)� G(Ès)g ÿ 2]ds! áÿ 1

on fô0 ,1g as ä! 0. Thus if Px(ô0 ,1) . 0, then by (2.14)

ÿ1 � lim
ä!0

logjX ôä j2 � logjxj2 � lim
ä!0

(áÿ 1)ç(ôä) � 1

with positive probability. Hence Px(ô0 ,1) � 0, and combined with (2.13), we obtain part

(i) of Theorem 1.1.

Next assume á, 1. Part (ii) of Theorem 1.1 is an immediate consequence of (2.12). As

for part (iii), by (2.12)

lim
t!1 jX tj2 � 0 on fô0 � 1g: (2:15)

We use this to show Px(ô0 ,1) � 1, giving the desired conclusion. With

c1 � inf
x

A(x)ÿ1[tr a(x)� G(x)],

consider the squared Bessel process ã t with parameter c1:

ã t � jxj2 �
� t

0

2
�������������
ãs _ 0

p
dâs � c1 t:

By (2.7) and the comparison theorem cited above,

ã t < jX tj2 a:s:

Hence by (2.15), ã t ! 0 on fô0(X ) � 1g as t!1. Then if Px(ô0 � 1) . 0, ã t ! 0 as

t!1 with positive probability. But by hypothesis, c1 . 0 so ã t is either recurrent or

transient to 1. This contradiction forces Px(ô0 � 1) � 0, or equivalently Px (ô0 ,1) � 1,

as claimed.

3. Unique invariant probability measure for È and proof of
Theorem 2.2

We show that the time-changed angular part È of X is the unique solution to a martingale

problem. This is a non-trivial consequence of our uniqueness assumption on X. The dif®culty

is due to the lack of a skew product representation: the radial and angular parts can interact

in a complicated manner. Once uniqueness of È is established, we will prove Theorem 2.2

with the aid of the following theorem. It is a compilation of results taken from Chapter I,

Sections 1.2 and 4.1, in Skorokhod (1989).

Theorem 3.1. Suppose K is a compact metric space and ~X is a continuous homogeneous
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Markov process with Feller transition probability function P(t, x, A); that is, for each

f 2 C(K),

Tt f (x) �
�

K

f (y)P(t, x, dy) 2 C(K):

Suppose for some probability measure ð(dy) with support dense in K, for some q . 0,�1
0

eÿqt P(t, x, �)dt

is absolutely continuous with respect to ð for each x 2 K. Then ~X has a unique invariant

probability measure í absolutely continuous with respect to ð and

lim
t!1

1

t

� f

0

f ( ~X s)ds �
�

K

f (x)í(dx) a:s:

for all bounded measurable f on K .

Henceforth we will use the following terminology. Given a manifold M and a differential

operator D on C10 (M), we say a probability measure P on C([0, 1), M) (equipped with

the Borel ó-algebra and ®ltration generated by the coordinate process) solves the ô-stopped

martingale problem for D , starting from m 2 M , if ô is a stopping time, P (ù0 � m) � 1

and, for each f 2 C10 (M),

f (ù(t ^ ô))ÿ
� t^ô

0

(D f )(ùs)ds

is a P -martingale. If ô � 1, we say P solves the D -martingale problem.

In the polar coordinates (è, r), where r � jxj and è(x) is the point on Sdÿ1 corresponding

to x=jxj,

L � 1

2

@2

@ r2
� 1

2

1

r
[A(è)ÿ1ftr a(è)� G(è)g ÿ 1]

@

@ r
� 1

r

@

@ r
L1 � 1

r2
L2

� �
, (3:1)

where L1 and L2 are from (1.6), A from (1.7) and G from the line after (2.7). The following

theorem gives a characterization of È.

Theorem 3.2. For each x 6� 0, the law of È under P 0
x on C([0, 1), Sdÿ1) is the unique

solution to the L2-martingale problem starting from x=jxj. In particular, È is a Markov

process.

Proof. We only consider d > 3. The two-dimensional case is much simpler and we leave the

details to the reader. The Markov property is a consequence of uniqueness (see Theorem 4.2

of Ethier and Kurtz 1986, p. 184). To prove existence of a unique solution to the L2-

martingale problem starting from x=jxj, we use the coordinates on Sdÿ1 induced by

stereographic projection. The advantage is that only two charts are needed to cover Sdÿ1: the

projections from two distinct points on Sdÿ1. The projection Ø from the north pole is given

by
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Ø(x) � x1

1ÿ xd

, . . . ,
xdÿ1

1ÿ xd

� �
, x � (x1, . . . , xd) 2 Rd , jxj � 1, xd 6� 1: (3:2)

The inverse mapping is

Øÿ1(y1, . . . , ydÿ1) � 2y1

jyj2 � 1
, . . . ,

2ydÿ1

jyj2 � 1
,
jyj2 ÿ 1

jyj2 � 1

 !
, y 2 Rdÿ1: (3:3)

Our polar coordinates take on the (local) form (y, r), where

r � jxj, y � Ø(x=jxj), x 6� 0: (3:4)

Note that the inverse mapping is

x � rØÿ1(y), r . 0: (3:5)

Let ~L be L expressed in the coordinates (y, r):

~L � 1

2

@2

@ r2
� 1

r
~bd(y)

@

@ r
� 1

r

Xdÿ1

l�1

~ald(y)
@2

@ yl@ r
� 1

r2

1

2

Xdÿ1

k, l�1

~akl(y)
@2

@ yk@ yl

�
Xdÿ1

l�1

~bl(y)
@

@ yl

24 35
(3:6)

where, for k, l � 1, . . . , d ÿ 1,

~bl(y) � jxj2
2

Xd

i, j�1

aij(x)
@2 yl

@xi@xj

� (b(x), =yl)jxj
8<:

9=;
�

[(a(x)x, x)=jxj2],

~bd(y) � 1

2
tr a(x)ÿ (a(x)x, x)

jxj2
� �

� (x, b(x))=jxj
� ��

[(a(x)x, x)=jxj2],

~ald(y) � ~adl(y) � (a(x)x, =yl)=[(a(x)x, x)=jxj2],

~akl(y) � ~alk(y) � jxj2(a(x)=yk , =yl)=[(a(x)x, x)=jxj2]

are locally bounded and independent of r, since a(x), b(x), r=yl and r2(@2 yl=@xi@xj) depend

only on x=jxj. Hence in (y, r) coordinates, the operator L2 in (3.1) takes the form

~L2 � 1

2

Xdÿ1

k, l�1

~akl(y)
@2

@ yk@ yl

�
Xdÿ1

l�1

~bl(y)
@

@ yl

: (3:7)

Consider any x 6� 0. It is no loss to assume x=jxj is not the north pole (otherwise, use

stereographic projection from the south pole). To prove existence and uniqueness of a

solution to the L2-martingale problem starting from x=jxj, we ®rst prove local existence and

uniqueness. Then we show explosion does not occur, and the proof will be complete. We

now verify ~a is uniformly positive de®nite. For r � jxj 6� 0 and y � Ø(x=jxj),
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Xdÿ1

k, l�1

(a(x)=yk , =yl)ykyl �
Xdÿ1

k, l�1

a(x)=
y2

k

2
, =

y2
l

2

� �

�
Xdÿ1

k, l�1

Xd

i, j�1

aij(x)
@

@xi

y2
k

2

� �" #
@

@xj

y2
k

2

� �" #

�
Xd

i, j�1

aij(x)

�
@

@xi

jyj2
2

��
@

@xj

jyj2
2

�
, jyj2 �

Xdÿ1

l�1

y2
l

 !

> ë

����= jyj22

����2 (by uniform ellipticity of a):

But

jyj2 �
Xdÿ1

l�1

y2
l �

Xdÿ1

l�1

x2
l

(xd ÿ r)2
� r2 ÿ x2

d

(r ÿ xd)2
� r � xd

r ÿ xd

and so

j=jyj2j2 �
Xd

i�1

@

@xi

r � xd

r ÿ xd

� �2

�
Xd

i�1

4

r2(r ÿ xd)4
[r2äid ÿ xixd]2

� 4

r2(r ÿ xd)4
[r4 ÿ 2x2

d r2 � r2x2
d]

� 4

(r ÿ xd)4
[r2 ÿ x2

d]2

� 4(r � xd)

(r ÿ xd)3

� 4jyj2
(r ÿ xd)2

:

Using (3.5) and (3.3),

r ÿ xd � r ÿ r
jyj2 ÿ 1

jyj2 � 1
� 2r

jyj2 � 1

and so

j=jyj2j2 � jyj
2

r2
[jyj2 � 1]2 >

jyj2
r2

:
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Thus

r2
Xdÿ1

k, l�1

(a(x)=yk , =yl)ykyl >
ë

4
. jyj2:

In particular, for some constant ~ë. 0Xdÿ1

k, l�1

~akl(y)ykyl > ~ëjyj2, y 2 Rdÿ1,

and ~a is uniformly positive de®nite. Hence a solution to the ~L2-martingale problem exists

locally. More precisely, given any bounded open set G � Rdÿ1, if ~ôG is the ®rst exit time

from G, then the ~ôG-stopped martingale problem for ~L2 has a solution.

Local uniqueness for the ~L2-martingale problem. Let G � Rdÿ1 be a bounded open set. We

show that the ~ôG-stopped martingale problem for ~L2 has a unique solution. The values of ~a
and ~b off G are immaterial, so it is no loss to assume ~b � 0 and ~a � I off G.

Suppose ~Py is a solution to the ~ôG-stopped martingale problem for ~L2 starting from

y � Ø(x=jxj). We will construct processes Rt and Yt such that the law of Yt is ~Py and a

time change of RtØÿ1(Yt) furnishes a process X t whose law solves the L-martingale

problem stopped upon exiting the cone C � frØÿ1(y): r . 0, y 2 Gg. Writing ôC for this

time, we see ôC < ô0. By our basic assumption, the ô0-stopped martingale problem for L

has a unique solution, so the law of X t must be the unique solution to the ôC -stopped

martingale problem for L. Then ~Py is uniquely determined, provided the time change is

reasonable. Now for the details.

For some (d ÿ 1)-dimensional Brownian motion ~W on (Ùdÿ1, F , ~Py), if Y is the

coordinate process on Ùdÿ1, then for t < ~ôG,

Yt � y�
� t

0

~a1=2(Ys)d ~Ws �
� t

0

(~b1, . . . , ~bdÿ1)�(Ys)ds,

where ~a1=2 is the positive de®nite symmetric square root of ~a. Since ~a � I and ~b � 0 off G,

this equation makes sense for all t > 0.

In the coordinates (y, r), the matrix of coef®cients for the second-order part of r2 ~L
(from (3.6)) can be written as

1

2

~a(y) rF�(y)

rF(y) r2

� �
where F is a 1 3 (d ÿ 1) matrix and � denotes transpose. As in Lemma 4.2 of Bass and

Pardoux (1987), there is a d 3 d matrix ~ó of the form

~ó (y, r) � ~a1=2(y) 0

rE(y) rC(y)

� �
such that
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~ó ~ó� � H rF�
rF r2

� �
;

in fact, E � F~aÿ1=2, C �
������������������
1ÿ EE�
p

. 0.

Let Wd(t) be a one-dimensional Brownian motion independent of ~W . Then since

EE� � C2 � 1, the quadratic variation of

B t :�
� t

0

E(Ys)d ~Ws �
� t

0

C(Ys)dWd(s)

is

hB , B i t � t:

Thus B t is one-dimensional Brownian motion. Setting

Rt � r exp B t �
� t

0

bd(Ys)dsÿ t=2

� �
, r � jxj, (3:8)

by ItoÃ's formula Rt satis®es

Rt � r �
� t

0

Rs dB s �
� t

0

Rsbd(Ys)ds:

Hence for f 1 2 C10 (Rdÿ1) and f 2 2 C10 ((0, 1)), setting f (y, r) � f 1(y) f 2(r), by ItoÃ's

formula

f (Yt, Rt)ÿ
� t

0

[(r2~L) f ](Ys, Rs)ds (3:9)

is a martingale. De®ne

ö t �
� t

0

R2
s ds

and observe that ö: [0, 1)! [0, ö(1)) is strictly increasing and continuous. Therefore ö
has a continuous strictly increasing inverse öÿ1

t : [0, ö(1))! [0, 1). Set

(Yt, Rt) � (Y (öÿ1
t ), R(öÿ1

t )), t ,ö(1),

X t � RtØ
ÿ1(Yt), t ,ö(1):

Since G � Rdÿ1 is bounded, it is not hard to see ~ôG ,1 almost surely and hence

ö(~ôG) ,ö(1) a:s: (3:10)

With f as above, for ä. 0,
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f (Y (t ^ ö(~ôG)), R(t ^ ö(~ôG)))ÿ
� t^ö(~ôG)

0

(~L f )(Ys, Rs)ds

� f (Y , R) � öÿ1(t ^ ö(~ôG))ÿ
� t^ö(~ôG)

0

(~L f )(Yöÿ1
s

, Röÿ1
s

)ds

� f (Y , R) � öÿ1(t ^ ö(~ôG))ÿ
�öÿ1( t^ö(~ôG))

0

[(r2~L) f ](Yu, Ru)du

is a martingale, by (3.9), optional stopping and dominated convergence. Hence (Y (t ^ ö(~ôG)),

R(t ^ ö(~ôG))) solves the ö(~ôG)-stopped martingale problem for ~L. Since ~L is L expressed in

the coordinates (y, r), we see that for each ä. 0, the law of X t solves the ö(~ôG)-stopped

martingale problem for L. By (3.8) R(.) does not hit 0 in ®nite time and consequently

R(.) � jX (.)j does not hit 0 before ö(1). Then by (3.10) and our basic assumption of

uniqueness for the ô0-stopped martingale problem for L, the law of X (. ^ ö(~ôG)) is uniquely

determined. Also, for t ,ö(1), the inverse of ö is

öÿ1
t �

� t

0

R
ÿ2

u du,

and it follows that the law of X (ö(.) ^ ö(~ôG)) � X (ö(. ^ ~ôG)) is uniquely determined. Hence

the law of

Y (. ^ ~ôG) � Y (ö(. ^ ~ôG)) (3:11)

is uniquely determined, as claimed.

Non-explosion. We have shown a solution to the ~L2-martingale problem exists uniquely up to

an explosion time. Note that explosion in ®nite time for this solution corresponds to a

solution to the L2-martingale problem hitting the north pole in ®nite time. Hence the L2-

martingale problem has a unique solution up to the ®rst hitting time ã1 of the north pole. By

repeating the preceding proof using stereographic projection from the south pole, we can

extend the solution uniquely to the ®rst time ã2 after ã1 the south pole is hit. Repeating this,

we obtain a unique solution up to the explosion time ã1 � supn ãn, where

ã2n � infft . ã2nÿ1: hit south poleg,
ã2n�1 � infft . ã2n: hit north pole g:

Stated another way, the ã1-stopped martingale problem for L2 has a unique solution. Write

Qè for this solution.

To see that explosion does not occur (that is, ã1�1) proceed as follows. By uniqueness,

the family fQè: è 2 Sdÿ1g possesses the strong Markov property. Denote

ãNP � infft > 0: ù t � north poleg,
ãSP � infft > 0: ù t � south poleg,

where ù t is the coordinate process. By the support theorem, for T . 0,
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QNP(ãSP , T ) , 1:

Hence, for è 2 Sdÿ1 and T . 0, by the strong Markov property

Qè(ã1, T ) < Qè(ã2n , T )

� Qè(ã2nÿ1 , T , ã2n , T )

< Qè(ã2nÿ1 , T )QNP(ãSP , T )

< Qè(ã2nÿ2 , T )QNP(ãSP , T )

..

.

< Qè(ã2 , T )QNP(ãSP , T )nÿ1

< QNP(ãSP , T )nÿ1:

Letting n!1 yields

Qè(ã1, T ) � 0:

Since T . 0 was arbitrary, we have

Qè(ã1,1) � 0,

as desired. This completes the proof of Theorem 3.2. h

We will need the next lemma to prove Feller continuity. Its proof uses the notation from

the proof of the last theorem.

Lemma 3.3. Let U be an open subset of Sdÿ1 whose closure does not contain the north pole

and set ôU � infft > 0: ù t =2 Ug. If Q solves the L2-martingale problem starting from

è 2 U then

EQ

�ôU

0

I(ù t 2 D)dt

� �
� 0, (3:12)

where D is the set of discontinuities of a and b regarded as functions on Sdÿ1.

Proof. Let y � Ø(è) and G � Ø(U ). If ~Q is the solution to the ~ôG-stopped martingale

problem for ~L2, then (3.12) is equivalent to

E
~Q

�~ôG

0

I(ù t 2 Ø(D))dt

" #
� 0: (3:13)

Since U does not contain the north pole, G is a bounded open set in Rdÿ1, so by a theorem

of Krylov (1971), there exists N . 0 independent of y such that for any Borel function ~g,
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E
~Q

�~ôG

0

~g(ù t)dt

" #
< N

�
G

j~g(x)jdÿ1dx

� �1=(dÿ1)

:

In particular, by (1.5) the (d ÿ 1)-dimensional Lebesgue measure of Ø(D) is zero, so (3.13)

is immediate. h

The next step is to verify the Feller property.

Lemma 3.4. The process È is Feller; that is, for each f 2 C(Sdÿ1) and t . 0,

x=jxj 2 Sdÿ1 ! E P
0

x [ f (È t)]

is continuous.

Proof. Let xn, x 2 Rdnf0g with xn=jxnj ! x=jxj. It is no loss to assume x,

xn 2 Rdnf0, . . . , 0, a): a > 0g. Let Q and Qn denote the laws on C([0, 1), Sdÿ1) of È
under P 0

x and P 0
xn

, respectively. Thus we need to prove

Qn ! L Q as n!1:
Since Sdÿ1 is compact, we can argue much like the proof of Theorem 1.4.6 in Stroock

and Varadhan (1979) to show fQn: n > 1g is precompact. (Note that we replace `translates

of f ' in their hypothesis 1.4.3 by `rotations of f '.) Let Q be any limit point and suppose

Qn k
! L Q . Once we show Q � Q, it follows that any subsequence of fQng contains a

subsubsequence converging to Q. Then Qn ! L Q, as desired.

From the proof of the Theorem 3.2, it is enough to show Q solves the ôU -stopped

martingale problem for L2, where U is an open subset of Sdÿ1 whose closure does not

contain the north pole. Let x(ù, t) � ù t be the coordinate mapping on C([0, 1), Sdÿ1) and

set M t � ó (x(s): s < t). Consider any f 2 C1(Sdÿ1) that is constant in a neighbourhood of

the north pole. Recalling that D is the set of discontinuities of a and b regarded as

functions on Sdÿ1 and that the surface measure of D is 0 (see (1.5)), we see that

ù!
� t

0

(L2 f )(ùs)ds

is continuous on the set

D c � ù:

� t

0

I(ùs 2 D)ds � 0

� �
:

(Here the superscript c stands for complement.) If

Q (D ) � 0, (3:14)

then by the continuous mapping theorem, for each bounded continuous M s-measurable

function Ö on C([0, 1), Sdÿ1) and t > s,

604 R. Dante DeBlassie



EQ f (ù t)ÿ
� t

0

(L2 f )(ùu)du

� �
Ö

� �
� lim

k!1
EQn k f (ù t)ÿ

� t

0

(L2 f )(ùu)du

� �
Ö

� �

� lim
k!1

EQn k f (ùs)ÿ
� s

0

(L2 f )(ùu)du

� �
Ö

� �

� EQ f (ùs)ÿ
� s

0

(L2 f )(ùu)du

� �
Ö

� �
:

Thus f (ù t)ÿ
� t

0
(L2 f )(ùu)du is a Q -martingale and so Q solves the ôU -stopped L2-

martingale problem, as desired.

To verify (3.14), note that it is enough to show

EQ
�ôU

0

I(ù t 2 D)dt

� �
� 0,

where U is any open subset of Sdÿ1 whose closure does not contain the north pole. It is a

simple matter to show that the function

ù!
�ôU

0

I(ù t 2 D)dt

is lower semicontinuous and hence

EQ
�ôU

0

I(ù t 2 D)dt

� �
< lim

k!1
EQn k

�ôU

0

I(ù t 2 D)dt

� �
� 0,

by Lemma 3.3. h

Now we verify the absolute continuity hypothesis in Theorem 3.1.

Lemma 3.5. For x 6� 0 and q . 0, �1
0

eÿqt P 0
x(È t 2 .)dt

is absolutely continuous with respect to the normalized surface measure ì on Sdÿ1.

Proof. It is no loss to assume x=jxj is not the north pole. Then for any Borel set A � Sdÿ1, in

the notation of the proof of Theorem 3.2,

P 0
x(È t 2 A) � ~Py(Yt 2 Ø(A)), y � Ø(x=jxj):

If ì(A) � 0 then the (d ÿ 1)-dimensional Lebesgue measure of Ø(A) is 0. Hence by Krylov's

theorem cited above, �1
0

I(Ys 2 Ø(A))ds � 0 a:s: ~Py:
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Then

0 �
�1

0

eÿqt ~Py(Yt 2 Ø(A))dt

�
�1

0

eÿqt P 0
x(È t 2 A)dt

as desired. h

By Theorem 3.2 and Lemmas 3.4±3.5, the hypotheses of Theorem 3.1 hold for

K � Sdÿ1 and ~X � È. Then Theorem 3.1 immediately yields Theorem 2.2.

4. The invariant measure for d � 2

Let d � 2 and suppose bi � 0, i � 1, 2. Assume a is piecewise smooth on S1: that is, for

some 0 � è0 , è1 , � � � , èn � 2ð, aj(èiÿ1,èi) has a smooth extension to [èiÿ1, èi],

i � 1, . . . , n. Writing L in polar coordinates x � reiè,

L � 1

2
e1

@2

@ r2
� e3

r

@2

@è@ r
� e2

r

@

@ r
� 1

r2
e2

@2

@è2
ÿ e3

@

@è

� �� �
, (4:1)

where

e1 � ha(x)x, xi
jxj2 � a11 cos2è� 2a12 cos è sin è� a22 sin2è

e2 � a11 sin2èÿ 2a12 cos è sin è� a22 cos2è

e3 � ÿ2a11 cos è sin è� 2a22 cos è sin è� 2(cos2èÿ sin2è)a12:

Then

L2 � 1

2

e2

e1

@2

@è2
ÿ e3

e1

@

@è

� �
: (4:2)

It is easy to show that the invariant probability measure í from Theorem 2.2 is absolutely

continuous with respect to arc length dè on S1. Thus for some p(è),

í(dè) � p(è)dè: (4:3)

The main result of this section is the explicit identi®cation of p(è). De®ne

h(u) � exp

�u

0

ÿ e3(è)=e2(è)dè

� �
: (4:4)

Theorem 4.1. The invariant density p(è) is given by
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p(è) �
Be1(è)h(è)=e2(è), if h(2ð) � 1

Be1(è)h(è)=e2(è)

�è
0

h(u)ÿ1du� h(2ð)

1ÿ h(2ð)

�2ð

0

h(u)ÿ1du

" #
, if h(2ð) 6� 1

8><>:
(4:5)

where è =2 fè1, . . . , èng and B is chosen so
� 2ð

0
p(è)dè � 1.

Proof. Let Eè denote expectation for the process È t starting at è corresponding to L2 on S1.

Then for smooth enough functions f de®ned on S1,

Eè f (È t)ÿ f (è) � Eè

� t

0

(L2 f )(Ès)ds:

Integrating with respect to í � p dè,

0 � t

�2ð

0

(L2 f )(è) p(è)dè:

Then writing ~p � p=e1, �2ð

0

e2

@2 f

@è2
ÿ e3

@ f

@è

� �
~p dè � 0:

Since the coef®cients of e1 L2 are in C1(èiÿ1, èi), ~p 2 C1(èiÿ1, èi). Integrating by parts

twice yields, for f 2 C1,

0 �
Xn

i�1

�
f(~pe2 f 9)(èÿi )ÿ (~pe2 f 9)(è�iÿ1)g ÿ f[~pe3 � (~pe2)9] f (èÿi )ÿ [~pe3 � (~pe2)9] f (è�iÿ1)g

�
�èi

èiÿ1

[(~pe2) 0� (~pe3)9] f (è)dè

�
:

By choosing f appropriately, we end up with

(~pe2) 0� (~pe3)9 � 0 on (èiÿ1, èi), i � 1, . . . , n, (4:6)

(~pe3 � (~pe2)9)(èÿi ) � (~pe3 � (~pe2)9)(è�i ), i � 1, . . . , nÿ 1, (4:7)

(~pe3 � (~pe2)9)(è�0 ) � (~pe3 � (~pe2)9)(èÿn ), (4:8)

(~pe2)(èÿi ) � (~pe2)(è�i ), i � 1, . . . , nÿ 1, (4:9)

(~pe2)(è�0 ) � (~pe2)(èÿn ): (4:10)

Hence by (4.6) on (èiÿ1, èi), i � 1, . . . , n for some Bi and Ci,

(~pe2)(è) � h(è) Ci

�è
0

h(u)ÿ1du� Bi

" #
,
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where h(u) is from (4.4). By (4.7) and (4.8)

C1 � C2 � � � � � Cn,

so that

(~pe2)(è) � h(è) C1

�è
0

h(u)ÿ1du� Bi

" #
on (èiÿ1, èi):

Using (4.9),

B1 � B2 � � � � � Bn:

By (4.10),

B1 � h(2ð) C1

�2ð

0

h(u)ÿ1du� B1

" #
,

giving

B1[1ÿ h(2ð)] � C1 h(2ð)

�2ð

0

h(u)ÿ1du:

Hence if h(2ð) � 1 then we must have C1 � 0 and so

(~pe2)(è) � h(è)B1

which is equivalent to the ®rst part of (4.5).

If h(2ð) 6� 1, then

B1 � C1

h(2ð)

1ÿ h(2ð)

�2ð

0

h(u)ÿ1du,

and so

(~pe2)(è) � C1 h(è)

�è
0

h(u)ÿ1du� h(2ð)

1ÿ h(2ð)

�2ð

0

h(u)ÿ1du

" #
,

giving the second part of (4.5). h

5. The critical case á � 1

In this section we consider a special two-dimensional case. Our main result is the following

theorem.

Theorem 5.1. Let d � 2, bi � 0 for i � 1, 2 and suppose a is piecewise constant on S1. If

á � 1 and X 0 6� 0, then X does not hit f0g almost surely. Moreover, X hits every
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neighbourhood of f0g in ®nite time almost surely.

Proof. We use the notation from Section 4. In particular, a is constant on each of the

intervals (èiÿ1, èi), i � 1, . . . , n. Since tr a � e1 � e2,

0 � áÿ 1 �
�

S1

e1 � e2

e1

p dèÿ 2

�
�

S1

e2

e1

ÿ 1

� �
p dè:

Since ~p � p=e1, this becomes

0 �
�

S1

(e2 ÿ e1)~p dè: (5:1)

We need the next result, whose proof is deferred to the end of the section. h

Theorem 5.2. The condition (5.1) implies the existence of a function u 2 C1(S1) such that for

i � 1, . . . , n,

u 2 C2
b(èiÿ1, èi)

L2u � ÿ 1

2

e2 ÿ e1

e1

on (èiÿ1, èi):

Set

f (r, è) � ln r � u(è):

Then for è 2 (èiÿ1, èi) and r . 0, by (4.1) and (4.2),

L f � 1

e1

Lf

� 1

2r2

e2 ÿ e1

e1

� �
� 1

r2
L2u

� 0:

Since u 2 C2
b(èiÿ1, èi) \ C1(S1), there is an approximating family of functions f n 2 C2

b(R2)

such that f n and its ®rst-order partials converge uniformly on fx 2 R2: å, jxj, Mg to f and

its ®rst-order partials, respectively. Moreover, the second-order partials of f n are uniformly

bounded on fx 2 R2: å, jxj, Mg, and converge pointwise to the corresponding partials of f

on (å, M) 3 (èiÿ1, èi). Applying the martingale property of Px to each f n, using optional

stopping, and then letting n!1, we obtain that

f (X (t ^ ôå ^ ôM ))

is a Px-martingale. The exceptional set where the second-order partials of f fail to exist is of

no consequence because Px a.s. X spends zero Lebesgue time there (Krylov 1971).
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Thus, using Ex to denote expectation with respect to Px,

Ex f (X t^ôå^ôM
) � f (x),

and letting t!1,

Ex f (X ôå^ôM
) � f (x):

Expanding,

(ln å)Px(ôå , ôM )� (ln M)Px(ôå . ôM )� Exu(X ôå^ôM
) � ln r � u(è):

Consequently,

Px(ôå , ôM ) � [ln r � u(è)ÿ ln M ÿ Exu(X ôå^ôM
)]=[ln åÿ ln M]:

First ®x M and let å! 0 to get

Px(ô0 , ôM ) � 0, 0 , jxj, M , (5:2)

since u is bounded. Next, ®x å and let M !1 to get

Px(ôå ,1) � 1, å, jxj:
Combined with (5.2), Theorem 5.1 follows.

Proof of Theorem 5.2. We assume a is constant on each of the intervals (èiÿ1, èi),

i � 1, . . . , n. Then e3 � ÿe92 on (èiÿ1, èi) and (4.6)±(4.8) become

(~p9e2)9 � 0 on (èiÿ1, èi), i � 1, . . . , n,

(~p9e2)(èÿi ) � (~p9e2)(è�i ), i � 1, . . . , nÿ 1

(~p9e2)(è�0 ) � (~p9e2)(èÿn ):

In particular, ~p9e2 is constant on S1, say

~p9e2(è) � â: (5:3)

De®ne

H(è) � ~pe2 (5:4)

and observe that, by (4.9) and (4.10), H is continuous, and that, by (4.5), inf S1 H . 0.

Moreover, since ~p 2 C1(èiÿ1, èi), so is H.

We wish to consider the differential operator

Mó u � (Hu9)9ÿ âu9ÿ ó u

for ó 2 R. To make sense of this, de®ne

Mó (u, v) �
�

S1

[Hu9v9� (âu9� ó u)v]dè, u, v 2 W 1,2(S1): (5:5)
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For g 2 L2(S1), a weakly differentiable function u is a weak or generalized solution of

Mó u � g on S1 if, for all v 2 C1(S1),

Mó (u, v) � ÿ
�

S1

gv dè: (5:6)

Let M�ó denote the formal adjoint of Mó , de®ned by

M�ó u � (Hu9� âu)9ÿ ó u:

We use M�ó to denote the corresponding bilinear form:

M�ó (u, v) �
�

S1

[(Hu9� âu)v9� ó uv]dè, u, v 2 W 1,2(S1):

Clearly

M�ó (u, v) �Mó (v, u): (5:7)

We interpret the equation M�ó u � g in the weak sense analogous to M�ó u � g described

above. We can argue much like the proof of Theorem 8.6 in Gilbarg and Trudinger (1983), to

end up with the following consequence of the Fredholm alternative in Hilbert space. h

Theorem 5.3. There exists a discrete countable set
P � R such that if ó =2P, the problems

Mó u � g, M�ó u � g

have unique solutions in W 1,2(S1) for arbitrary g 2 L2(S1). If ó 2P, then the subspaces of

solutions of the homogeneous problems

Mó u � 0, M�ó u � 0

are of positive, ®nite dimension and the problem Mó u � g is solvable if and only if�
S1

gv dè � 0 (5:8)

for all v 2 W 1,2(S1) satisfying M�ó v � 0.

Notice, for v 2 C1(S1), that

M�0 (1, v) �
�

S1

âv9 dè � 0,

since â is constant and v is continuous. Hence

M�0 1 � 0,

and we see that 0 2P.

Lemma 5.4. Any v 2 W 1,2(S1) satisfying M�0 v � 0 must be constant.

Proof. Since H 2 C1(èiÿ1, èi), v 2 C1(èiÿ1, èi) for i � 1, . . . , n. Hence for j 2 C1(S1),
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0 �M�0 (v, j) �
Xn

i�1

�èi

èiÿ1

(Hv9� âv)j9 dè

�
Xn

i�1

([Hv9� âv]j)(èÿi )ÿ ([Hv9� âv]j)(è�iÿ1)ÿ
�èi

èiÿ1

(Hv9� âv)9j dè

" #
:

By choosing j appropriately, we have

(Hv9� âv)9 � 0 on (èiÿ1, èi) (5:9)

and

(Hv9� âv)(èÿi ) � (Hv9� âv)(è�i ), i � 1, . . . , nÿ 1

(Hv9� âv)(è�0 ) � (Hv9� âv)(èÿn ):

�
The latter implies Hv9� âv is continuous on S1. Hence by (5.9) there is some constant C1

such that

Hv9� âv � C1:

If â � 0, then for some constant C2,

v(è) �
�è

0

C1 H(u)ÿ1du� C2:

But v is continuous on S1 so we must have v(0�) � v(2ðÿ), and this forces C1 � 0 since

H . 0. Thus v is constant.

On the other hand, if â 6� 0, then for some constant C2

v(è) � C1

â
� C2 exp ÿ

�è
0

âH(u)ÿ1du

( )
:

Continuity of v on S1 forces C2 � 0 and once again v is constant.

In any case, we have shown v is constant, and the proof of Lemma 5.4 is complete. h

Let us apply these results to prove Theorem 5.2. Let

g � ÿ e2 ÿ e1

e2

:

Then �
S1

Hg dè �
�

S1

~pe2 ÿ e2 ÿ e1

e2

� �
dè

� ÿ
�

S1

(e2 ÿ e1)~p dè

� 0, by (5:1):

Hence by Lemma 5.4 and the last part of Theorem 5.3, we have u 2 W 1,2(S1) such that
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M0u � Hg:

Thus, for all v 2 C1(S1),

0 �
�

S1

[Hu9v9� âu9v] dè�
�

S1

Hgv dè

�
Xn

i�1

(Hu9v)(èÿi )ÿ (Hu9v)(è�iÿ1)ÿ
�èi

èiÿ1

[(Hu9)9ÿ âu9ÿ Hg]v dè

" #
: (5:10)

Since g and H are in C1(èiÿ1, èi), so is u. By choosing v appropriately (5.10) yields

(Hu9)9ÿ âu9ÿ Hg � 0 on (èiÿ1, èi) (5:11)

and

(Hu9)(èÿi ) � (Hu9)(è�i ), i � 1, . . . , nÿ 1,

(Hu9)(è�0 ) � (Hu9)(èÿn ):

�
(5:12)

Then (5.11) becomes

0 � (~pe2u9)9ÿ ~p9e2u9ÿ ~pe2 ÿ e2 ÿ e1

e2

� �
� ~p(e2u9)9� ~p(e2 ÿ e1):

In particular,

(e2u9)9 � ÿ(e2 ÿ e1): (5:13)

Since e3 � ÿe92 on (èiÿ1, èi), by (4.2) and (5.13)

L2u � ÿ 1

2

e2 ÿ e1

e1

� �
on (èiÿ1, èi):

Since H . 0 is continuous, (5.12) forces u9 to be continuous.

To ®nish the proof, we still need to show that u 0 is bounded on (èiÿ1, èi). For this,

notice that, on (èiÿ1, èi),

H9 � (~pe2)9 � ~p9e2 � ~p~e92

� â� âe92=e2

which is bounded. Hence by (5.11), the boundedness of g and u9, and inf H . 0, we have that

u 0 is bounded on (èiÿ1, èi), as claimed. h
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