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This paper deals with the ®xed sampling interval case for stochastic volatility models. We consider a

two-dimensional diffusion process (Yt, Vt), where only (Yt) is observed at n discrete times with

regular sampling interval Ä. The unobserved coordinate (Vt) is ergodic and rules the diffusion

coef®cient (volatility) of (Yt). We study the ergodicity and mixing properties of the observations (YiÄ).

For this purpose, we ®rst present a thorough review of these properties for stationary diffusions. We

then prove that our observations can be viewed as a hidden Markov model and inherit the mixing

properties of (Vt). When the stochastic differential equation of (Vt) depends on unknown parameters,

we derive moment-type estimators of all the parameters, and show almost sure convergence and a

central limit theorem at rate n1=2. Examples of models coming from ®nance are fully treated. We

focus on the asymptotic variances of the estimators and establish some links with the small sampling

interval case studied in previous papers.
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1. Introduction

Continuous-time stochastic volatility (SV) models have recently been the object of growing

interest because of their applications in econometry and ®nance. Moreover, they lead to a

series of new statistical issues in the ®eld of inference for stochastic processes. To our

knowledge, the ®rst authors to introduce continuous SV models were Hull and White (1987)

(for a review of the literature, see Ghysels et al. 1996). Continuous-time SV models mainly

concern asset-price modelling. The standard model for the evolution of asset prices is the

following. Let (Yt) denote the logarithm of the price process; then it is assumed to be ruled

by

dYt � ì(ó 2
t ) dt � ót dBt,

where (ó 2
t ) is the unobserved instantaneous volatility, (Bt) a Brownian motion and ì is some

real function. Among models for (ó 2
t ), there are the diffusion processes driven by another
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Brownian motion (Wt) ± for instance, a GARCH diffusion (Nelson 1990) or a Cox±

Ingersoll±Ross process (Heston 1993). Other models including jumps for the volatility have

been considered (see, for example, Drost and Werker 1996; Barndorff-Nielsen and Shephard

1998).

In this paper, we study the case where Vt � ó 2
t is a diffusion process, and we consider

the simpli®ed two-dimensional diffusion process (Yt, Vt) given by

dYt � ót dBt, Y0 � 0

and Vt � ó 2
t , with

dVt � b(Vt) dt � a(Vt) dWt, V0 � ç:

Here, (Bt, Wt) t>0 is a two-dimensional standard Brownian motion, (Vt) is a positive diffusion

and ç is a positive random variable independent of (Bt, Wt) t>0. The diffusion (Vt) is

unobserved, and the sample path (Yt) is discretely observed at regularly spaced times ti � iÄ,

i � 1, . . . , n.

For the above model, we have investigated in two previous papers the statistical problem

of estimating unknown parameters in the drift and diffusion coef®cients of (Vt) (see Genon-

Catalot et al. 1998; 1999). We have assumed that, while the number of observations n tends

to in®nity, the sampling interval Ä � Än tends to zero and the length of the observation

time nÄn tends to in®nity. The main assumption on the hidden diffusion (Vt) is its

ergodicity. In this framework, we have proved limit theorems for the empirical distribution

of the increments (Yti
ÿ Ytiÿ1

, i � 1, . . . , n). Furthermore, we have proposed explicit

contrast functions to replace the intractable likelihood. This has led to estimators of the

unknown parameters present in the stationary distribution of (Vt), which are consistent and

asymptotically Gaussian with rate (nÄn)1=2.

Complementing this approach is the case ± classical in the statistics of diffusion

processes ± where the sampling interval Ä is ®xed (see, for example, Bibby and Sùrensen

1995; Kessler 2000). The latter approach, which is the subject of the present paper, will

enable us to gain a new insight into the intrinsic properties of SV models. Indeed, we prove

here that discretely observed SV models can be viewed as hidden Markov models (HMMs).

For a formal de®nition, we refer to Leroux (1992) or Bickel and Ritov (1996). However,

most statistical references in this ®eld assume that the state space of the hidden chain is

®nite. The SV models provide a concrete example of HMMs with continuous state space for

the hidden chain. This more dif®cult situation has recently been taken into account (see e.g.

Jensen and Petersen 1998). In our model we have to deal with a further source of dif®culty:

the transition probability of the hidden chain that we exhibit is not explicitly known.

The paper is organized as follows. We have to link discrete- and continuous-time

processes, so Section 2 revises the ergodicity and mixing properties of strictly stationary

Markov processes in both cases. This review is mainly based on Bhattacharya (1982) and

Hansen et al. (1998). Special attention is given to the study of the r-mixing coef®cient of

an ergodic diffusion. In particular, we give a new proof of a necessary and suf®cient

condition for r-mixing introduced by Hansen et al. (1998). This condition can easily be

checked on the drift and diffusion coef®cients. Moreover, our proof provides explicit upper
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and lower bounds for the spectral gap of the in®nitesimal generator, which in turn gives

bounds for the r-mixing coef®cient.

In Section 3, we de®ne the HMM and prove the key properties for statistical purposes:

the observed process inherits the ergodicity and mixing properties of the hidden chain. For

a ®nite state-space hidden chain, such results have been established by Lindgren (1978) and

Leroux (1992). Coming back to the SV model, we set, for i > 1,

Zi � 1����
Ä
p

� iÄ

(iÿ1)Ä
ó s dBs,

Ui � (Vi, ViÄ), with Vi � 1

Ä

� iÄ

(iÿ1)Ä
Vs ds:

We prove that (Zi) is an HMM with hidden chain (Ui). Applying the results of Section 2

concerning the various mixing coef®cients of an ergodic diffusion, we study the á-mixing

property of (Zi). This is achieved using only conditions on the drift and diffusion coef®cients

of the (Vt) model.

Consider now the problem of estimating unknown parameters in the volatility model. We

observe that, conditionally on (Vt, t > 0), the variables (Zi) are independent with

distribution N (0, Vi). However, neither the joint distribution of (Vi) nor the transition

probability of (Ui) are explicitly known. Consequently, available results on HMMs cannot

be directly applied. Therefore, we study here empirical estimators and prove limit theorems,

especially for polynomial functions of (Zi, . . . , Zi�d). This leads to consistent and

asymptotically Gaussian estimators with rate n1=2, and all the unknown parameters of the

(Vt) model can be estimated. The computation of asymptotic variances enlights the links

between ®xed and small sampling interval. Section 4 is devoted to examples of widely used

parametric models for the volatility.

2. Properties of strictly stationary Markov processes

In view of applications to diffusion processes, we summarize some of the important

properties of strictly stationary Markov processes, drawing on several references, among them

Bhattacharya (1982), Ethier and Kurtz (1986), Bradley (1986), Doukhan (1994), Hansen and

Scheinkman (1995), Hansen et al. (1998).

2.1. Continuous time and continuous sample paths

2.1.1. Semigroup and in®nitesimal generator

Let us de®ne on (Ù, F , (F t) t>0, P), (Xt, t > 0), a time-homogeneous Markov process with

state space (S, B (S)), where, for the sake of simplicity, S � Rk , with k > 1. We assume that

(Xt) has continuous sample paths, with transition probability Pt(x, dy), admits a stationary

distribution ð and that X0 has distribution ð.
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Let F t � ó (X s, s < t), F � ó (X t, t > 0). Now, for any real ð-integrable function f on

S, we de®ne

Pt f (x) �
�

S

f (y)Pt(x, dy) � E[ f (Xt)=X 0 � x], ð a:s:, (1)

which satis®es, for all t, s > 0, Pt�s f � Pt Ps f .

Throughout this paper, we will use the following notation:

L2
ð � L2(S, B (S), ð), h f , gi �

�
S

fg dð, k f k � h f , f i1=2: (2)

Whenever f 2 L2
ð, Pt f 2 L2

ð and kPt f k < k f k. Hence, (Pt, t > 0) is a contraction

semigroup on L2
ð.

Property 1. The semigroup (Pt, t > 0) is strongly continuous, that is, for all f 2 L2
ð,

lim
t#0
kPt f ÿ f k � 0:

Proof. From the continuity of sample paths, this is clearly satis®ed for bounded and

continuous functions on S. Now, since this set of functions is dense in L2
ð, the proof is

achieved since Pt is a contraction. h

We may now introduce the in®nitesimal generator of the semigroup Pt. On the domain

D � f 2 L2
ð :





 Pt f ÿ f

t
ÿ g





! 0, as t # 0 for some g 2 L2
ð

( )
,

the in®nitesimal generator A is de®ned by

f 2 D !A f � lim
t#0

Pt f ÿ f

t
in L2

ð: (3)

The following result is a straightforward consequence of the contraction property of Pt.

Property 2. For any f 2 D , hA f , f i < 0.

The next two properties follow from Property 1 (see, for example, Ethier and Kurtz 1986,

pp. 9±10).

Property 3. For any f 2 D and t > 0, Pt f 2 D and dPt f =dt � PtA f �APt f .

Property 4. D is (L2
ð)-dense in L2

ð and A is a closed operator (i.e. the graph of A,

G (A) � f( f , A f ); f 2 D g is a closed subset of L2
ð 3 L2

ð).

2.1.2. Ergodicity

We remark that, for all t > 0, Pt1 � 1, hence 1 2 D , and A1 � 0. So the constant functions

are eigenfunctions of Pt with eigenvalue 1, and are also eigenfunctions of A with eigenvalue
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0. The ergodicity of (X t) is linked with the dimension of the eigenspace of A associated

with the eigenvalue 0.

Denote by C(R�, S) the space of continuous functions on R� with values in S, endowed

with the topology of uniform convergence on compact subsets of R�. The shift operator èt

is de®ned by èt(x)(�) � x(t � �), x 2 C(R�, S) and t > 0. Then the mapping (x, t)! èt(x)

is jointly continuous on C(R�, S) 3 R�. Let C be the Borel ó-®eld of C(R�, S) and

X � (X t, t > 0). From strict stationarity, we have, for any B 2 C , P(X 2 B) �
P(èt(X ) 2 B), that is, (èt) is measure-preserving. The shift-invariant ó -®eld is the sub-ó-

®eld of F given by

J � f(X 2 B); B 2 C , 8t, B � èÿ1
t (B)g:

A strictly stationary process is said to be ergodic if J is P-trivial (i.e. 8A 2 J , P(A) � 0 or

1). In this case, Birkhoff's ergodic theorem (see, for example, Krengel 1985, pp. 9±10)

implies that, when f 2 L1
ð,

1

T

�T

0

f (Xs) ds!a:s: E[ f (X 0)=J ] �
�

f dð, as T !1:

Let us now give some characterizations of ergodicity for Markov process.

Proposition 2.1. For a strictly stationary Markov process, J � ó (X 0) � F 0 (up to null

probability sets).

Proof. Let A � (X 2 B) 2 J . Then 8t, B � èÿ1
t (B). Set h(x) � P(A=X0 � x). We have

P(A=F t) � P(èt(X ) 2 B=F t) � P(èt(X ) 2 B=X t) � h(X t):

From the convergence theorem for martingales, P(A=F t) converges a.s. to P(A=F ) � 1A as

t!1. From strict stationarity, (èt(X ), X t) and (X , X 0) have the same distribution. So, for

all t > 0,

h(Xt) � P(èt(X ) 2 B=X t) � P(X 2 B=X 0) � h(X0):

We deduce that 1A � h(X 0) a.s. h

Theorem 2.1. For a strictly stationary Markov process, the following two statements are

equivalent:

(i) The process (X t) is ergodic.

(ii) 0 is a simple eigenvalue of A (this means that the null space NA � f f 2 D :

A f � 0g is the one-dimensional subspace of L2
ð spanned by constants).

Proof. Assume ®rst that 0 is a simple eigenvalue of A and consider a square-integrable and

J -measurable random variable Z. The previous proof shows that h(x) � E(Z=X0 � x)

satis®es h(Xt) � E(Z=F t) � h(X0) � Z. Thus, h(X t) is a square-integrable martingale. We

can therefore write, for all t, s > 0,

Pt h(X s) � E(h(X t�s)=F s) � h(X s):
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Hence Pt h � h (in L2
ð), for all t > 0, and this implies that h 2 D and Ah � 0. Using our

assumption, h is a constant, so Z � h(X0) is also a constant. Therefore, J is P-trivial.

We now prove the converse. Let h 2 D and Ah � 0. From Property 3, we get

dPt h=dt � PtAh � 0, which implies Pt h � P0 h � h. So, from the Markov property, h(Xt)

is a square-integrable martingale, and there exists a square-integrable and F -measurable

random variable Z � lim h(Xt) a.s. (as t!1). Moreover, h(Xt) � E(Z=F t). Since, for all

s > 0, Z � lim h(X t�s), Z is J -measurable. Since J is assumed to be P-trivial, Z is a.s.

constant. Finally, h(X t) � E(Z=F t) implies that h is a constant in L2
ð. h

Further results are proved in Bhattacharya (1982, Proposition 2.3 and note added in

proof, p. 201; Theorem 2.1).

Proposition 2.2. For a strictly stationary Markov process, the following statements are

equivalent:

(i) 0 is a simple eigenvalue of A (i.e. (Xt) is ergodic).

(ii) The range of A, RA � fA g; g 2 D g, is dense in f1g?.

Moreover, if this is the case, then RA � f1g? if and only if 0 is an isolated point of the

spectrum of A.

Theorem 2.2. Let (Xt) be a strictly stationary and ergodic Markov process and let f 2 L2
ð.

Then, if f 2RA,

1

T 1=2

�T

0

f (X s) ds!D N (0, ó 2) as T !1,

where ó 2 � ÿ2h f , gi and g is any element of D satisfying A g � f . Moreover,

var
1

T 1=2

�T

0

f (Xs) ds

 !
! ó 2 as T !1:

Therefore, if 0 is a simple eigenvalue and an isolated point of the spectrum of A, then

the above central limit theorem holds for any f 2 L2
ð such that

�
f dð � 0.

2.2. Discrete time and ergodicity

Now, let (Xn, n 2 N) be a time-homogeneous Markov process on (Ù, F , (F n)n>0, P), with

state space (S, B (S)) as above, with one-step transition probability P(x, dy), admitting a

stationary distribution ð and such that X0 has distribution ð.

Let F n � ó (Xk , k < n), F � ó (Xn, n > 0). Now, for any real ð-integrable function f

on S, we de®ne

Pf (x) �
�

S

f (y)P(x, dy) � E[ f (X 1)=X0 � x], ð a:s:
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When f 2 L2
ð, Pf 2 L2

ð, kPf k < k f k and P1 � 1 (following the notation of Section 2.1). We

study P as a linear operator on L2
ð. The ergodicity of (X n) may now be linked with the

dimension of the eigenspace of P associated with the eigenvalue 1.

Let us de®ne the shift operator è : SN ! SN by è(x) � (x1, x2, . . .), for x � (x0, x1, . . .).
The mapping è is measurable with respect to B (SN), and setting X � (Xn, n > 0), the ó-

®eld of shift-invariant sets is the sub-ó -®eld of F given by

J è � f(X 2 B); B 2 B (SN), èÿ1(B) � Bg:
The process is said to be ergodic if J è is P-trivial.

Proposition 2.3. If (Xn) is a strictly stationary Markov, J è � ó (X0) � F 0 (up to null

probability sets).

The proof is identical to the proof of Proposition 2.1. We just have to note that, if

èn � è� . . . �è is the nth iteration of è, then for any B 2 B (SN), B � èÿ1(B) implies

B � èÿ1
n (B) for all n.

Theorem 2.3. If (X n) is a strictly stationary Markov, the following two statements are

equivalent:

(i) The process (X n) is ergodic.

(ii) The value 1 is a simple eigenvalue of P (this means that the space fh 2 L2
ð :

Ph � hg is the one-dimensional subspace of L2
ð spanned by constants).

The proof is similar to the proof of Theorem 2.1. The key tool is even simpler. For h 2 L2
ð,

Ph � h holds if and only if h(X n) is a martingale, which is necessarily such that

h(X n) � h(X 0) � E(Z=F n) � E(Z=X0) � Z,

for some J è-measurable square-integrable random variable Z.

2.3. Mixing coef®cients

In the following, we shall use the so-called á-, â- and r-mixing coef®cients. We recall their

de®nitions and speci®c properties for strictly stationary Markov processes (see, for example,

Bradley 1986; and Doukhan 1994). Let (Ù, F , P) be a probability space and A and B two

ó-®elds included in F . The following measures of dependence are classical:

á(A, B ) � sup
A2A,B2B

jP(A \ B)ÿ P(A)P(B)j, (4)

â(A, B ) � sup
1

2

XI

i�1

XJ

j�1

jP(Ai \ Bj)ÿ P(Ai)P(Bj)j, (5)

where the latter supremum is taken over all pairs of partitions fA1, . . . , AIg and

fB1, . . . , BJg of Ù such that Ai 2A for all i and Bj 2 B for all j, and
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r(A, B ) � supfjcorr(X , Y )j; X 2 L2(A), Y 2 L2(B ), X , Y realg: (6)

The following inequalities hold:

2á(A, B ) < â(A, B ) < 1,

4á(A, B ) < r(A, B ) < 1: (7)

The above formulae can be rewritten as:

á(A, B ) � supfjcov(U , V )j; 0 < U , V < 1, U is A-measurable, V is B -measurableg,
(8)

â(A, B ) � E(ess:supfjP(B=A)ÿ P(B)j, B 2 Bg), (9)

r(A, B ) � sup
kE(X=B )ÿ E(X )k2

kXk2

; X 2 L2(A), X real

� �
: (10)

Now, for any stochastic process (X t), with t 2 R� or t 2 N, let F t � ó (Xs, s < t),

F t � ó (X u, u > t); then áX (t), âX (t) and rX (t) are de®ned by

cX (t) � sup
s>0

c(F s, F s� t), (11)

with c � á, â or r. The process is said to be c-mixing if cX (t)! 0 when t!1. In

particular, when (X t) is a strictly stationary process, it is well known that á-mixing implies

ergodicity. For Markov processes, mixing coef®cients have simple expressions (see Bradley

1986, Theorem 4.1).

Proposition 2.4. Assume that (X t) is a strictly stationary Markov process. Then, for c � á, â,

r,

cX (t) � c(ó (X 0), ó (Xt)):

Using the above proposition and (9)±(10), explicit expressions for âX (t) and rX (t) are

easily deduced (see Doukhan 1994, Section 2.4).

Theorem 2.4. Assume that (X t) is a strictly stationary Markov process, with initial

distribution ð. Then, in the continuous-time case, with the notation of Section 2.1,

âX (t) �
�

S

ð(dx)kPt(x, dy)ÿ ð(dy)kTV,

where kíkTV denotes the total variation norm of a signed measure í, and

rX (t) � sup
kPt( f )k
k f k ; f 2 L2

ð, h f , 1i � 0

� �
:

In the discrete-time case, with the notation of Section 2.2,

âX (n) �
�

S

ð(dx)kPn(x, dy)ÿ ð(dy)kTV
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and

rX (n) � sup
kPn( f )k
k f k ; f 2 L2

ð, h f , 1i � 0

� �
,

where Pn is the nth iteration of the operator P, and Pn(x, dy) is the n-step transition

probability.

The proofs of central limit theorems rely on the rate of convergence to 0 of the mixing

coef®cients as t goes to in®nity. We say that c(t) tends to 0 `exponentially fast' if there is

some å. 0 such that c(t) � O(eÿå t). The r-mixing coef®cient has the following special

property (see Bradley 1986, Theorem 4.2):

Proposition 2.5 Let (X t) be a strictly stationary Markov process. If rX (t)! 0 as t! �1,

then rX (t)! 0 `exponentially fast'.

It is worth noting that, for á- or â-mixing coef®cients, the convergence to 0 may occur, for

instance, at a polynomial rate.

2.4. Continuous time and discrete sampling

Consider a continuous-time process (Xt, t > 0), as in Section 2.1, and, for any Ä. 0, the

discretely sampled process (X kÄ, k > 0). Hence, the one-step transition probability of (X kÄ)

is PÄ(x, dy) and Pn
Ä � PnÄ. Assume that (X t) is ergodic. The following question arises: is

(X kÄ) ergodic for any Ä? An answer is given below.

Theorem 2.5. Assume that (X t) is a strictly stationary Markov process, with transition

probability Pt(x, dy) and marginal distribution ð. If kPt(x, dy)ÿ ð(dy)kTVg ! 0 as

t! �1 for all x 2 S, then (X t) and, for all Ä. 0, (X kÄ) are â-mixing, hence á-mixing

and ergodic.

The proof is just an immediate consequence of the Lebesgue dominated convergence

theorem, and of Theorem 2.4. In Orey (1971, Proposition 4.3), a more precise result is

proved: the convergence to 0 of kPt(x, dy)ÿ ð(dy)kTV is equivalent to the property that the

tail ó-®eld
T

t>0ó (X s, s > t) is trivial for every initial distribution. The ergodicity is

obtained since the tail ó-®eld contains the shift invariant ó-®eld (see also Bhattacharya 1982,

Proposition 2.5).

2.5. Reversible Markov process

A strictly stationary continuous-time Markov process (X t) is said to be reversible if the joint

distributions of (X0, X t) and (X t, X 0) are identical. As a consequence, for all f , g 2 L2
ð,

hPt f , gi � h f , Pt gi, and so the in®nitesimal generator A is also self-adjoint. Some useful

properties may be deduced. Since Pt is self-adjoint for all t, we have, for all f 2 L2
ð,
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hPt f , f i � E( f (X 0) f (Xt)) � hPt=2 f , Pt=2 f i > 0: (12)

This implies the following special feature of the covariance structure:

8t > 0, cov( f (X0), f (Xt)) > 0: (13)

Moreover, as noted by Hansen and Scheinkman (1995, pp. 786 and 794), the following result

holds:

Proposition 2.6. Assume that (Xt, t > 0) is a strictly stationary Markov process, ergodic and

reversible. Then, any discretely sampled process (X kÄ) is ergodic.

Furthermore, the reversibility allows an exact computation of the r-mixing coef®cient in the

ergodic case.

Theorem 2.6. Assume that (X t) is a strictly stationary ergodic and reversible Markov

process. Then rX (t) � eÿë t with

ë � inf
h f , ÿA f i
h f , f i ; f 2 D , h f , 1i � 0

� �
> 0: (14)

Therefore, only two cases may occur:

· either ë. 0, in which case rX (t), and consequently áX (t) will tend to 0 exponentially

fast;

· or ë � 0, in which case rX (t) � 1, for all t > 0 ± however, áX (t) or âX (t) may tend

to 0.

Proof of Theorem 2.6. The following direct proof was provided to us by E.M. Ouhabaz. Let

E0 � f f 2 D ; A f � 0g be the null space of A which is, by the ergodicity assumption, the

one-dimensional space spanned by constants. Thus L2
ð � E?0 � E0, with E?0 � f f 2 L2

ð;

h f , 1i � 0g. Noting that Pt E
?
0 � E?0 , Tt � Pt=E?0 de®nes another strongly continuous

contraction semigroup on E?0 with self-adjoint in®nitesimal generator B . Its spectrum ó (B )

is included in (ÿ1, 0]. By Theorem 2.4,

rX (t) � sup
kTt f k
k f k ; f 2 E?0

� �
� kTtk:

The spectral mapping theorem holds for Tt in the sense that kTtk � eÿë t, with

ÿë � sup ó (B )f g � sup
h f , B f i
h f , f i ; f 2 D (B)

� �
(see, for example, Nagel 1986, Chapter A-III). The domain of B is D (B ) � f f 2 D \ E?0 ;

A f 2 E?0 g. But, since, for f 2 D , hA f , 1i � h f , A1i � 0, D (B ) � E?0 \D . Moreover,

A and B coincide on D (B ), so the proof is complete. h

It is worth noting that ë. 0 is equivalent to the fact that the spectrum of A is included
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in (ÿ1, ë] [ f0g. Hence, 0 is an isolated point of the spectrum, and ë is the so-called

spectral gap.

2.6. One-dimensional diffusion processes

2.6.1. Notation and assumptions

We consider a Markov process which is de®ned by a stochastic differential equation

dX t � b(X t) dt � a(Xt) dWt, X 0 � ç, (15)

where W is a standard Brownian motion in R de®ned on a probability space (Ù, F , P) and ç
is a real random variable de®ned on Ù and independent of W . We now make the standard

assumptions on functions b(x) and a(x), ensuring that the solution of (15) is a positive

recurrent diffusion on an interval (l, r) (ÿ1 < l , r < �1) and a strictly stationary ergodic

time-reversible process.

(A1) The functions b(x) and a(x) are de®ned on (l, r), and satisfy

b(x) 2 C1(l, r), a2(x) 2 C2(l, r), a(x) . 0 for all x 2 (l, r),

and

9K . 0, 8x 2 (l, r), jb(x)j < K(1� jxj) and a2(x) < K(1� x2):

For x0 2 (l, r), de®ne the scale and speed densities of diffusion (X t),

s(x) � exp ÿ2

�x

x0

b(u)

a2(u)
du

 !
, m(x) � 1

a2(x)s(x)
: (16)

(A2)

�
l

s(x) dx � �1,

� r

s(x) dx � �1,

� r

l

m(x) dx � M ,�1:

Let us de®ne the stationary density

ð(x) � 1

M
m(x)1fx2( l,r)g: (17)

(A3) The initial random variable ç has distribution ð(dx) � ð(x) dx.

Now consider the two following additional assumptions.

(A4) As x # l and x " r, lim a(x)m(x) � 0.

(A5) Set ã(x) � a9(x)ÿ 2b(x)=a(x). As x # l and x " r, the limits of 1=ã(x) exist.

Assumptions (A1) and (A2) ensure the existence and uniqueness of the solution of (15)

together with the positive recurrence on (l, r), and (A3) provides strict stationarity.

Assumptions (A4) and (A5) are needed to study the r-mixing property. Note that, in view

of (A2), (A4) is not a strong assumption.

In the further central limit theorems of the paper, a precise rate of convergence for áX (t)
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is required. A direct computation being dif®cult, we can use the two inequalities (7) since,

for diffusion processes, âX (t) and rX (t) are easier to obtain, as we will see below.

2.6.2. The â-mixing coef®cient

First, we have the following property.

Proposition 2.7. Under (A1)±(A3), (Xt) is time reversible, and (X t) as well as (X kÄ), for all

Ä, are ergodic and â-mixing.

Proof. According to Kent (1978, pp. 830±831), under (A1)±(A3), (Xt) is time-reversible. If

Pt(x, dy) denotes the transition probability, then (see Rogers and Williams 1987, pp. 302±

303)

kPt(x, dy)ÿ ð(dy)kTV ! 0 as t! �1:
Theorem 2.5 gives the result. h

Second, the rate of convergence to 0 of âX (t) has been investigated in several papers. In

particular, Veretennikov (1988) gives suf®cient conditions for an exponential rate of

convergence to 0 and Veretennikov (1997) for a polynomial rate (see also Lindvall 1983).

2.6.3. The r-mixing coef®cient

Let us denote by (Pt, t > 0) the transition semigroup of (X t) on L2
ð and by A its

in®nitesimal generator with domain D . In order to investigate the r-mixing property of (Xt),

we rely on results stated in Hansen et al. (1998, Section 3). First, we have to ®nd a subset D

of D on which hA f , f i has a simple expression in terms of the functions b and a. This

subset D has to be large enough to obtain

ë � inf
h f , ÿA f i
h f , f i ; f 2 D, h f , 1i � 0

� �
: (18)

This will be achieved if D is a core for A, that is, if D is dense in D with respect to the

graph norm k f k � kA f k. For instance, D can be taken as the space C2
c(l, r) of twice

continuously differentiable real functions with compact support included in (l, r) and, for

f 2 C2
c(l, r), we have A f � Lf , with (see (A2) and (A3))

Lf � a2

2
f 0� bf 9 � 1

2m

f 9

s

� �
9
: (19)

Now

hA f , f i � M

� r

l

1

2m

f 9

s

� �
9
fm dx

Integrating by parts yields
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hA f , f i � M

2

f 9

s
f

� �r

l

ÿ M

2

� r

l

f 9

s
f 9 dx

� ÿ 1

2

� r

l

( f 9a)2 dð:

Therefore,

ë � 1

2
inf

� r

l
( f 9a)2 dð� r

l
f 2 dð

; f 2 C2
c(l, r),

� r

l

f dð � 0

( )
: (20)

Let us now return to Theorem 2.2 to throw some light on the computation of the

asymptotic variance for diffusion processes. First, recall the exact description of (D , A)

under (A1)±(A3). We have

D � fg 2 L2
ð; g9 absolutely continuous, Lg 2 L2

ð, lim g9(x)=s(x) � 0 as x # l and x " rg:
(21)

On D , A g � Lg and the following formula holds:

ÿ2hA g, gi �
� r

l

(g9a)2 dð: (22)

Starting with f such that h f , 1i � 0 and for g solving Lg � ÿ f , we obtain, by (19),

g9(x) � ÿ2s(x)
� x

l
f (u)m(u) du. Computation yields

ÿ2hA g, gi � ÿ2h f , gi � 4M

� r

l

s(x) dx

�x

l

f (u) dð(u)

� �2

: (23)

The property that f 2RA is equivalent to the fact that the above integral is ®nite.

We can now state the following equivalence.

Proposition 2.8. Under (A1)±(A5), (Xt) is r-mixing if and only if the limits in (A5) are ®nite.

The proof of the proposition, somewhat technical, is postponed to the Appendix. One or two

comments need to be made. Introducing (A4)±(A5), Hansen and Scheinkman (1995)

obtained the suf®cient condition for r-mixing. The equivalence is then proved in Hansen et

al. (1998) using the spectral theory of ordinary differential equations. In the latter paper

another result is obtained. Under (A5), if

ô � 1

8
inffã2(l), ã2(r)g,

then the discrete spectrum of A is included in (ÿô, 0]. This implies that ô � �1 is

equivalent to the fact that the spectrum is entirely discrete.

We give another proof based on close study of ë as given in (14). The interest of our

proof relies in the obtainment of lower and upper bounds for the spectral gap ë which are

new and explicitly computable from the diffusion coef®cients b(:) and a(:).
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The following corollary is useful.

Corollary 2.1. Assume (A1)±(A5) and that the limits in (A5) are ®nite. Then there exists a

positive ë such that áX (t) < eÿë t=4.

Proof. This is a consequence of (7), Theorem 2.6 and Proposition 2.8. h

Turning to examples, let us consider diffusions with mean reverting drift given by

dXt � á(âÿ Xt) dt � cX í
t dWt,

where 1
2

< í < 1. The state space is (l, r) � (0, �1). Assumption (A1) holds. To check

(A2), we must distinguish three cases. Thus assumption (A2) holds:

(i) for í � 1
2
, if á. 0 and áâ > c2=2;

(ii) for 1
2

, í, 1, if á. 0 and â. 0;

(iii) for í � 1, if áâ. 0 and á.ÿc2=2.

Under these conditions on the parameters, (A4)±(A5) also hold. For the ®rst two models,

both limits of 1=ã(x) are equal to 0. For í � 1, we have lim 1=ã(x) equal to 0 as x! 0 but

being strictly positive (and equal to c=(2á� c2)) as x! �1. Under the stationarity

condition (A3), we obtain, by Proposition 2.8, that the process (Xt) is r-mixing. Therefore, 0

is an isolated point of the in®nitesimal generator spectrum and RA � f1g?. The case í � 1
2

is well known since the spectrum is discrete and equal to fÿná, n > 0g.

3. Stochastic volatility model as a hidden Markov model

In this section, we show that a stochastic volatility model can be viewed as a hidden Markov

model.

3.1. De®nition and properties of a hidden Markov model

We follow Leroux (1992) and Bickel and Ritov (1996) for a formal de®nition.

De®nition 3.1. A stochastic process (Zn, n > 1), with state space (Z, B (Z)), is a hidden

Markov model if the following hold:

(i) (Hidden chain.) We are given (but do not observe) a strictly stationary Markov chain

U1, U2, . . . , Un, . . . with state space (U, B (U)).

(ii) For all n, given (U1, U2, . . . , Un), the Zi, i � 1, . . . , n, are conditionally

independent, and the conditional distribution of Zi depends only on Ui.

(iii) The conditional distribution of Zi given Ui � u does not depend on i.

This is the de®nition given by Leroux. Z and U are Polish spaces equipped with their Borel

ó-®eld. Note that condition (ii) is replaced in Bickel and Ritov's paper by:
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(ii9) For all n, given (U1, U2, . . . , Un), the Zi, i � 1, . . . , n, are conditionally

independent, and, given Ui, Zi is independent of (Uj, j 6� i, j � 1, . . . , n).

It is simple to check that conditions (i)±(ii) are equivalent to (i)±(ii9). It is worth noting that,

in general, authors only consider the case where the hidden chain has a ®nite state-space. In

view of our applications, we do not make this assumption. A hidden Markov model has the

following property.

Proposition 3.1. The process (Zi, i > 1) is strictly stationary. If the hidden Markov chain

(Ui, i > 1) is ergodic, then (Zi, i > 1) is also ergodic. Moreover, if (Ui, i > 1) is á-mixing,

then (Zi, i > 1) is also á-mixing, and

áZ(k) < áU (k):

Proof. Let j : Zn ! R be a positive measurable function. If we denote by P(:; u) a regular

version of the conditional distribution of Zi given Ui � u, we can de®ne, using (ii) and (iii)

of De®nition 3.1,

hj(u1, . . . , un) � E[j(Z1, . . . , Zn)=U1 � u1, . . . , Un � un]

�
�

Z n

j(z1, . . . , zn)P(dz1; u1) 
 . . . 
 P(dzn; un):

Using (i), we have

Ej(Z k�1, . . . , Z k�n) � Ehj(Uk�1, . . . , Uk�n) � Ehj(U1, . . . , Un),

This implies that (Z1, . . . , Zn) and (Z k�1, . . . , Z k�n) have the same distribution. Hence, Zi

is strictly stationary.

The ergodicity is proved in Lemma 1 of Leroux (1992) for a hidden chain with ®nite

space state. Actually, Leroux's proof does not require this assumption, but only relies on the

ergodicity of the hidden chain. Thus, it applies here.

Finally, we remark that, conditioning by (Ui, i > 1), we obtain, for functions

j : Zi ! [0, 1] and ø : Z j ! [0, 1],

cov(j(Z1, . . . , Zi), ø(Zi�k�1, . . . , Zi�k� j)) � cov(hj(U1, . . . , Ui), hø(Ui�k�1, . . . , Ui�k� j)):

Since hj is positive and bounded by 1, (8) gives the result. h

3.2 The stochastic volatility model

We now consider the model studied in two previous papers (see Genon-Catalot et al. 1998;

1999). Let (Yt, Vt) t>0 be a two-dimensional diffusion process de®ned by

dYt � ót dBt, Y0 � 0, (24)

Vt � ó 2
t , dVt � b(Vt) dt � a(Vt) dWt, V0 � ç: (25)

We assume that
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(A0) (B, W ) is a standard Brownian motion in R2 de®ned on a probability

space (Ù, F , P), and ç is a random variable de®ned on Ù, independent of (B, W ).

We denote by Pt the transition semigroup of Vt on L2
ð and by A its in®nitesimal generator

with domain D . Using the notation of Section 2.6, we assume (A1)±(A3) hold, with

(l, r) � (0, �1). Then, the diffusion (Vt) is strictly stationary, ergodic and time-reversible,

and all the conclusions of Theorem 2.5 hold.

For Ä positive, we de®ne, for i > 1,

Zi � 1����
Ä
p

� iÄ

(iÿ1)Ä
ó s dBs, (26)

and

Ui � (Vi, ViÄ), Vi � 1

Ä

� iÄ

(iÿ1)Ä
Vs ds: (27)

We remark that, conditionally on (Vs, s > 0), the random variables (Zi) are independent with

distribution N (0, Vi). However, (Vi) is not Markov.

Theorem 3.1. Under (A0)±(A3), we have that

(i) (Ui, i > 1) is a strictly stationary Markov chain with state-space (l, r)2;

(ii) (Zi, i > 1) is a hidden Markov model with hidden chain (Ui, i > 1).

Proof. Let G t � ó (Vs, s 2 [0, t]), E � C([0, Ä], (l, r)) the space of continuous functions

de®ned on [0, Ä] with values in (l, r) and B the Borel ó-algebra associated with the uniform

topology. Let j : (l, r)2 ! R be a bounded Borel function. From the Markov property of

(Vt), we have

E[j(Vi, ViÄ)=G (iÿ1)Ä] � E[j(Vi, V(iÄ)=V(iÿ1)Ä] � ø(V(iÿ1)Ä),

where

ø(v) � E[j(V1, VÄ)=V0 � v]:

This comes from the fact that

Vi � 1

Ä

�Ä
0

V(iÿ1)Ä�s ds and ViÄ � V(iÿ1)Ä�Ä:

Thus, (Ui, i > 1) is a Markov chain with transition probability given by

P j(v, v) � E[j(Vi, ViÄ)=Viÿ1 � v, V (iÿ1)Ä � v] � ø(v),

which only depends on v.

Set, for i > 1, X i � (V(iÿ1)Ä�s, s 2 [0, Ä]). The process (Xi) has state-space (E, B ).

Since the process (Vt) is strictly stationary, the same is true for (Xi). Now, note that

Ui � T (X i) with
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T (x) � 1

Ä

�Ä
0

x(s) ds, x(Ä)

 !
:

Since T is continuous on E, (Ui) is strictly stationary.

Turning to (ii), we remark that, conditionally on G nÄ, the random variables Z1, . . . , Zn

are independent and Zi has distribution N (0, Vi). Thus, for real numbers ë1, . . . , ën,

E exp
Xn

j�1

ië j Zj=G nÄ

" #
� expÿ 1

2

Xn

j�1

ë2
jV j:

Because the right-hand side above is ó (U1, . . . , Un)-measurable and ó (U1, . . . , Un) � G nÄ,

E exp
Xn

j�1

ië j ZjjU1, . . . , Un

" #
� expÿ 1

2

Xn

j�1

ë2
j V j:

This gives properties (ii) and (iii) of De®nition 3.1. h

Remark. The proof above shows that the process (X i) is itself a strictly stationary Markov

chain and that (Zi) is also a hidden Markov model with (X i) as hidden Markov chain. This

allows us to extend our results to the case where (Yt) has a drift term depending only on (Vt).

Since (ViÄ) is ergodic, it can be proved, using Theorem 2.3, that this implies the

ergodicity of (Ui). But we have also the following stronger result.

Proposition 3.2. Under (A0)±(A3), the process (Zi) is á-mixing, with áZ(k) < áV ((k ÿ 1)Ä).

Proof. In view of Proposition 3.1, it is enough to prove that (Ui) is á-mixing. Since (Ui) is

strictly stationary Markov, cU (k) � c(ó (U1), ó (Uk�1)), with c � á, â or r. Hence

cU (k) < cV ((k ÿ 1)Ä):

By Proposition 2.7, (Vt) is â-mixing, so á-mixing. Proposition 3.1 gives the result. h

3.3. Limit theorems

In Genon-Catalot et al. (1998; 1999), where Ä � Än ! 0, we have considered empirical

estimators of the form
P

j(Zi)=n. For ®xed Ä, we can study functions of successive

observations to keep the information contained in the covariance structure. Let d be a

positive integer and j : Rd ! R a Borel function, and consider, when de®ned, the function

hj : (R�)d ! R given by

hj(v1, . . . , vd) � E(j(å1v
1=2
1 , . . . , ådv

1=2
d )), (28)

where (å1, . . . , åd) are independent and identically distributed standard Gaussian random

variables. In particular, when d � 1 and j(z) � z2 p, we have hj(v) � C2 pv p, where

Ck � Ejå1jk : (29)

When d � 2 and j(z1, z2) � z
2 p
1 z

2q
2 , we have hj(v1, v2) � C2 pC2qv p

1 vq
2.
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Theorem 3.2. Assume (A0)±(A3). Then, if j is such that Ejhj(V1, . . . , Vd)j,1,

1

n

Xnÿd

i�0

j(Zi�1, . . . , Zi�d)!a:s: Ehj(V1, . . . , Vd) as n!1:

Proof. From Proposition 3.2, the process (Zi) is ergodic. Therefore, it is enough to check that

Ejj(Z1, . . . , Zd)j is ®nite and

E(j(Z1, . . . , Zd)) � Ehj(V1, . . . , Vd):

This is obtained by conditioning on G dÄ � ó (Vs, 0 < s < dÄ). h

Theorem 3.3. Assume (A0)±(A3). Set Öi � j(Zi�1, . . . , Zi�d). If, for some positive ä,

EjÖ0j2�ä ,1 and
P

k>1á
2=(2�ä)
V (kÄ) ,1, the quantity

ÓÄ(j, d) � var(Ö0)� 2
X1
i�1

cov(Ö0, Öi) (30)

is well de®ned and non-negative. If ÓÄ(j, d) . 0, then

1

n1=2

Xnÿd

i�0

(Öi ÿ Ehj(V1, . . . , Vd))!D N (0, ÓÄ(j, d)) as n!1:

Proof. We apply the Ibragimov central limit theorem for strictly stationary á-mixing

sequences (see, for example, Hall and Heyde 1980, Corollary 5.1, p. 132). The á-mixing

coef®cient of the sequence (Öi) satis®es (see Proposition 3.2)

áÖ(n) < áZ((n� 1ÿ d)Ä) < áV ((nÿ d)Ä):

Therefore, by our assumptions ÓÄ(j, d) � lim var(Ö0 � . . . � Önÿd)=n exists and is non-

negative. Now, if it is positive, the central limit theorem holds. h

Theorem 3.3 has an immediate multidimensional version. Considering p functions j l, let

us set, as above, Ö l
i � j l(Zi�1, . . . , Zi�d) and

ÓÄ(j l, jk ; d) � cov(Ö l
0, Ök

0 )�
X1
i�1

(cov(Ö l
0, Öi

k)� cov(Ök
0 , Ö l

i )),

so that ÓÄ(j, d) � ÓÄ(j, j; d).

Corollary 3.1. Assume (A0)-(A3) and that, for some positive ä,
P

k>1á
2=(2�ä)
V (kÄ) ,1. If,

for all 1 < l < p, EjÖ l
0j2�ä ,1, then the matrix ÓÄ � (ÓÄ(j l, jk))1< l,k< p is well de®ned.

Moreover, if it is positive de®nite, we have

1

n1=2

Xnÿd

i�0

Ö1
0 ÿ Ehj1

(V1, . . . , Vd)

..

.

Ö p
0 ÿ Ehj p

(V1, . . . , Vd)

0B@
1CA!D N p(0, ÓÄ) as n!1:
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The results of Section 2 enable us to check the condition on the á-mixing coef®cient of (Vt)

(see Proposition 2.8 and Corollary 2.1). In particular, if (Vt) is r-mixing, this condition holds

automatically for any ä.

To check the moment assumption of Theorem 3.3 for functions with polynomial growth,

the following proposition is useful:

Proposition 3.3. Assume that, for some constant K, jj(z1, . . . , zd)j < K(1�Pd
i�1jzijq).

Then, if EV
q(1�ä=2)
0 ,1, we have EjÖ0j2�ä ,1.

Proof. The assumption implies, for another constant K9,

jÖ0j2�ä < K9 1�
Xd

i�1

jZijq(2�ä)

 !
:

Using notation (29) and the HoÈlder inequality, we obtain

EjZijq(2�ä) � Cq(2�ä)EV
q(1�ä=2)

i < Cq(2�ä)EV
q(1�ä=2)
0 :

This gives the result. h

3.4 Asymptotic variances for empirical moments

The idea is to use the previous limit theorems for statistical applications. In particular, for

polynomial functions j, we shall obtain empirical estimators of the parameters of the hidden

diffusion. This justi®es the computation of the above asymptotic variances. By conditional

independence, we have, for i > d,

cov(Ö0, Öi) � cov(hj(V1, . . . , Vd), hj(Vi�1, . . . , Vi�d)): (31)

Proposition 3.4. Assume (A0)±(A3) and that, for some positive ä,
P

k>1á
2=(2�ä)
V (kÄ) ,1.

(i) For j(z) � z2 p, we have, if EV
2 p(1�ä=2)
0 ,1,

ÓÄ(z2 p, 1) � C2
2 p var(V

p

1 )� 2
X1
i�1

cov(V
p

1 , V
p

i�1)

 !
� (C4 p ÿ C2

2 p)(EV
2 p

1 ):

(ii) For j(z1, z2) � z
2 p
1 z

2q
2 , we have, if q < p and EV

4 p(1�ó =2)
0 ,1,

ÓÄ(z
2 p
1 z

2q
2 , 2) � C2

2 pC2
2q var(V

p

1 V
q

2)� 2
X1
i�1

cov(V
p

1 V
q

2, V
p

i�1V
q

i�2)

 !

� (C4 pC4q ÿ C2
2 pC2

2q)E(V
2 p

1 V
2q

2 )

� 2C2 pC2q(C2( p�q) ÿ C2 pC2q)E(V
p

1 V
p�q

2 V
q

3):
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Proof. For the two parts, the moment condition comes from Proposition 3.3. We have to

compute the terms appearing in (30). For (i), using (28)±(29), we obtain

varÖ0 � varZ
2 p
1 � C4 pEV

2 p

1 ÿ C2
2 p(EV

p

1 )2:

Now, using (31), for i > 1,

cov(Ö0, Öi) � C2
2 p cov(V

p

1 , V
p

i�1)

This gives the ®rst expression. For (ii),

varÖ0 � varZ
2 p
1 Z

2q
2 � C4 pC4qEV

2 p

1 V
2q

2 ÿ C2
2 pC2

2q(EV
p

1 V
q

2)2

and

cov(Ö0, Ö1) � cov(Z
2 p
1 Z

2q
2 , Z

2 p
2 Z

2q
3 � C2 pC2( p�q)C2qEV

p

1 V
p�q

2 V
q

3 ÿ C2
2 pC2

2q(EV
p

1 V
q

2)2:

Using (31) again, we have, for i > 2,

cov(Ö0, Öi) � C2
2 pC2

2q cov(V
p

1 V
q

2, V
p

i�1V
q

i�2):

Rearranging the terms together leads to the result. h

Let us remark that the ®rst terms in the above formulae correspond (up to a

multiplicative constant) respectively to the asymptotic variance of

nÿ1=2
Xn

i�1

(V
p

i�1 ÿ EV
p

1 ) and nÿ1=2
Xnÿ1

i�1

(V
p

i�1V
q

i�1 ÿ EV
p

1 V
q

2):

The case j(z) � z2 is of special interest.

Corollary 3.2. Assume (A0)±(A3) and that, for some positive ä,
P

k>1á
2=(2�ä)
V (kÄ) ,1. If

EV 2�ä
0 ,1, and ó 2 � 4M

� r

l
s(x) dx(

� x

l
(uÿ â) dð(u))2 ,1, with â � EV0 and M given in

(A2), then

ÓÄ(z2, 1) � 2E(V
2

1)� ó 2=Ä:

Proof. From Proposition 3.4, it is enough to prove that ó 2=Ä � Ó, with

Ó � var(V1)� 2
X1
i�1

cov(V1, Vi�1):

First, note that â � EV0 � E(V1) and that

1

n1=2

Xn

i�1

(Vi ÿ â) � 1

Ä1=2

1

(nÄ)1=2

� nÄ

0

(Vs ÿ â) ds: (32)

We have
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cov(V1, Vi�1) � 1

Ä2

�
0<s<Ä,iÄ<s9<(i�1)Ä

cov(V0, Vs9ÿs) ds ds9:

Then, using (12), we see that the above covariance is non-negative for i > 1, so that

Ó > var(V1) . 0. Thus, the central limit theorem holds, and the left-hand side of (32)

converges to N (0, Ó). By Theorem 2.2 and (23), the right-hand side term of (32) also

converges in distribution to N (0, ó 2=Ä). So the asymptotic variances are equal. h

When (Vt) is r-mixing, and EV 2
0 ,1, the condition on the á-mixing coef®cient is

satis®ed, and, by Proposition 2.2 and the comment given afterwards, the condition ó 2 ,�1
is automatic, and the equality of Corollary 3.2 holds without any further assumption.

Let us point out the consistency of the above result with the one obtained for small

sampling intervals. In Genon-Catalot et al. (1998) it was proved, when Ä � Än ! 0, that

(nÄn)1=2 1

n

Xn

i�1

Z2
i ÿ â

 !
!D N (0, ó 2) as n!1:

Here,

n1=2 1

n

Xn

i�1

Z2
i ÿ â

 !
!D N (0, ó 2=Ä� 2E(V

2

1)) as n!1:

Thus, for the same estimator, the ®xed sampling framework provides an extra term in the

asymptotic variance.

4. Application to some classical models in ®nance

4.1. Mean reverting hidden diffusion

We focus our attention on models of the form

dYt � ót dBt, Y0 � 0,

dVt � á(âÿ Vt) dt � a(Vt) dWt, V0 � ç, Vt � ó 2
t ,

where á. 0, â. 0 and a(Vt) may also depend on unknown parameters. Due to the mean

reverting drift of (Vt), these models possess some special features.

Proposition 4.1. Assume that the above hidden diffusion (Vt) satis®es (A1)±(A3) and that

EV 2
0 is ®nite. Then, EV1 � EV0 � â, and

EV
2

1 � â2 � var(V0)
2(áÄÿ 1� eÿáÄ)

á2Ä2
, EV1V2 � â2 � var(V0)

(1ÿ eÿáÄ)2

á2Ä2
: (33)

Moreover, if (Vt) is r-mixing, the term ó 2 in Corollary 3.2 is equal to 2 var(V0)=á.

Proof. Using (A1), Ea2(V0) ,1, so
� t

0
a(Vs) dWs is a martingale. We easily deduce that
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â � EV0 � EV1. Setting Ut � eá tVt, we obtain

Ut � U0 � áâ

� t

0

eás ds�
� t

0

eása(Vs) dWs,

where the last term is also a martingale. Using this property, we obtain, for s < s9,

EUsUs9 � áâ eás

� s9

s

eáu duEV0 � e2ásEV 2
0:

Hence

E(VsVs9) � eÿá(s9ÿs) var(V0)� â2:

We obtain (33), noting that

EV
2

1 �
2

Ä2

�
0<s<s9<Ä

E(VsVs9) ds ds9, EV1V2 � 1

Ä2

�Ä
0

ds

�2Ä

Ä
ds9E(VsVs9):

Now, if (Vt) is r-mixing, the function f (v) � vÿ â satis®es the assumptions of Theorem

2.2, and A f � L f � ÿá f (see (19)). So, using (23) g � (ÿ1=á) f , we obtain

ó 2 � (2=á)h f , f i, which is the result. h

The last part of the above result relies on the fact that vÿ â is an eigenfunction of the

in®nitesimal generator with eigenvalue ÿá, as pointed out by Hansen et al. (1998,

paragraph 5.2).

4.2. Two examples

Let us ®rst consider the model

dYt � ót dBt, Y0 � 0,

dVt � á(âÿ Vt) dt � cVt dWt, V0 � ç, Vt � ó 2
t ,

where á, â, c are real numbers. This appears as the diffusion approximation of a GARCH(1,1)-M

model (see Nelson 1990). First, we must check that assumptions (A1) and (A2) hold.

Assumption (A1) is clearly veri®ed, with (l, r) � (0, �1). Let us set

a � 1� 2á=c2, ì � 2âá=c2:

Then the function s(v) and the constant M are given by

s(v) � Kvaÿ1 exp
ì

v
, M � 1

kc2

Ã(a)

ìa
,

where Ã(a) is the usual gamma function. Assumption (A2) holds if and only if ì. 0 and

a . 0, and the stationary distribution ð has density

ð(v) � ìa

Ã(a)
vÿaÿ1 exp ÿ ì

v

� �
1fv.0g:
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This is the inverse gamma distribution with parameters (a, ì). Thus V0 � ç has distribution

ð if and only if T � çÿ1 is distributed according to a gamma distribution Ã(a, ì). From

Section 2.6, the conditions for r-mixing are áâ. 0, á.ÿc2=2, that is to say, the conditions

required for (A2).

Now we compute the moments of ð, which are given by

m( p) � E(ç p) � ì p Ã(aÿ p)

Ã(a)
if p , a,

and �1 if p > a. In particular, if a . 2, E(ç) � ì=(aÿ 1) � â and var(ç) �
ì2=(aÿ 1)2(aÿ 2) � â2=((2á=c2)ÿ 1). Note that the conditions a . 2, ì. 0 are equivalent

to â. 0, á. c2=2.

The following functions of the observations

bm1 � 1

n

Xn

i�1

Z2
i , bm2 � 1

3n

Xn

i�1

Z4
i , bm12 � 1

n

Xnÿ1

i�1

Z2
i Z2

i�1, (34)

are respectively consistent estimators of â, EV
2

1 and EV1V2. The last two quantities can be

computed using (33). Inverting the formulae leads to consistent estimators of á, â and c2.

Furthermore, Proposition 3.4, Corollary 3.2 and Proposition 4.1 enable us to compute the

asymptotic variances.

Our second example was proposed by Heston (1993). We consider for (Vt) the classical

square-root process used by Cox et al. (1985) for interest rates:

dVt � á(âÿ Vt) dt � cV
1=2
t dWt, V0 � ç, Vt � ó 2

t ,

where á, â, c are real numbers. Now we set

a � 2âá=c2, ì � 2á=c2:

Then the function s(v) and the constant M are given by

s(v) � Kvÿa eìv, M � 1

Kc2

Ã(a)

ìa
:

Assumption (A2) holds if and only if ì. 0 and a > 1 (i.e. á. 0, áâ > c2=2). The stationary

distribution ð has density

ð(v) � ìa

Ã(a)
vaÿ1 eÿìv1fv.0g:

This is the gamma distribution with parameters (a, ì). The r-mixing condition holds (this is

well known, since, for this model, the spectrum of the in®nitesimal generator is discrete). The

gamma distribution has moments of order p for all positive p which are

m( p) � E(ç p) � Ã(a� p)

Ã(a)ì p
:

In particular, E(ç) � a=ì � â and var(ç) � a=ì2 � (c2=2á)â. Again, bm1, bm2 and bm12 (see

(34)) yield consistent estimators of á, â and c2, whose asymptotic variances may be

computed as above.
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Appendix

This appendix is devoted to the proof of Proposition 2.8. Let us ®x x0 in (l, r), and consider

the scale function S(x) � � x

x0
s(t) dt of (Xt) (see (16)). Let us de®ne, for x 2 (l, r),

j(S(x)) � a(x)s(x)

� r

x

m(v) dv, ø(S(x)) � a(x)s(x)

�x

l

m(v) dv, (35)

C1(z) � supfj2(y); y > zg, C0(z) � supfø2(y); y < zg, C � inf
z2R

maxfC1(z), C0(z)g,
(36)

C9 � Msup
E.0

E
(E� 1)2

� r

l

s(v) dv inf

�x

l

ð(v) dv,

� r

x

ð(v) dv

� �� �E�1

dy: (37)

The sketch of the proof is the following. If the limits in (A5) are ®nite, then C ,1 and

ë >
1

8C
: (38)

On the other hand, if ë. 0, ëÿ1 > 8C9 implies that C9 ,1, which in turn implies that the

limits in (A5) are ®nite.

By (A2), the scale function S is increasing and one-to-one from (l, r) to R. Therefore,

Yt � S(X t) has the same r-mixing coef®cient as (Xt). So, we compute the r-mixing

coef®cient of (Yt). By ItoÃ's formula, (Yt) satis®es dYt � V (Yt) dWt with

v(y) � a(Sÿ1(y))s(Sÿ1(y)): (39)

The stationary distribution of (Yt) is equal to

ì(dy) � h(y) dy, h(y) � 1

M

1

v2(y)
(40)

with M given in (A2). Let A0 be the in®nitesimal generator of (Yt) on L2(R, ì), with

domain D 0. Applying (14), (18), (21) and (22) to (Yt) yields

ë � 1

2
inf

�
R( f 9(y))2 dy�

R f 2(y)=v2(y) dy
; f 2 D,

�
R

f (y)

v2(y)
dy � 0

( )
, (41)

where D is a core of A0. Let us note that, for y 2 R (see (35)),

j(y) � v(y)

��1
y

du

v2(u)
, ø(y) � v(y)

� y

ÿ1

du

v2(u)
(42)

The proof of Proposition 2.8 is obtained using the three lemmas stated below.

Lemma A.1. Under (A4) and (A5),

lim
y!�1j(y) � lim

x!r
1=ã(x) � ä1 2 [0, �1], lim

y!ÿ1ø(y) � ÿlim
x!l

1=ã(x) � ä0 2 [0, �1]
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Proof. Using (39) and noting that v9(y) � ã(Sÿ1(y)), we remark that, applying (A4) and

(A5),

lim
y!�1

1

v(y)
� 0 and lim

y!�1
1

v9(y)
� ä1

exist in R. By L'HoÃpital's rule,

lim
y!�1j(y) � lim

y!�1
1=v2(y)

v9(y)=v2(y)
� ä1 2 [0, �1]:

Analogously, (A4) and (A5) imply that

lim
y!ÿ1ø(y) � ÿ lim

y!�1
1=v2(y)

v9(y)=v2(y)
� ä0 2 [0, �1]:

h

Lemma A.2. (Suf®cient condition). Under (A1)±(A5), if ä0 ,�1 and ä1 ,�1, then

C ,�1 and ë > 1=8C . 0, where C is de®ned in (36).

Proof. We proceed as in Ledoux (1999, Section 4, pp. 173±176). From Lemma A.1, if ä0

and ä1 are ®nite, it is clear that C1(z), C0(z) and C are ®nite. To bound ë, we use (41) with

D � C2
c(R) as a core for A0. For z 2 R, if f 2 C2

c(R) and
�

R f (y)=v2(y) dy � 0,�
R

f 2(y)

v2(y)
dy � inf

z2R
I(z), (43)

with

I(z) �
��1

z

( f (y)ÿ f (z))2

v2(y)
dy�

� z

ÿ1

( f (y)ÿ f (z))2

v2(y)
dy � I1(z)� I0(z): (44)

Integrating by parts yields

I1(z) � ÿ( f (y)ÿ f (z))2

��1
y

du

v2(u)

" #�1
z

�
��1

z

2 f 9(y)( f (y)ÿ f (z))

��1
y

du

v2(u)
dy

� 2

��1
z

f 9(y)
f (y)ÿ f (z)

v(y)
v(y)

��1
y

du

v2(u)
dy:

Using the Cauchy±Schwarz inequality and (42),

I2
1(z) < 4

��1
z

f 92(y) dy

��1
z

f (y)ÿ f (z)

v(y)
j(y)

� �2

dy:

We obtain

I2
1(z) < 4C1(z)I1(z)

��1
z

f 92(y) dy:
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Analogously,

I2
0(z) < 4C0(z)I0(z)

� z

ÿ1
f 92(y) dy:

Therefore,

I(z) < 4 maxfC1(z), C0(z)g
�

R

f 92(y) dy:

By (36) and (44), �
R

f 2(y)

v2(y)
dy < 4C

�
R

f 92(y) dy:

Hence, using (41), ë > 1=(8C). h

Lemma A.3 (Necessary condition). Under (A1)±(A5), assume that ë. 0. Then, 1=ë > 8C9,
where C9 is given in (37). Hence, C9 ,�1. On the other hand, C9 ,�1 implies that ä0

and ä1 are ®nite.

Proof. We use (41) with another core D of A0 equal to

D � f f 2 L2(R, ì), f 9 absolutely continuous with compact supportg:
Set

D� � f 2 D, f 9 > 0 and

�
R

f (y)=v2(y) dy � 0

� �
:

Then

1

ë
> 2 sup

�
R

f 2(y)=v2(y) dy�
R

f 92(y) dy
; f 2 D�

( )
: (45)

From now on, we follow closely Klaassen (1985, Theorem 2.2). For f 2 D�, using (40), (43)

and (44), we obtain�
R

f 2(y)h(y) dy � inf
z2R

���1
z

� y

z

f 9(t) dt

� �2

h(y) dy�
� z

ÿ1

��z

y

f 9(t) dt

�2

h(y) dy

�
: (46)

Let è : R! R� be an arbitrary measurable function and set

Ö(t) � min

� t

ÿ1
è(y)h(y) dy,

��1
t

è(y)h(y) dy

( )
:

Since f 9 is non-negative, Klaassen's proof can be applied and leads to�
f 2(y)h(y) dy >

(
�

f 9(y)Ö(y) dy)2�
è2(y)h(y) dy

: (47)
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Using the notation of (40) and (37), set F(y) � ì((ÿ1, y]) and G(y) � minfF(y),

1ÿ F(y)g. First, we choose è � G(åÿ1)=2. Computation yields�
è2(y)h(y) dy <

1

å
, Ö >

2

å� 1
G(å�1)=2: (48)

Second, for K . 0, it is possible to choose f K such that
�

fK h � 0 and f 9K � G(å�1)=2jK with

jK 2 C1
c(R), jK > 0 and jK " 1 as K " �1. Thus, fK 2 D�. Therefore, by (45), (47) and

(48), for all K, noting that j2
K < jK ,

ëÿ1 >
8å

(å� 1)2

(
�
jK (y)Gå�1(y) dy)2�
j2

K (y)Gå�1(y) dy
>

8å

(å� 1)2

�
jK (y)Gå�1(y) dy:

Now taking the limit as K !1 yields

ëÿ1 >
8å

(å� 1)2

�
Gå�1(y) dy:

Since, setting y � S(x) in (37),

C9 � sup
å.0

å

(å� 1)2

�
Gå�1(y) dy,

we obtain ëÿ1 > 8C9, which implies C9 ,�1. Thus, we must have

C 0 � lim sup
å#0

å

�
Gå�1(y) dy ,�1:

Now we must link this condition with ä0 and ä1. For this, note that

ä0 � lim
y#ÿ1

Mv(y)F(y) � lim
t#0

Mtv(Fÿ1(t))

and, analogously

ä1 � lim
t"1

M(1ÿ t)v(Fÿ1(t)):

Following the end of Klaassen's proof, if ä0 � �1 or ä1 � �1, then C 0 is in®nite. We

conclude that ä0 and ä1 have to be ®nite. h
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