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Inverse method of images
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We consider the problem of approximating the density of the time at which a Brownian path first
crosses a curved boundary in cases where the exact density is not known or is difficult to compute.
Approximation methods which involve the use of images will be proposed. These methods can be
used not only for one-sided boundaries but also for the case of two-sided boundaries; and not only for
concave boundaries but also for convex boundaries. The square root boundary and parabolic boundary
provide examples for numerical comparisons of the approximation methods.
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1. Introduction

The distribution of the first exit time of a one-dimensional diffusion process from some given
boundary is of major importance in sequential analysis, optimal stopping problems and other
contexts where the probability that a random walk crosses a general boundary for the first
time is to be evaluated. This paper is concerned with estimating the density or distribution of
the time at which a Brownian motion first exits a curved boundary in cases where the exact
solution is not known or is difficult to compute. We propose approximation methods which
apply to any one-sided or two-sided curved boundary.

Suppose that X is a one-dimensional diffusion process and 1 is a given one-sided curved
boundary with Xy < 9(0). Then the first hitting time of X with respect to 1 from below,
Ty, is

Ty = 1tr>1£{t C X =y}

If, alternatively, ¥ = (¥4, ¥_) is a two-sided boundary with v _(0) < X, <y,(0) and
Y_(t) < y4(¢) for t+ > 0, then the first exit time of X from 1 is given by

Ty, =Ty, ATy = 1tr>1t(;{t Xz yi (o X, <y (0}

In the case where X is a Brownian motion process and the boundary 1 is linear,
Y(t) = a + ft, the first exit-time density of X with respect to ¥ has a simple closed form
known as the Bachelier—Lévy formula,

a+ pt
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where ¢ is the standard normal density function. The corresponding probability distribution

is given by
a+ ft ap (B
P(t$t):1—d)( +e D .
Vi > < Vi

However, there are few exact solutions available for those cases where the boundary is non-
linear, and a good approximation which produces solutions in compact and explicit form with
simple calculations is desirable.

There are several approximation methods available for estimating the first hitting-time
density of a Brownian motion process with respect to a general boundary, namely, the
tangent approximation (Strassen 1967; Lerche 1986), series expansion methods (see, for
example, Durbin 1992), and the hazard rate tangent approximation (Roberts and Shortland
1995). Most of these methods can be thought of as special cases of the so-called method of
images (Daniels 1982; Lerche 1986), although general use of this method is restricted by
the need to invert the solution of a partial differential equation as a function of the
boundary condition. Daniels (1996) discussed two developments of the method of images.
The first led to an improvement of the tangent approximation. The second, by discretizing
an integral equation, allowed the calculation of an accurate approximation for general
boundaries. The present paper is essentially a sequel to and development of the material in
Daniels (1996). We exploit the use of images for approximating the first hitting-time
density of a Brownian motion process for any given boundary.

In Section 2, we briefly review the method of images. We then establish the
approximation methods for estimating the first hitting-time density or distribution of a
Brownian motion process from any curved boundary by exploiting the use of images, which
is referred to as the inverse method of images in Section 3. The inverse method of images
produces an approximation to the boundary and the first hitting-time density of a Brownian
motion process for this approximate boundary is to be found. Then the first hitting-time
density for this approximate boundary is used as an approximation of the first hitting-time
density for the boundary of interest. Therefore, the accuracy of this first hitting-time density
approximation is very dependent on the accuracy of the approximate boundary. We shall
discuss such dependence in Section 4. Numerical examples for both one-sided and two-
sided boundary cases are given in Section 5.

2. The method of images

The method of images was first introduced by Daniels (1969) as a method of creating
nonlinear boundaries with easily calculated first exit distribution for a Brownian motion
process. It considers a variety of ‘sources’ distributed over the positive space axis at time zero
according to a distribution F, and an extra source with unit mass at the origin. The sources
are thought of as the starting positions of Brownian motion processes to which one attributes
negative and positive weights distributed according to F and a single positive unit weight
when starting at zero. The superposition of all these processes with positive and negative
weights can be represented as some function of time ¢, y(7), ¢ > 0. Consider a Brownian
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motion process starting at the origin, with absorption at the boundary. On the set
{(x, ) : x < y(1), t > 0}, if 9 is continuous the method of images yields the distribution of
that part of the Brownian motion which is not absorbed at the boundary. This can be
described mathematically as follows.

Suppose that F' is a o-finite signed measure with

| pveonrao) <o ve>o, (1)
0
where ¢ is the density function of the standard normal distribution. Define the function
1 x 1> 1 x—0
hx, ) =—¢(—) ——| —o|——=)F(dO), 2
o= o(7) ~al, o () ree @)
for some real constant a > 0. Let
Y(t) = inf{x : h(x, ) <0}, t>0. (3)
Then h satisfies the heat equation
Oh 10%h
—=-— RXR 4
ot 2022 " - @
subject to boundary conditions (3) and
h(-, 0) =069  on (—oo, Y(0+)], (%)

where J is the Dirac measure at 0.
Let 7, be the first exit time of W from v, so that

Ty = 1tr>1t(;{t C W= ()}
Since we have
W) > y(t) = h(W,, t) <0, t>0,
and
AW, t) < 0= W, =y(1), t>0,
we obtain
Ty = inf{t>0: h(W,, t) = 0}.
We now present some results on the first hitting time. The following are taken from Lerche
(1986, Chapter 1) and have been adapted to the notation used in this paper.
Theorem 2.1. Suppose that W is a standard Brownian motion process, 1 is some boundary
given by (3), and 7T is the first hitting time of W with respect to v such that
T= i,r>1t(;{t S W= (0}

If ¢ is continuous, then, on C = {(x, t) : x < y(t), t > 0}, the taboo density is given by
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P(W(t)edx, > 1)
dx

= h(x, t),

with

1 X 1~ 1 x—0
hx, ) =—¢(—) ——-| — F(do),
wo=o(7)-al, o () Feo
where ¢ and ® are the density and distribution functions of a standard normal distribution
respectively, and F is defined in (1).

Corollary 2.1. The distribution and density of the time at which a Brownian motion W first
exits the boundary 1 are, respectively,

<1 PO\ 1 [Tp(¥0) -0
Pr<it)=1 @(\ﬁ>+ach< NG >F(d0)

W) (YO _[F(p0 =6\ (90~ 6
wo=gie () - [ (i) (5 o

and

3. Inverse method of images

The method of images constructs a boundary 1 from a given o-finite measure F, and yields
the corresponding boundary-crossing density or distribution. We now obtain a o-finite
measure F corresponding to 9 which approximates a given boundary 1, and from that obtain
an approximation for the distribution of the first exit time of a Brownian motion process with
respect to .

3.1. Derivation of the method for one-sided boundaries

Our intention is to consider a class of boundaries obtained by applying the method of images
to measures which can be written as sums of point masses. We estimate the distribution of
images for a given curved boundary.

We have, from Section 2, the boundary condition

h(y(t), t) =0, t>0,

where, taking the normalizing constant a = 1,

1 X 1 x—0
hs, ) = %‘f’(ﬁ) -, 7;¢(7) F(ao). ©)

That is, for every value on the boundary (), the measure F(df) must satisfy
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[ () 02)

Furthermore, it can be shown (Lerche 1986) that if 6 =inf{y : F(0, y] >0} =0 then
lim,_o (f) = 6/2. This gives us F(0, 8] = 0, for all 8 < 2 1lim,_o 1(¢), so that it is sufficient
to consider

t>0.

™ Y(1) 02>
1= Jé F(dO)exp(@T—E )

Now, suppose F is a collection of point masses, {F,0,}i<,<y, Where N € Z*t, and 9,

(r=1, ..., N) is the Dirac measure at point 8, (r =1, ..., N). Then
> {40 92) - ( () 62)

1=| F,0, 0———|dt= F, 0,— -], t>0. 7

Jo eXp( Y, ; FPTT T 2 @

Now {F,}i<,<y can be thought of as a collection of positive or negative point masses or
weights which are attributed to Brownian motions with initial positions {6, }1<,<y along the
space axis. Equation (7) holds for all # > 0, and is true in particular for any collection of
(positive) time points 0 < 1 < £, < ... < t;, < ... < fhy. At these time points, we intend to
ensure that 1 and the approximate boundary 1) (corresponding to our approximate measure)
are equal. This motivates the discretization of the above equation, which gives us a system of
discretized equations for {6,, F,}<,<y as follows:

N 2
I:ZF,exp<9,w(tS)—&>, s=1,...,2N. ®)
r=1

ty 2t

The inverse method of images proposed in (8) involves a system of nonlinear equations
for {6,, F,}i. .n. For certain boundaries, we may have some idea of the range of the 0,
(see Section 5.1.1), in which case we may preassign the values of the 6, assuming
0, = 0 = 21im,_,o y(#). The system of equations is then linear in the F,. Only N equations
are required to determine the F,. In this case, an increase in the number of time points for
interpolation may be required in order to preserve sufficient accuracy of the approximation,
as there will be a loss of degrees of freedom in the fitting procedure due to the reduction of
the number of parameters. However, the increase in the number of interpolation time points
may cause the linear system for the F, to become more singular.

3.2. Finding an approximate boundary

So {6,, F,}1<,<ny can be considered as the distribution of the images along the (positive)
space axis through the origin, with respect to which a solution x = ¥(¢) to A(x, ) = 0 is
obtained using the method of images. Such a solution agrees with the boundary 1 at N time
points {#;}1<s<y, and it may be considered an approximation to the true boundary .
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3.3. Estimating first hitting-time density and distribution

Applying the method of images, we obtain the exact first exit-time density and distribution
corresponding to this approximate boundary 1, as

() [(P0D) & (1/3(;) - 0,) W(t)— 0,
213/2 <W> B ;F’ 24372 ¢< Vi >’ t>0, Q)

and

P\ | P(H) — 6,
1“1)(\5) +;F,cb<ﬂ>, t>0, (10)

respectively. Now if, for some T, supo<;<7 |1(£) — 1(%)| is sufficiently small, then we may
approximate (9) and (10), for 0 < ¢ < T, by

OO <w<r)—er> Y(t) — 0,
e (V) -2 (U)o (M) “”

1

and

VO (1) — 0,
-o(12) + 3o re (MO 12

respectively, which will then be used as approximations of the first exit-time density and
distribution for . Thus the accuracy of the estimate of the first hitting-time density for 1 is
strongly dependent on how close ¥ is to 1. We shall discuss this in more detail in Section 4.

3.4. Connection with Daniels’s refinements of tangent approximation

The method introduced in Section 2 is essentially an appropriate generalization of Daniels’s
(1996) refinements of the tangent approximation. Daniels used the method of images with
two negative images at 2ay, 2a,, (a; < ay), and with weights F, = exp(—2a,5,), r =1, 2,
to obtain a curved boundary with an easily computable first exit-time distribution.

3.4.1. Daniels’s first and second refinements

Daniels’s first refinement (GTA1) suggests that the a, and 3, are to be determined in such a
way that the curved boundary so obtained interpolates the true boundary at the origin at zero
degree, and at the first hitting time up to second-order derivatives of the boundary with
respect to time. Let {(u) = v/, with u = 1/¢; then the equations for the a, and 3, are given

by



Inverse method of images 59

ar = y(0) = &,

=, 1/2
a2:g,_%g()+(i(g{))z_%g,éé{)) 5

= 1 (12((12—?)
— - —1 _
T Og((az—a1>(a1+az—§')>’

ﬂz—g_azu_llog< ai(E — a) )

2ay (a2 — ar)(a +ay — &)

Daniels’s second refinement (GTA2) suggests that the approximate boundary interpolates the
true boundary up to the first derivative at both the origin and the first hitting time. The
corresponding equations for the a, and 3, are given by

ar = y(0),
ﬁl = 1/)/(0);

o (s — E)expQRen (€ — au— )
1 —exp2ai(§ — aju — 1))

@' —az) =

>

Br =&~ a5 log(l — expan(E — aru— ).
(¢5)

3.4.2. Daniels's refinements for square root boundaries

There is evidence in the case of the square root boundary /v/1 + ¢, [ = 0.5, 1, 2, that each of
the refinements of the tangent approximation produces estimates of the first crossing-time
density that are extremely close to the true density, and it appears to be more accurate than
the estimate obtained from the tangent approximation (see Lo 1997, Appendix A).
Furthermore, we observe that GTA2 tends to overestimate the true first hitting-time density,
whereas GTA1 tends to wunderestimate the true first hitting-time density (see Lo 1997,
Appendix A). This is due to the fact that the approximations to the square root boundaries via
GTA1l and GTA2 envelope the exact boundary from below and above, respectively (see
Roberts 1991, Theorem 2.8).

Thus an approximate boundary lying between the two boundaries corresponding to GTA1
and GTA2 can be associated with a more accurate estimation of the first hitting-time
density in this case. One way to obtain such a boundary is to impose extra points of
interpolation between the origin and the first hitting time. This can be achieved by the
inverse method of images.
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3.5. Approximation method for two-sided boundaries

The results on the method of images for one-sided boundaries from Section 2 can be
extended to that for two-sided boundaries, ¥ = (¥4, ¥_). When using the method of images
for two-sided boundaries, instead of (2), we have the function

1 x (> 1 x—0
0= (G) ol e () e "

where ¢ is the density function of standard normal distribution and F is a o-finite signed
measure having [~ ¢(1/20)|F(d0)| < oo for all ¢ >0 and F({0}) = 0. Expression (13)
satisfies the heat equation (4) with boundary condition A(-, 0) = &g on (¥_(0+), p(0+4)),
where

Yo(H) =inf{x>0: h(x, ) <0, t > 0}, Y_(f) =sup{x <0 : h(x, 1) <0, t > 0}.

An approximation for the first hitting-time density of a Brownian motion process for a
two-sided boundary can be constructed using images similarly to that for a one-sided
boundary. Here we have A(y.(f), t) =0 = h(y_(?), £), t >0, where h is given by (13).
Now, for any collection of time points {#; <, < ... <ty}, a system of discretized
equations for F' can be obtained similarly to (8) and is given by

IN 2
ts 6
1= E F,exp(@,ubr( )——’>, s=1,...,N;
r=1

ts 21,
2N 2
- y(r) 0 _
1= lFreXI)(Gy I, _2_ts , S—l,...,N.

With respect to the solution F,s, we may construct a boundary ¥+ = (1, 1_) using the
method of images. These boundaries satisfy v, (t,) = ¥ (t,) and Y_(t) = yp_(¢,) for
1 <s < N. Therefore, 1+ serves as an approximation to 1., and the associated first
hitting-time density or distribution can be used as an estimate of that for ..

3.6. Inverse method of images in practice

The approximation method which we described earlier in this section is simple yet extremely
accurate and useful for general boundary-crossing problems of a Brownian motion process.
However, for some boundaries which change more rapidly within the time interval of interest,
the estimation may be sensitive to the locations for the images to be added and to the
interpolation time points in the inversion procedure. In this case, we may consider adding a
linear term to the boundary and work with the boundary ¥(¢) 4+ vt, t > 0 (v € R), instead.
For a given boundary, we can use this method to make the new boundary more linear in the
time interval of interest, and hence the system (8) becomes less sensitive to the interpolation
time points.
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Now the first crossing-time problem of a standard Brownian motion process W with
respect to the boundary (¢), ¢t > 0, can be considered as the problem of a Brownian
motion process with drift v, W7, with respect to the boundary (7)) 4+ v¢, ¢t > 0. We may
obtain an estimate of the first hitting-time density or distribution of W with respect to
Yw(t) + vt, t > 0, using the inverse method of images, then make use of the Cameron—
Martin—Girsanov formula to obtain the corresponding estimation for the problem of WV
with respect to (f) 4+ vt, t > 0. The transformed boundary may be considered when the
estimation is sensitive to the locations for the images to be added and to the interpolation
time points in the inversion procedure.

4. Error analysis

In this section, we examine the accuracy of the estimates of the first hitting-time density or
distribution which are produced by the inverse method of images. The approach produces an
approximation 1 for i, and the first hitting-time density of a Brownian motion for this
approximate boundary is to be found. The first hitting-time density associated with v is used
as an approximation of that associated with 1. The accuracy of this first hitting-time density
approximation depends, therefore, very much on how close vy is to . We write

P(s) = P(s) + &(s), s > 0.

Theorem 4.1. Suppose that v is a one-sided boundary, v is an approximation to v and

&1 = SUPo<s</ [P(s) — P(s)|. Let k; = supo<y<, dy(s)/ds, ¥i(s) = p(s) — &, 0 <s <t and
Dy be the first hitting-time density of a standard Brownian motion process with respect to .
Then the following three statements hold:

()
[P(ty <) =Pty < —0 as& |]0,
where T, = inf{s >0, W(s) = y(s)} and W is a standard Brownian motion pro-

cess.
(ii) Furthermore, for any t > (,

P(ty <1)— Pty <1)

&t

=M

lim sup
&llo

>

where

M=4

' Pkt —s)
JOPVJI(S) [ﬁ + ktq)(kf\/ t— S)] dS

(iity For any t >0, if py,(s) is uniformly bounded on (t—Yy;, t] for some 0 <y, <t,
then

|P(ty < 1) — P(r; < 0| < K&,
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where

4<|k,|+%+Jp%(s)d)(%w—s)/(w—s)ds) if k| >0,
t 0

4([?** i Jtpw](s)(p (%\/t— S)/(\/ t— S)dS) lf k=0,
0

in which  p* = supsepi_sz i, .qpW1(s)  with & <|k/ly,/4 —and p** =

SUPse[r—4z,,1] Dy, (s) with &, < Vt/4'

Proof. (1) Define
Ya(s) = P(s) + &, 0<s<t,
and
L) =y(s)+ &+ k(u—s), 0<ssu<t

We therefore have

Pis) S P(s) < yals),  0<s<t
and

Pi(s) < P(s) < Pa(s), 0<s<t
Now

P(ty, < 1) — P(ty, < 1)

t

= | pyp, ()1 — P(s < Ty, < t|Wy = 91(5), Ty, > 5))ds
0

t

< | pp()(1 = P(s <1, < t|Wy = 9i(s), Ty, > 5))ds

0

! 28,4 kit — )\ gz [kt —5) =28, }
— o —MMM 7| — €t ‘P d

oo (L) g (M9 20 b,
E[lLOO.

(i) Furthermore, by letting

O PR IYECRTTES ) I B2

we take
| dr _ ! Pkt —5) -
— d—E, o =4 Jop,/,l(s) [—m + kD(k/t s)] ds|.

(15)
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(iii) Let 1(8,) = 1,(&,) + I>(8,), with

[ 28, + k(t —s)\ kit —s)— 2¢,
h@ = | oo () - o (M e

I,(&) = LPWI(S)(l —e Yk )P (7]([0 7_:1; 25’) ds.

We have I,(g;) < 4&|k,| since 1 —e ** < 4g|k,. Now consider I; for |k, > 0. Let
u = ky/t — s and split the integral into two parts as

27/ k| [ko|£'12 2 2 28k 28k
o= [T S (ol o)
0 2/ k| Ky k; u u

= 1)+ 17,

and

say. We also have

_T kl o
1)) < 2p* J Eilkil _4gp*
0

and

8g, (&' 1 u?
[(2) 3 tJ e U 2/8 , d
( t) |k | \/2_3'[ Py, k2 u

since  D(u+ (28,k,)/u) — P(u — 2&,k,)/u) < (48, k,)/(uv/2m)e /8 for u=2+/Ek,.

Therefore,

< ' o 2UE: /2]\/ 94

Similarly, for k, = 0, we have, by letting u = /1 — s,

24/&; /2 28, 28,
I(g)) = (JO + L/;) 2upy, (t — uz)){CI) (;) — P ( j) }

t L/r—
< 4<pjx<>l< + Lpl/,l(s)(p(z?t_ss)ds> ;.

This result readily extends to two-sided boundaries as follows.

Corollary 4.1. Suppose that Y+ = W, Y_) is a two-sided boundary with yP_(0) <
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0 <, (0) and Y_(s) < Pi(s), 0 <s <T, that Y+ = (P, P_) is an approximation of P,
and that

g = Sup [P4(s) — P4 (s),
g, = sup [P_(s)—p_(s)|
0<s<t

with & =& VE . Let kI =supocs<;dy.(s)/ds, Kk, =infocs<,dyp_(s)/ds, w(il) =
@, D) with P& =y ()-8 O<s<n pyI)=p ()+& (0<s<1), and
Dy be the first hitting-time density of a standard Brownian motion process with respect to .
Then the following statements hold:

()
|P(ty, < 1) — P(ty, < —0 as & |10,
where
Ty, = inf{s >0, W(s) = y_(s) or W(s) < p_(s)}

and W is a standard Brownian motion process.
(it) Furthermore, for any t > 0,

P(ty, <1t)— P(ty, <1)

lim sup =M,
&ll0 €
where
1 SN
’ ¢(k r— S)
M =4 Jopwsrl)(S) [ﬁ + qu)(k;‘r\/ t— S) ds
; _
Pk, Vi—s) _
+ JOPV,U)(S)[#—IQ (I)(—kt \/t—S) ds| p.
(iit) For any t >0, ifpw;])(s) is uniformly bounded on (t — vy, t] for some 0 <y, <ft,
then
|P(ry, < 1) — P(ty, < 0] = (K} + K&,
where
p* t :l:ki
4| |k | +|k—§‘+ J pw?(s)(p( SV s> /(\/t — s)ds if |kf| >0,
Ky = eb
t
4 (pi* + J Py ()¢ (%\/ t— s) e s)ds) if k¥ =0,
0

in  which pf= SUDe[/—4z,/|k* |11 pw;l)(s) with & < |kX|y;/4, and pt* =
supse[z74§,,r]pw(il>(s) with &, <y,/4.
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Proof. The proof is similar to that of Theorem 4.1. We define 1/)(3 = (tpf), Y?), with
PPs) = i) +E,  0<s<t
PA(s) =p_(s) — &, 0<s<t,
and
L' = wf)(s) +hkiuw—s)=y. () +&+k (u—ys), O0<s=su<t,
L(u)y~ =P P(s) + k,(u—s)=p_(s) — & + k (u—s), 0<s<u<t
We have

Pz, 0 < 1) = Pty <1)= [P(t y0 < D+ PTu0 < 0= Prn <t 7 < t)}

_ [P(wa) < f)+ P(‘L’w(}) < l) — P(wa’ <t, 'L'w(}) < f):|

Now

{Tw‘? <t Ty < t} C {Tw(l) < t, Ty < t}

and so

P(‘L'w(j) <1, Tw(z) < t) = P(Tl/’(i) <1, ng) < t).

It follow that
P(‘L’ o < t) — P(‘L’ o < t) = [P(‘L’ oy < l‘)—l— P(‘L’ o < Z)] — [P(‘L' o < t)—|—P(‘L'1,(2) < l)],
Y [ Y, U T e

and
|P(t¢$) < t) — P(Tw(iz) < Z‘)‘ = |P(TT/)<+1) < t) — P(Tw(f) < t)| —+ |P(Tl/1<,l) < t) — P(‘L’w(}) < t)|

The proof now follows from the results in Theorem 4.1. O

5. Numerical examples

5.1. Boundary crossing problems with one-sided boundaries

We apply the inverse method of images or delayed images to the square root boundary
IV1+t (I € Ry; t > 0) and the parabolic boundary b + at — ct? (b, ¢, a € R; t > 0). The
resulting first hitting-time density approximations will be compared to the true density for the
corresponding boundary.

Keilson and Ross (1975) tabulated the probability for a standard Ornstein—Uhlenbeck
process to cross a horizontal boundary of height / before time s. From these times, setting
t = Llog(1 + s) gives the probability of Brownian motion crossing the square root boundary
IvV1+s, s >0, before time . As suggested by Daniels (1996), numerical differentiation
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then produces the first hitting-time density. (The table produced by Keilson and Ross is
accurate to four decimal places only, which leads to inaccuracies after interpolation and
differentiation.) For parabolic boundary problems with ¢ > 0, we have compared our
approximations to the exact solutions produced by Dhlakama (1994) who expressed the
density of a Brownian motion process first hitting the parabolic boundary b+ at — ct?
(b,¢c>0,a€R; t>0) in terms of Airy functions.

In some cases, we may use the L' quantity

D, - J 15(s) — pls)lds, (14)
0

where p(s), 0 < s < ¢, is the true first hitting-time density at s and p(s) is an estimate of
p(s), 0 < s =< t, to measure the discrepancy between the approximate density and the true
density.

5.1.1. Square-root boundary

For the square-root boundary /v/1 + ¢ (I = 0.5, 1, 2), we apply the inverse method of images
with some preassigned values of 6, to obtain estimates of F,. Then an estimate of the first
hitting-time density or distribution can be obtained from the estimated values of F, using the
method of images.

Choice of interpolation methods and thetas. The number of time points at which the
approximate boundary interpolates the true boundary is equal to the number of 6, introduced.
Furthermore, the interpolation time points {#,}1. .y 0=t < £, < ... <ty =1t t>0) are
to be taken as equally spaced in the time interval (0, 7] for each boundary-crossing problem.

The values of a from GTA1 and GTA2 (Section 3.4.1) provide us with some idea of the
Os in the inversion procedure of the method of images. Let a(rj), r =1, 2, denote the values
of a obtained under GTA/, j = 1, 2. In the case of square root boundaries, GTA1 produces
an approximate boundary which bounds the true boundary from below prior to the first exit
time, whereas with GTA2 the corresponding approximate boundary bounds the true
boundary from above prior to the first exit time. We therefore expect that the values of «a
associated with the true boundary lie between those from GTAl and GTA2. With this in
mind, when using the inverse method of images in the approximation of the first hitting-
time density for the square root boundary in the time interval (0, 7], we let the values of
{6, }1...v be {2a1, 2ax(¢,), r =2, ..., N}, where a, is the average of the values of ag]),
j=12.

In this example, we consider the first hitting-time density approximation in the time
interval (0, 2.4] for 0.5v/1+¢ ¢>0, and that in (0, 6] for /14 ¢ ¢>0, using five
interpolation points in the corresponding time interval of interest (see Table 1). In the case
2y/1+4+1t, t>0, we use six interpolation points for approximation in the time interval
(0, 10] (see Table 1). Indeed, for each of these boundaries, three-point interpolations
produce a fairly good approximation to the corresponding boundary, and hence a reasonably
accurate approximation for the corresponding first hitting-time density. Accuracy of the
approximations is improved when five or six interpolation points are used instead.
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Table 1. Interpolations, Os and F's used in the inverse method of images for square root and parabolic
boundaries

P Interpolation points Os Fs
0.5v1+1t,t>0 0.01, 0.61, 1.21, 1.00, 1.81, 2.20, 0.78, 0.07, 0.090,
1.80, 2.40 248, 2.71 —0.34, 0.28
VIi+tt>0 0.01, 1.51, 3.01, 2.00, 3.14, 3.78, 0.37, 0.20, 0.16,
4.50, 6.00 4.30, 4.74 —0.64, 0.53
2V1+t61t>0 0.01, 2.01, 4.01, 4.00, 5.25, 6.26, 0.02, 0.15, —0.42,
6.00, 8.00, 10.00 7.14, 7.92, 8.64  0.91, —0.95, 0.44
0.5-05¢2,t>0 0.01, 0.41, 0.81, 1.00, 1.83, 2.62, 1.01, 1.77, —3.03,

1.20, 1.60, 2.00  3.62, 4.86, 6.40  1.12 X 10%, —9.61 X 102, 1.01 X 10°
0.5+8t+0.5¢2, t >0 0.005, 0.30, 0.60, 1.00, 1.50, 1.66, 0.00033, 0.0036,
0.90, 1.20, 1.50  1.62, 1.44, 1.14  0.00073, —0.0015, —0.0033, 0.00099

Increasing the number of interpolation points would produce a more accurate approximate
boundary for the corresponding problem; however, this may cause the system (8) to become
almost singular when more than about seven interpolation points are introduced.

Refining the time interval for estimations. One way to improve the approximation of the first
hitting-time density or distribution in (0, #] is to refine the time interval over which the
estimation takes place, say, 0 = ty, < ty, < ... <ty, = t. That is, for each time interval
0, ty,], 2 < i < n, we have an approx1mate boundary Y ty, constructed by the inverse method
of images. Each approximate boundary w,v, 2 < | =< pn, agrees with 1, say, at N pomts in
the time interval (0, y,]. Generally the ¥ ty, approximate ¥ more accurately than the Y, v,
the time interval (0, ty,] for 2 < i < j < n, in which case we approximate the first hlttlng-
time density for ¢ in (0, ¢y,] by that corresponding to zptyi

Let p(-|tn.), 2 < i < n, denote the density of a Brownian motion process which first exits
the approximate boundary 1/3,1\,’ in the time interval (0, ¢y,). Then the first hitting-time
density can be used as an approximation of that corresponding to 1 in the time interval
(0, txi). Therefore an approximation of the first hitting-time density for a Brownian motion
process with respect to i at s € (0, ¢] is given by

Bs) =Y plsltn)I(s € (ty o tn]), 0<s<t,
=2

where I(s € (7n, ,, ty,]) is an indicator function taking the value 1 if s € (¢v, ,, #5,], and 0
otherwise. The corresponding approximation, P, for the first hitting-time distribution is given
by

P(s)=>_ P(s|ty)I(s € (tn,,» ), 0<s<t

where f’(-| tn,), 2 < i < n, is the first hitting distribution of a Brownian motion process to the
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approximate boundary 1y, In the time interval (0, #y,). We note that there could be jumps in
p(s) (0 < s =<1) at the ty,.

Approximation results. The first hitting-time density estimation using the inverse method of
images is extremely good for boundaries /v/1+¢ [=0.5,1,2 (see Table 1 for the
corresponding 6, and F,). The density estimates are virtually indistinguishable from the true
densities for each of these cases. This is due to the accuracy of the corresponding boundary
as an approximation to the true boundary. Figures 1-3 show the first hitting-time density
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Figure 1. First hitting-time density approximation for 0.54/1 + ¢ (top) by the inverse method of
images. Approximate boundary (bottom left) and deviance of the approximate boundary from the true
boundary (bottom right).
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Figure 2. First hitting-time density approximation for /1 + ¢ (top) by the inverse method of images.
Approximate boundary (bottom left) and deviance of the approximate boundary from the true

boundary (bottom right).

approximations for the square root boundaries under consideration (top) and the cor-
responding approximate boundaries and the deviance of these approximate boundaries from
the corresponding true boundaries (bottom). For the boundary 2+/1+ ¢ ¢ > 0, the inverse
method of images gives M = 0.3898 and €;p = 0.05428 (see Lemma 4.1 for the definition
of M and €), and hence the absolute error of the first hitting distribution approximation in
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Figure 3. First hitting-time density approximation for 2+/1 + ¢ (top) by the inverse method of images.
Approximate boundary (bottom left) and deviance of the approximate boundary from the true
boundary (bottom right).

the time interval (0, 10] is less than 0.02116, that is, supp<,<io P(ty <t) —
P(ty; < 1)] < 0.02116.

Comparing with Daniels’s refinements for the boundary 2v/1+ ¢ ¢t >0 — see Figure 3
and Lo’s (1997) Figure A.3 — the inverse method of images produces a more accurate
density approximation in the time interval (0, 10], except in the interval (1, 2). However, we
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can improve the accuracy of the first hitting-time density approximations by refining the
time interval over which the estimation takes place (see Table 2). In the case
Y() =21+t t>0, where the first hitting-time density approximation in the time
interval (0, 10] is considered, we have refined time intervals of (0, 3], (0, 5] and (0, 10].
Five interpolation points are used for each of the refined time intervals. The first hitting-
time density approximation so obtained is extremely accurate, which can be seen from
Figure 4 (top). This is explained by the improved accuracy of the corresponding
approximate boundary (see Figure 4 (bottom)).

We may also compare Figure 3 with Figure 4 to see the improvement of the approximate
boundary and that of the associated first hitting-time density approximation by refining the
time interval. Indeed, the approximation with refined time intervals has Djy ~ 0.000 699 4
(see (14) for the definition of D,) which is smaller than 0.001 291, the value corresponding
to the approximation without refined intervals. That is, the first hitting-time den-
sity approximation with refined time intervals has less discrepancy from the true density
in this example. Furthermore, with refined time intervals, we have supo<;<io]|
Pty < 1t)— P(ty; < )] < 0.005 19, which is smaller than it would be without refined time
intervals.

5.1.2. Parabolic boundary

We now consider the first hitting-time density approximation for the parabolic boundary
Y(t) = b — ct?, t >0, using the inverse method of images. Since the first crossing-time
distribution or density of a standard Brownian motion process with respect to any boundary
of the form y(f) = b+ at — ct>, t >0, is equal to the first crossing-time distribution or
density of a Brownian motion process with drift —a with respect to the boundary b — ct?
(t > 0), we can apply the Cameron—Martin—Girsanov formula to give

P-a(t) = exp(—ay(t) — 5 1) po(0),

where p_, and py are the first boundary-crossing densities of Brownian motion with drift —a
and without drift respectively, to obtain the first hitting-time density approximation for the
boundary b + at — ct? (¢ > 0) from that for the boundary b — ct?> (¢ > 0) or vice versa.

Table 2. Interpolations, fs and F's used in the inverse method of images with refined time intervals

for 2+/1 + ¢

Time range Interpolation points Os Fs

(0.0, 3.0] 0.01, 0.76, 1.51, 4.00, 4.52, 4.97, 0.018, 0.044, —0.004,
2.25, 3.00 5.39, 5.78 —0.057, 0.090

(0.0, 5.0] 0.01, 1.26, 2.51, 4.00, 4.82, 5.52, 0.018, 0.061, —0.005,
3.75, 5.00 6.14, 6.71 —0.064, 0.101

(0.0, 10.0] 0.01, 2.51, 5.01, 4.00, 5.52, 6.71, 0.018, 0.086, —0.009,

7.50, 10.00 7.73, 8.64 —0.066, 0.107
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Figure 4. First hitting-time density approximation for 24/1 + ¢ (top) by the inverse method of images
(refined interval). Approximate boundary (bottom left) and deviance of the approximate boundary
from the true boundary (bottom right).

Here we have the boundary 0.5 — 0.5¢2, ¢ > 0, for which we obtain a first hitting-time
density or distribution approximation in the time interval (0, 2] using the inverse method of
images with six interpolation points (see Table 1). We shall preassign the values of the s
in the same way as in the square root boundary case using the as from GTAl and GTA2
for the parabolic boundary. We see from Figure 5 (top) that this density approximation is
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Figure 5. First hitting-time density approximation for 0.5 —0.5¢> (top) by the inverse method of
images. Approximate boundary (bottom left) and deviance of the approximate boundary from the true
boundary (bottom right).

very close to the true density. This is reaffirmed by Figure 5 (bottom) where the associated
approximate boundary is extremely close to 0.5 — 0.5¢2 in the time interval of interest.
For the convex boundary 0.5 + 8¢+ 0.5¢% ¢ > 0, in the time interval (0, 1.5], we use the
inverse method of images with six interpolation points (see Table 1). We note that the
approximate boundary closely interpolates the true boundary (Figure 6 (bottom)) and we
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expect the associated density approximation so produced to be reasonably accurate® (see
Figure 6 (top)). We observe here that Groeneboom (1989) expressed the first hitting-time
density for convex boundaries of the form a + ¢+ yt*(a, y € Ry; B € R; t > 0) in terms
of integrals of Airy functions, which may require heavier numerical computations.
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Figure 6. First hitting-time density approximation for 0.5 4 8¢ + 0.5¢% (top) by the inverse method of
images. Approximate boundary (bottom left) and deviance of the approximate boundary from the true
boundary (bottom right).
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Table 3. Interpolations, 6s and Fs used in the inverse method of images for two-sided boundaries

W4, ¥-) Interpolation points 0s Fs
2, -2) 0.01, 0.51, 1.01, 4.0, 5.5, 7.0, 8.5, 1.00, 9.65 X 107, —2.77 X 1073,
1.50, 2.00 10.0 —7.65, 7.10 X 10?
—4.0, —5.5, —=7.0, 100, 9.65 X 107, —2.77 X 1073,
—8.5, —10.0 —7.65, 7.10 X 10?
@, —1) 0.01, 0.51, 1.01, 4.0, 4.9, 5.8, 6.6, 1.00, 5.72 X 1074, —3.19 X 1071,
1.50, 2.00 7.5 —2.89, 9.37
—2.00, —3.38, 1.00, 2.08 X 1077, —8.48 X 1074,

—4.75, —6.13, —=7.50 —1.52, 9.14
WI+t =140 0.01, 0.51, 1.01, 2.0, 25,29, 31, 0.37, 0.19, —0.34, 0.39, —0.11

1.50, 2.00 34
—2.0, —2.5, 2.9,  0.37, 0.19, —0.34, 0.39, —0.11
—3.1, —3.4
(VT+1,—-08/T+17) 001, 051, .01, 2.0, 2.5, 2.9, 3.1, 0.37, 0.21, —0.47, 0.66, —0.33
1.50, 2.00 34
~1.6, —2.2, —2.5,  0.53, 0.23, —0.63, 0.97, —0.49
—2.8, —3.0

5.2. Boundary crossing problems with two-sided boundaries

Here we consider applications of the inverse method of images to the first hitting-time
density approximations for two-sided boundaries vy =Yy = (Y4, y-)=+£2, (+2, —1),
+V/1+1, (+V1+¢t, —0.8y1+ 1) for t > 0.

The approximation procedures are similar to those for one-sided boundaries except that
we shall add images along the negative space axes as well as the positive space axes. Our
choices of the interpolation points, s and the resulting F's for each of the boundaries
considered are given in Table 3. The first hitting-time density approximation for the upper
boundary of each case, the associated approximate boundary and its deviance from the true
boundary are given in Figures 7—10. By inspecting the accuracy of the corresponding
approximate boundary so produced by the inverse method of images, we may check the
accuracy of the first hitting-time density approximation for each case. From Corollary 4.1,
the estimates are fairly accurate in these cases.
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