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1. Introduction

Nonlinear modelling of time series is a promising approach in applied time series analysis.
Many parametric models can be found in Priestley (1988) and Tong (1990). In this paper
we consider nonparametric models of nonlinear autoregression. Motivated by econometric
applications, we allow for heteroscedastic errors:

X,Zm(thl,...,X,,p)—‘rO(X,,l,...,X,,q)é‘[, t:(), 1, 2,.... (1)

Here the (g) are independent and identically distributed (i.i.d.) random variables with mean 0
and variance 1. Furthermore, m and o are unknown smooth functions. Ergodicity and mixing
properties of such processes have been discussed in Diebolt and Guegan (1990). For the sake
of simplicity, we consider only the case p = ¢ = 1. In this particular case, (1) can be in-
terpreted as discrete version of the general diffusion process with arbitrary (nonlinear) trend
m and volatility function o,

dS; = m(S;) + o (SHdw,,

where W, is a standard Wiener process. The class of processes (1) also contains as a special
case the qualitative threshold ARCH (QTARCH) processes. These processes were proposed
by Gouriéroux and Montfort (1992) as models for financial time series.

Estimation of m and o can be done by kernel smoothing of Nadaraya—Watson type. For
the estimation of o we consider two estimates:
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i) = LD > it = XKoo @)
-

63 (%) = (p” (x)) ZK (X — X)X2, | — (), 3)
-

6% (%) = (p”(x)) ZK (X — X)P2,. @)

Here K(-) denotes A~ 'K(-/ h) for a kernel K. The residuals X, — m1,(X,) are denoted by
7rr1. In the definition of 02 »(x) the residuals 7, could be replaced by X, — my(Xy)
without changing the asymptotic first-order properties of 6 02 »(x). The estimate pj, is a kernel
estimate of the univariate stationary density p of the time series {X,}:

Pi(x) = Z Kj(x — X)). ()

An early reference for Nadaraya—Watson smoothing in time series analysis is Collomb
(1984). Asymptotic normality of i, 61 and p, was shown in Robinson (1983) and Masry
(1996). Uniform consistency results were given in Ango Nze and Portier (1994) and Masry
(1997). Asymptotic expansions for bias and variance were derived in Auestad and Tjestheim
(1990) and Masry and Tjestheim (1994). Tests for parametric models based on the
comparison of these estimates and parametric estimates were proposed in Hjellvik and
Tjestheim (1995); compare also Kreiss ef al. (1998). The estimate G, , was proposed by Fan
and Yao (1998), who argued that it outperforms &, ;. For further references on the now
extensively discussed field of nonparametric time series analysis, see the review papers by
Gyorfy et al. (1989), Tjostheim (1994) and Hirdle et al. (1997).

In this paper several bootstrap procedures will be considered which consistently ap-
proximate the laws of iy, 01 , and 02 5o The first resampling scheme (the autoregression
bootstrap) follows a proposal of Franke and Wendel (1992) and Kreutzberger (1993). This
approach is similar to residual-based resampling of linear autoregressions as discussed by
Kreiss and Franke (1992). It is based on generating a bootstrap process

X7 =m(X7 ) +6(X7 Der, (6)
where m and ¢ are estimates of m and o and where (given the original sample Xo, ..., X7)
e, ..., €5 is a conditionally i.i.d. resample with conditional distribution P.. In Sectlon 2.1

we w111 state conditions on the estimates m, 0 and P, under which the autoregression
bootstrap works. Choices of 7, & and P, that satisfy these conditions will be given in Section
2.5. For applications of the autoregression bootstrap to the construction of uniform confidence
bands for m(x), see Franke ef al. (1999). Another bootstrap method (the ‘Markovian local
bootstrap’) that mimics the Markovian stochastic structure has been proposed by Paparoditis
and Politis (1999). In their approach a Markov process is generated that only takes values
from the observed process.
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In our second bootstrap approach (the regression bootstrap), a regression model is
generated with (conditionally) fixed design (Xy, ..., X7_1),

X7 =m(X,—1) + 0 (X1)e), (7

where, again, a conditionally i.i.d. resample of error variables &}, ..., ¢} is used. The
conditional distribution of ej.k is again denoted by P. On the right-hand side of (7) the
original process X, is used instead of a resampled process. Thus, in the bootstrap a
nonparametric regression model is now simulated. This is the reason why we call this
resampling method the regression bootstrap. A modification of the regression bootstrap is the
local bootstrap; see Paparoditis and Politis (2000) and Ango Nze et al. (1999). The local
bootstrap resamples a model where the conditional distribution of the innovation o(X;_1)g;
(given the past) is assumed to depend smoothly on the value of X, ;. In the resampling these
conditional distributions are approximated by smoothing kernel estimates. Clearly, this
approach uses a more complex resampling scheme than the regression bootstrap where only
the conditional variance of the innovations depends on X, ;. The mathematical analysis of
these two approaches is very similar.

In the third bootstrap, a regression model is again generated with (conditionally) fixed
design (Xy, ..., X7_1),

X7 =m(X, )+ 75 ()

Here 57y, ..., 75 is an independent resample where 1 has (conditional) mean zero and
variance (X, — 7i1,(X,—1))?. This procedure has been called the wild bootstrap by Mammen
(1992) and Hirdle and Mammen (1993). For applications of the wild bootstrap to the
construction of uniform confidence bands, see Neumann and Kreiss (1998).

Another bootstrap procedure that has been used for dependent data is the blockwise
bootstrap of Kiinsch (1989). By construction it is clear that this approach cannot con-
sistently estimate the bias of a nonparametric smoother. We now explain this for a
simplified modification of the blockwise bootstrap which we call the pair bootstrap. This

bootstrap method works as follows. Generate i.i.d. random variables Ny, ..., Ny with
uniform distribution on {1, 2, ..., T — 1}. A resample in the pair bootstrap consists of the
pairs (Xn,, Xny+1)s - - (Xny» Xnp41). For the resample the Nadaraya—Watson estimate of

m(x) is given by

. >0 Kl — Xy ) XN, 11
) = e K~ X,

The conditional expectation of rj(x) (given the original sample) is equal to #,(x).
Furthermore, under ergodicity conditions it can easily be checked that the conditional dis-
tribution of v/Th(ii 5 (x) — n1p(x)) converges to a normal limit with mean zero and variance
that is equal to the asymptotic variance of 71;(x). Thus, the pair bootstrap correctly mimics
the variance part of m,(x), but it does not correctly catch the bias part. Clearly, it is possible
to add an estimate of the bias to /Th(i 7 (x) — mp(x)) and thus to achieve a con-
sistent bootstrap estimate.

The asymptotic treatment of the regression bootstrap and the wild bootstrap is quite
simple because it only requires the mathematical analysis of a nonparametric regression
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model in the bootstrap world. The mathematics for the autoregression bootstrap will turn
out to be more difficult. In this bootstrap procedure a complicated resampling structure has
to be generated and classical approaches based on mixing conditions are not easily available
because the stochastic structure of the bootstrap is random and not fixed. For attempts to
carry over mixing methods to bootstrap processes, see Franke et al. (1999), Bickel and
Bithlmann (1999) and Ango Nze et al. (1999).

Our results can be extended to the case of higher-order nonparametric regression models;
see (1). This is straightforward and has been omitted for the sake of notational simplicity.
Furthermore, multivariate nonparametric time series can be treated similarly. Another
generalization is the bootstrap for local polynomial estimators of m and o. It has been
argued that these estimators outperform Nadaraya—Watson smoothers. For a discussion of
local polynomials in nonparametric regression, see Stone (1977), Tsybakov (1986), Fan
(1992; 1993) and Fan and Gijbels (1992; 1995). Hérdle and Tsybakov (1997) applied the
idea of local polynomial fitting to autoregression models. For a local polynomial estimate
that generalizes (35’ »» see Fan and Yao (1998). The bootstrap results presented in this paper
also hold for local polynomials. It is only for the sake of simplicity that we restrict our
attention in the following to Nadaraya—Watson kernel estimates 7, 01 and G55; cf. (2)—
(4). A short discussion of why our results can be extended to local polynomials is given in
Section 2.6.

This paper is organized as follows. In Sections 2.1-2.3 we show that the autoregression,
regression and wild bootstraps work under appropriate conditions. A discussion of the pilot
estimates 71, 62 and P, is given in Section 2.5. In particular, we give a choice that works
for the autoregression bootstrap. Applications of our results to bandwidth choice are dis-
cussed in Section 2.4. There a generalization of our results in Sections 2.1-2.3 will be
given that implies consistency of a local bandwidth selector. Extensions of our results to
local polynomials are discussed in Section 2.6. Simulation results will be given in Section
3. Section 4 contains the proofs of our results in Section 2.

2. Main results: consistency of the bootstrap

In this section we present our main results and give assumptions under which our three
bootstrap procedures are consistent.

2.1. Autoregression bootstrap

We consider a stationary and geometrically ergodic process of the form
X =m(X; 1) + 0(Xi1)&. 9

The unique stationary distribution is denoted by s. Stationarity and geometric ergodicity
follow, for example, from the following two simple sufficient conditions:

e The distribution of the i.i.d. innovations & possesses a Lebesgue density p,, which
satisfies inf,cc p«(x) > 0 for all compact sets C.
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e mo and o°!

+oXe| < L

are bounded on compact sets and limsupjy_.. |x|7'E|m(x)

This is a direct consequence of Theorems 1 and 2 in Diebolt and Guegan (1990); compare
also Meyn and Tweedie (1993) and Doukhan (1994, pp. 106—107). The assumptions ensure
that the stationary distribution st possesses a strictly positive Lebesgue density, which we
denote by p. From (9) we obtain

x — m(u)

[ 1
200 = [ () (10)

For a stationary solution of (9), geometric ergodicity implies that the process is strongly
mixing (a-mixing) with geometrically decreasing mixing coefficients (cf. Doukhan 1994,
Sections 2.4 and 1.3). Moreover, this property carries over to processes of the type
Y, = fi(X)).

To keep our proofs simple, we use somewhat stronger assumptions:

(AB1) The time series X, ..., X7 is a realization of the stationary version of (9) with
i.1.d. innovations g, ..., & with mean 0 and variance 1. The function m is
Lipschitz continuous with constant L,,, and the function o is Lipschitz continuous
with constant L.

(AB2) L, + Lo E|g| < 1.

(AB3) There exists a constant gy > 0 such that o(x) = g, for all x € R.

(AB4) The distribution P, of the innovations & has a density p, with the following
properties: inf,cc p«(x) > 0 for all compact sets C; p, is twice continuously dif-
ferentiable; p,, p; and p/ are bounded; and supeg |xpi(x)| < co. Furthermore,
Elg|” < oo for a constant y > 2.

(ABS) m is twice continuously differentiable with bounded derivatives.

(AB6) K has compact support [—1, 1], say. K is symmetric, has a bounded derivative on
(—1,1), and satisfies [K(v)dv=1. The bandwidth % satisfies 4 — 0 and
Th® — B> > 0.

Assumption (AB6) assumes that the bandwidths are of order O(7~'/%). This rate of
convergence has been motivated by optimality considerations. Our results can be extended
to other rates of convergence.

We now state our assumptions on the estimates 72, 6> and P,. These estimates are used
in the generation of bootstrap resamples. Choices of estimates that satisfy these conditions
are discussed in Section 2.5.

(AB7) The bootstrap innovations ¢’ have (conditional) mean 0 and variance 1, and
dx(P;, P:) = op(1), where dx denotes the Kolmogorov distance which is defined
for two probability measures Q;, 0> as

dx(Q1, ) = sug [O1(X < x)— Ou(X < x)|.

The initial value X satisfies E*|.X{ | = Op(1). Furthermore, E*|¢¥|” = Op(1) for
a constant y > 3.
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Here we denote the conditional expectation (given the original sample) by E*. The
conditional probability is denoted by P*.

(AB8) There exists a sequence yr — oo such that supjs,, |7(x)| = Op(1),
SUP|x|>y, |G (x)] = Op(1) and supy=,, |6 (x)] = Op(1).
(AB9) With y7 as in (ABS), supjy<,, |0(x) = o(x)] = op(y7'). For all C >0 and for
Jj=0 and =1, supys<,, | (x) — mP(x)| = op(1)  and SUP /<y,
A0) — PP = op(1).
(AB10) sup,— = [72(x) — mD(x)] = op(1).

For the bootstrap of the variance estimates we need the following additional assumptions:

(AB11) E|g|” < oo for a constant y > 4. The conditional fourth moment E[e}|X; = x]
is a continuous function in x = xy. The function o is twice continuously
differentiable with bounded derivatives. The bandwidth A’ satisfies #' — 0 and
T(h') — (B')? > 0.

(AB12) E*[e¥|” = Op(1) for a constant y > 5. Furthermore, E*|e¥|* = E|e,|* + op(1).
For j=0 and j=1, supys<,,|0P(x)—0Px)|=o0p(y7"). Furthermore,
P/ [0 P(x) — 0 P0)] = 0p(1).

Analogously to (2)—(5), the bootstrap sample X (’f yoon X ? defines, for each point x, kernel
estimates
. (7, ( )) e
i (x) = h ZK (x—XDHXT ., (1
A*Z ()) ' © K *y 1k ~ k2 12
(@) = Z (X = X)X, — i (), (12)
s (P} ()) ' ¢ X
R ZK (= XDt (13)
) = ZKh(x - X)), (14)

with residuals 77, = X7, — mj(X7) (or = X | — mj(X])).

The conditional distribution of /7Th{s}(x) — m(x)} given Xi, ..., Xr is denoted by
Lp(x). This is the bootstrap estimate of L(x), the distribution of /Th{r,(x0) — m(xo)}.
For j=1,2, the distribution of v/7h{G? ,(x0) — 0*(x0)} is denoted by Lf(x). The boot-
strap estimates of these distributions are given by the conditional distributions of
\/ﬁ{éfh(xo)—éz(xo)}. These estimates are denoted by E;B(x). Consistency of these
estimates is stated in the following theorem.

Theorem 1. Assume (AB1)—(AB10) for some xy € R. Then
dx(Ls(xp), L(x9)) — 0 in probability,
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where, as above, dx denotes the Kolmogorov distance. Under the additional assumption of
(AB11)-(AB12),

dx (L] g(x0), L] (x0)) — 0 in probability, forj=1,2.

2.2. Regression bootstrap

We will discuss the regression and wild bootstraps in a larger class of models. We assume
that one observes a stationary stochastic process (X;, Y;) and that one wishes to estimate
the conditional mean m(x) = E[Y|X = x] and the conditional variance o?(x) = E[(Y —
m(x))*|X = x]. This includes the set-up of the previous subsection where Y; = X, ;. The
estimates iz, 67, and 63, are now defined as

~ —1 T-1

i) = LN Ky )y, (15)
=1
~ —1 T-1

67 ,(x) = % Z Ki(x — X)Y? — nirs(x), (16)
=1
~ —1 T-1

63 5(x) = % > Ki(x = X)i7,,. (17)

t=1

As above, the residuals Y; — m;(X;) are denoted by #,,;. We here use the value ¢+ 1 as the
index of the residual to keep the notation consistent with the autoregression model of
the previous subsection. For the same reason we denote [Y, — m(X,)]/0(X;) by &41. The
conditional estimate pj is defined as in (5). In this and the following subsection we make no
further assumptions on the stochastic structure of the process (X, Y;), €.g. mixing conditions
or Markov assumptions. We only assume that the estimates 71,(x) and 6i #(x), j=1, 2, have
a normal limit and that p;,(x) and related kernel density estimates are consistent; see
assumptions (RB2), (RB3) and (RBS8) below. To check conditions, consult the literature
discussed in the introduction. For Markov models, see also Section 2.1.
In the regression bootstrap, one generates i.i.d. resamples ¢}, ..., €} and puts

YE = m(Xe1) +6(Xmer

Here, again, m and ¢ are estimates. The original sample Xy, ..., Xr_; acts in the resampling
as a fixed design. We now define
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~ -1 T-1
i) = PN K- XY,
t=1

e, (a0 2 e

G %) = 71 ZKh(x —X)Y, —my (x),
=1

L (Pr(x) " =2 2

G (0) = T_1 > Kilx = X)FF,
=1

where the bootstrap residuals 77, are defined by 77, =Y} — i} (X,). The conditional
distribution of /7 h{rfz}‘;(x) — m(x)} is denoted by Lrg(x) and the conditional distribution of
VTl h{é;jzh(x) —62(x)} is denoted by £7’RB(x) [/=1,2] These are now the bootstrap
estimates for £(x) and L7 (x).

For the regression bootstrap we make the following assumptions:

(RB1) For the kernel K and the bandwidth %, condition (AB6) holds.
(RB2) The density p of X, has one derivative at xy, and the regression function m has
two continuous derivatives at xy. For all ¢ > 0,

TP#{1<t<T—1:x—cT P <X, <xo+cT'*} - 2ep(xp)

in probability, where # denotes the number of elements in a set. Furthermore,

-1
T-'p2 Z(Xt — x0)Ku(X; — x0) — p’(xo)JuzK(u)du in probability.

t=1

Conditions (RB1) and (RB2) imply pn(xo) = p(xo) + op(1).

(RB3) supj._yj<p [ )(x) = mP(@)| = op(1), for 0=<j<2, and sup =4 |6(x) -
o (x0)| = op(1).

(RB4) v Th[m(xp) — m(xg)] has an asymptotic normal distribution with mean
b(xo) = B - [U*K(v)dv - [p'(x0)m'(x0)/ p(x0) + %m"(xo)] and variance T2(xp) =
0 (x0) [ K2(0)dv/ p(xo).

(RBS5) The bootstrap innovations & have (conditional) mean 0 and variance 1, and
E*[e¥|” = Op(1) for a constant y > 2.

For the bootstrap of the variance estimates we need the following additional assumptions:

(RB6) The conditional fourth moment E[¢}|.X; = x] is a continuous function in x = x,.
The function o is twice continuously differentiable at x = xy. The bandwidth A’
satisfies 4’ — 0 and T(%')> — (B')> > 0.

(RB7) E*|e¥|” = Op(1) for a constant y >5. Furthermore, E*|e¥|* = E[|¢/|*| X,
= x] + op(1). For 0 < j <2, supjy_y, < |0 P(x) — 0 P(x)| = op(1).

(RB8) For j=1 and j=2, the estimate VTH'[6 j.w(x0) — 0(x9)] has an asymptotic
normal distribution with mean b, j(xp) and variance 72 (x0), where
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P

0
ot +§(dx)2<>}

do d2 2
bU,Z(x) = JU K(U)dU{—( )p((x)) ; (dx)z( )}

bo (x) = Jv K(v)du{—( )

1
T2 (x) = JKZ(u)duo“(x)E[s‘l‘ —1|Xo = x] —.
p
Consistency of the regression bootstrap is stated in the following theorem.

Theorem 2. Assume (RB1)—(RB5) for an xy € R. Then
dx(Lre(x), L(x)) — 0 (in probability).
Under the additional assumption of (RB6)—(RB8) we have, for j=1, 2,
dx (LI gp(x), L](x)) — 0 (in probability).

2.3. Wild bootstrap

The wild bootstrap starts by generating an i.i.d. sample 7, ..., 777 with mean 0 and variance
1. (For higher-order performance the distribution of 77, is often chosen such that additionally
Eﬁf = 1; for a discussion of this point and for choices of the distribution of 77;, compare
Mammen (1992).) Now put %7} = (X, — rip(X;-1))77,. The wild bootstrap resample is defined
as

XT=mX, )+
As in the previous subsection, this resample can be used for calculating 7} (x). The con-
ditional distribution of /Th{rm}(x) — m(x)} is denoted by Lwg(x). In particular, the wild
bootstrap is appropriate in cases of irregular variance functions o (x). Such models may arise

when o(x) only acts as nuisance parameter and the main interest lies in estimating m.
For the wild bootstrap we make the following assumption:

(WB1) Assumptions (RBI), (RB2) and (RB4) apply, and supj,_ <, |m(x) —
mD(x)| = op(1), for 0 < j <2, and E*|57,|” = Op(1) for a constant y > 2.

Theorem 3. Assume (WB1) for an xy € R. Then
dx(Lwe(x), L(x)) — 0 in probability.
Condition (RB3) typically only makes sense if o is continuous at x,. Otherwise an
estimate g (x) with x # xy in an A-neighbourhood of xy could not be expected to converge

to o(xp). Continuity of o is not required for the wild bootstrap. Thus fewer smoothness
assumptions on ¢ are made for the wild bootstrap than for the regression bootstrap.
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Furthermore, the autoregression bootstrap requires even more smoothness assumptions than
the regression bootstrap.

2.4. Bootstrap bandwidth choice

In this subsection we consider the important problem of choosing the smoothing parameter
adaptively from the data. Various alternatives, from crossvalidatory to plug-in procedures, are
discussed in the literature, e.g. for time series by Hérdle and Vieu (1992) or in a recent
comparative study for density estimates by Jones ef al. (1996). One particular procedure,
discussed by Hérdle and Bowman (1988) for regression estimates and Franke and Hérdle
(1992) for spectral density estimates, is based on minimizing a bootstrap approximation of
the error criterion, e.g. the pointwise mean square error or the mean integrated square error
(MISE), as a function of bandwidth 4. In the following, we investigate whether the proposed
bootstrap methods can be used to select data-dependent bandwidths for kernel smoothers of
m and o in model (1).

For a fixed value of xo and for 7 = hy(T) = nT =13, with 5 € [a, b] C (0, 00), we con-
sider the process

n— Zr(n),

where, for € [a, b],

Zr(n) = / Thy(T)(Hrp,(1)(X0) — m(xo))

(T2/5/\/ﬁ) S K <T1/5(x0 — X/ m(Xi1 — m(xo))
N (T=43 /)32, K(TV3 (xo — X0) /)

The bootstrap can be used for the estimation of the distribution of the process Zy. We will
discuss this for the autoregression bootstrap. The autoregression bootstrap process is defined
for € [a, b] as

(T”Wﬁ)Zt K(TI/S(XO - XH/mMXE, - m(xo))
(T45 />, K(TV5(xo — X7) /)

Zh) =

The following result states consistency of the autoregression bootstrap.

Theorem 4. Under (AB1)—(AB10), Z7(-) converges weakly in Cla, b] to a Gaussian process
with mean function
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uin) = ZJvz K()dv (M 41 m"(xo)>
Pp(x0) 2

and covariance function

_ M v v 2
R(m, m2) = ST JK (m>K(’72>dva (x0)-

Furthermore, Z?() converges weakly in Cla, b] to the same Gaussian process (in
probability).
Under the additional assumption of (AB11)—(AB12) an analogous result on the con-

sistency of bootstrap for the process 171 — \/Thy(T)(0 1,(1)(x0) — 0(x0)) applies.

This result has two immediate consequences. It implies that a kernel smoother 71} (xo)
with data-adaptive bandwidth has the same asymptotic limit as a smoother m;(xy) with
deterministic bandwidth 4 of order 7-'/° as long as (iz— h)/h converges to zero in
probability.

Another implication is that the bootstrap accurately approximates the distribution of the
pointwise squared error Th(r(x) — m(x))? for h =nT~'/> uniformly in 7 € [a, b]. This
does not immediately imply that the bootstrap approximates the pointwise mean squared
error. Such a result holds after a slight modification of the processes Zr(17) and Z3(37). This
minor technical complication is caused by the fact that the denominator of the Nadaraya—
Watson estimate may become quite close to 0, though with small probability; therefore,
this problem does not occur for the bootstrap bandwidth choice for e.g. Priestley—
Chao estimates in a regression setting with equidistant design as discussed by Hirdle
and Bowman (1988). To overcome this complication, one possibility is to truncate
Th(rit,(x) — m(x))* by a slowly growing constant. Another way out would be to modify the
definition of #1;(x) such that Th(#,(x) — m(x))* has a bounded second moment. This could
be done by adding a positive sequence to the denominator of #i,(x) that converges to zero
at a proper rate.

2.5. Choice of the estimates m, ¢ and 138

In this subsection we discuss the choice of the pilot estimates 77, 6> and P, for the stochastic
model of Section 2.1 where we discussed the autoregression bootstrap. For this set-up the
pilot estimates 7 and G2 can be chosen as truncated Nadaraya—Watson smoothers and the
distribution P, as the empirical distribution of residuals. The same choices of 7 (and G2 in
the case of the regression bootstrap) work for the regression and wild bootstraps under the
assumptions of Section 2.1 or under appropriate mixing conditions. We refer to Masry (1997)
for uniform convergence results under mixing conditions. For constants C,,, ¢, and C,, put
C,= Cm|)?\, ¢y = co 72 and C, = C, 2, where X is the sample mean and 72 is the sample

mean of the squared residuals 7#2. We put
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mg(x) if |rig(x)| < Cp,
m(x) =14 C, if mg(x) > Cm,

—Cp if mg(x) < —Cp,

0 g(x) if o <0,4(x)< Cy,
o(x)=1< C, if 0;¢(x) > Cy,
C_g if (AIj’g/(x) < C_’g,

where j = 1 or 2 and where g and g’ are bandwidths that typically differ from 4 and %’; see
below. We now define P.. For a sequence y; — oo, we put Iy = {I1<st<T:|/H<yr}
Then 158 is defined as the empirical distribution of #, — 7, for ¢ € Ir. Here 77, is the average
of 7, for t € Ir. We need the following conditions:

(P1) Assumptions (AB1)—(AB6) hold.

(P2) The kernel K has three bounded derivatives, and for the bandwidths g and g’ we
have that g, g’ — 0, ng® — oo and n~'(g')~>/? is bounded.

(P3) Elg|’ < oo.

For the bootstrap of ¢, we need the following assumptions:

(P4) Condition (AB11) holds.
(P5) Elg|" < .

Theorem 5: Assume (P1)—(P3) and that C,, and C, are large enough and c, is small
enough. Then there exists a sequence yr — oo such that (AB7)—(AB10) hold for m, 6° and
P.. Suppose additionally that (P4)—(P5) hold; then there exists a sequence yr — oo such
that (AB7)—(AB10) and (AB12) hold for #, 62 and P..

The first statement implies that with the above choices of 72, 62 and P, the autoregression
bootstrap works for ri;(xp); the second statement shows consistency of the autoregression
bootstrap for ¢ x(xp) with j =1 or 2.

2.6. Bootstrap for local polynomials

We now briefly outline how our results can be extended to local polynomials. In Theorems
1-3 consistency of the bootstrap approaches is shown for Nadaraya—Watson smoothing. In
the proofs of these theorems the distributions of the Nadaraya—Watson estimates are com-
pared for the bootstrap resamples and for the original samples. In proving consistency of the
bootstrap it is shown that the conditional distributions based on the bootstrap resample and
the unconditional distributions based on the original data have the same asymptotic normal
limit. For r1;, this will be done by showing for its nominator and denominator
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e that p;(x) and its counterpart in the bootstrap world have the same (deterministic) limit
(namely, the stationary density p(x) of X;); and

o that VTh(T — 1) [Ku(x — X)) X,11 — EKj(x — X)X,11] and its counterpart in
the bootstrap world have the same normal limit.

A1 1 . ~ ~ ~
i, P of m is defined as ag, where (do, ..., d,-1)"

The rth-order local polynomial estimator
minimizes
-1 1 J ?
= — x—X
ZK;,(X = X)| Xiy1 — Z aj(Tt)
=1

=0
This can be rewritten as

a = S(x)"'7(x),
where the matrix S(x) has elements S’(x)j’k =(T - 1)’IZIT;11[(X—X,)/h]j+k Kip(x — X)),
Jok=0,...,r—1, and where the vector 7(x) has elements 7(x); = (7 — 1)"2?;11
Xl — X)/hYKn(x — X;), j=0, ..., r— 1. Consistency of the bootstrap can be shown
by an extension of the approach for Nadaraya—Watson smoothing. One now shows that S(x)
and its counterpart in the bootstrap world have the same (deterministic) limit and that
vV Th[7(x) — E7(x)] and its counterpart in the bootstrap world have the same normal limit.
Theorem 4 can be generalized to local polynomials by simple changes of arguments. For
r = 1, the local polynomial estimator '™ coincides with the Nadaraya—Watson estimator.
For =2, the local polynomial estimator is called the local linear estimator lPc!in,

3. Simulations

In this section we discuss the behaviour of the bootstrap for finite sample size. This will be
done by simulations for the proposed wild and autoregression bootstraps. We have considered

simulated realizations of the process (r =1, ..., T)
X, = 4sin(X,—1) +1/0.5 +0.25X%_ &, (18)
where the random variables (&, t =1, ..., T) are assumed to be i.i.d. with standard nor-

mal law. The standard deviation of the one-dimensional stationary distribution of the time
series (X,) is approximately 3.3, while the standard deviation of the noise process

(1/0.5+0.25X2 ) is about 1.8.

We have compared the distribution of a kernel estimate #1,(x) (cf. (2)) of m(x) = 4sin(x)
at x = ;t/2 with its bootstrap counterparts. Based on a Monte Carlo simulation, we display
for three different sample sizes, 7' = 50, 100 and 200, the density of the distribution of

VTh(iy(r/2) — m(/2))
Vi(m/2)

where I}i(x) denotes the following estimator of the variance of ;(x):

; (19)



14 J. Franke, J-P Kreiss and E. Mammen

(h/(T — I35 Kj = X)(Kir — (X))

o
= P

(20)

This standardization ensures that the asymptotic distribution is a normal one with unit
variance but with usually non-vanishing mean.

The wild bootstrap approximation (cf. Section 2.3) of (19) is given through the
distribution of

VTh(i#r} (10/2) — m(7t/2))
Vi(m/2)

where we make use of the same standardization as above. m has to be chosen so as to satisfy
(WBI1). We propose to use a so-called oversmoothed kernel estimator, i.e. m = mig, with a
pilot bandwidth g such that g > h. As a rule of thumb the choice g~ 1.5k or g = 2/ is
often suggested. The quality of the wild bootstrap approximation is not judged on a single
underlying realization Xi, ..., X7. We have simulated 100 underlying time series (each of
length T') and have computed for each data set the wild bootstrap distribution, cf. (21), which
is of course a conditional distribution given the underlying data. Each bootstrap distribution
has been obtained via simulation based on 1000 wild bootstrap replications. Since a plot of
all 100 bootstrap densities looks rather confusing, we decided to display only three re-
presentative cases. For each of the 100 bootstrap densities g we computed the MISE to the
true underlying density f, i.e. MISE; = [(gi(x) — f (x))> dx. We display the wild bootstrap
density which corresponds to the median of the MISE values (as an average case), the one
which corresponds to the upper quartile of the MISE values (as a non-favourable case), and
the one which corresponds to the lower quartile of MISE values (as a favourable case).

Figure 1(b) displays these three wild bootstrap densities together with the underlying
density, which we intend to approximate, for a sample size of 7' =50 and 4 = 0.90 (pilot
bandwidth g = 1.20), while Figures 2(b) and 3(b) give the same results for 7 = 100,
h=0.80, g=1.10 and T = 200, &2 = 0.65, g = 0.90, respectively. It can be seen that the
quality of the wild bootstrap approximation is not very good for sample sizes 50 and 100.
Nevertheless, it can be seen that the quality of the approximation increases with increasing
sample size and seems to be reasonable for 7' = 200.

By way of comparison, we have investigated the quality of the normal approximation.
Because of the standardization, we used normal densities with unit variance. Estimation of
the bias has been done by exactly the same method, namely oversmoothing, as we used for
the wild bootstrap procedure. As above, we have computed an estimator of the asymptotic
bias based on 100 independent data sets, and plots of the three normal approximations
which correspond to the lower and upper quartile as well as the median of the MISE
distances of the normal approximations to the underlying true density are displayed. The
results for the three different sample sizes are given in Figures 1(a), 2(a) and 3(a). It can be
seen that the wild bootstrap does not outperform the normal approximation for sample sizes
50 and 100. Only for the largest sample size of 200 do we obtain a slightly better behaviour
of the wild bootstrap approximation compared with the asymptotic normal approximation.

Additionally, we have investigated the autoregression bootstrap for the same underlying
situation as above. The implementation of the autoregression bootstrap is much more in-

, 21)
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(@)

3 4 s 6

Figure 1. Simulated density of standardized kernel estimator (solid line) with bandwidth # = 0.90 and
sample size T = 50, together with densities of three representative (a) standardized normal, (b) wild
bootstrap and (c) autoregression bootstrap approximations with MISE to the density of the kernel
estimator, corresponding to lower quartile (+-+-+), median (coo) and upper quartile (---). A pilot
bandwidth of g = 1.20 has been used.
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Figure 2. Simulated density of standardized kernel estimator (solid line) with bandwidth # = 0.80 and
sample size 7 = 100, together with densities of three representative (a) standardized normal, (b) wild
bootstrap and (c) autoregression bootstrap approximations with MISE to the density of the kernel
estimator, corresponding to lower quartile (+++), median (coo) and upper quartile (---). A pilot
bandwidth of g = 1.10 has been used.
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(@)

(b)

Figure 3. Simulated density of standardized kernel estimator (solid line) with bandwidth # = 0.65 and
sample size 7 = 200, together with densities of three representative (a) standardized normal, (b) wild
bootstrap and (c) autoregression bootstrap approximations with MISE to the density of the kernel
estimator, corresponding to lower quartile (+-+-+), median (coo) and upper quartile (---). A pilot
bandwidth of g = 0.90 has been used.
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volved since we have to estimate the conditional variance, too. The autoregression bootstrap
mimics the complete dependence structure of the underlying process, since we also make
use of recursion (18) in the autoregression bootstrap world (cf. Section 2.1). As initial
estimates /i and 0 we have used (as above) oversmoothed kernel estimates sz, and G,
defined in (2) and (4). Along exactly the same lines as above, we have simulated
autoregression bootstrap approximations of the density of the distribution of (19) based on
100 independent underlying time series Xi, ..., X7. Based on MISE values, we have
selected, as above, three representative density estimates, given in Figure 1(c) (T = 50),
Figure 2(c) (T =100) and Figure 3(c) (7 =200). It can clearly be seen that the
autoregression bootstrap outperforms the normal approximation as well as the wild bootstrap
approximation for all sample sizes. The autoregression bootstrap works quite well, even for
a sample size as low as 50.

This clearly demonstrates that the more sophisticated autoregression resampling scheme,
which takes full account of the dependence structure, results in much better approximations
of the underlying situation. In contrast, the wild bootstrap (and similarly the regression
bootstrap) does not take the dependence structure into account at all. This is correct from
an asymptotic point of view, as we have shown in Sections 2.2 and 2.3, but moderate to
large sample sizes are necessary in order to yield reasonable approximations which
outperform the normal approximation. However, it should be mentioned that the proposed
wild bootstrap even works in situations where the underlying nonparametric autoregression
(18) does not hold. But this assumption is necessary for the correctness of the
autoregression bootstrap.

Finally, it has to be mentioned that we have used the kernel

K(u) =31 —u®) 111 y(w)

and the smoothing parameter 0.70 in order to create from 1000 Monte Carlo replications the
smooth density plots in Figures 1-3. The value 0.70 is the smoothing parameter which
minimizes the MISE in kernel density estimation where the underlying distribution is a
normal one with unit variance and unknown mean. This corresponds exactly to the
asymptotic situation we have to hand.

The MISE values of all plotted densities in Figures 1-3 are gathered together in Table 1.

4. Proofs

In the following proofs we assume, for the sake of notational simplicity, that 7 = A’.

4.1. Proof of Theorem 1

First we give a proof of the first statement of Theorem 1. For this purpose we have to treat
the estimate #1,(xp). This estimate can be split into a variance and a bias term,
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Table 1. MISE values of densities plotted in Figures 1-3

Autoregression
Normal approximation Wild bootstrap bootstrap
T =50, h=0.90
Lower quartile 0.0185 0.0165 0.0036
Median 0.0228 0.0214 0.0078
Upper quartile 0.0345 0.0310 0.0121
T =50, h=0.90
Lower quartile 0.0067 0.0059 0.0024
Median 0.0103 0.0089 0.0045
Upper quartile 0.0193 0.0175 0.0101
T =50, h=0.90
Lower quartile 0.0026 0.0022 0.0016
Median 0.0050 0.0042 0.0030
Upper quartile 0.0108 0.0096 0.0055

VThiy, j,(x0) . VThis y(xo)

VTh(si(x0) — m(xp)) = ~— -
Pr(x0) Pu(xo)

where

. 1
Fyao) = = > Kilwo = X)o (X e,
t

Foa0) = g O Ko = X)(m(X) — mC).

Similarly, we decompose the bootstrap estimate 7} (xo),

VTh#S (x0) N VThi ,(x0)

VTh(ii} (x0) — 1i(x)) = ) o)

>

where

. 1 .
Fya(X0) = T_1 Z Ki(xo — X)X ey,
t

Foa0) = 7t 3 Kiw — XD0(X) — ().

In the following Lemmas 4.4—4.6 we compare the random variables 7v ,(xp), 7B n(X0)
and pp(xp) with f{k,,h(xo), fﬁ’h(xo) and pF(xp). The first statement of Theorem 1
immediately follows by application of these lemmas.
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For the second statement of Theorem 1 it remains to show di(L7p(x0), L] (x0)) = op(1)
for j=1,2. For j=1, this follows with similar arguments to those for
dx(Ls(xp), L(xp)) = op(1). For j =2, note that

~2 ~2 ~2 ~2
Uz,h(xo) = 02,1,;,()50) - 202,2,;,()50) + 02,3,;,(350),

where
A 1 T-1
53100 = L N7 Ky — X0 (Xl @2)
t=1
A _ (ﬁh(xo)) <
632(00) == Z Ko = X0 (X e [1in(Xp) — m(X,)], (23)
. _ (Pt - ~
633 4(00) = Z Kixo = X)lrmn(Xp) — m(X)P. (24)

Similarly, one can write

~ *2 ~ *2 ~ *2 ~ *2
0.4(%0) = 041 4(X0) — 205, ,(xX0) + 053 4(%0),

where
1 T—1
o3 0)*(p h(x‘))) ZK(xo—Xt)o%X )eh) 25)
6*2 ( 7(17;[(350)) I &= * * * ~ ok
30.4(F0) =0 ZK(xo—X o (X )er Ui (XT) = m(X )L (26)
7<ph(xo>) & B P
6354(x0) = ZK(xo X)X 7)) — (X)) 27)

With similar arguments to those for the first statement of Theorem 1, it can be easily verified

that dg (L(VAT[63, ,(x0) — 0 (x0)]), L¥(VAT[65, (x0) — oz(xo)])) = op(1). The claim
dx (L(VIT[6% ,(x0) — 02 (x0)]), L*(VAT[675,(x0) — 52 (x)])) = op(1)
now immediately follows from

VThG3 ;,(x0) = op(1),
VTS 4(x0) = op(1),

for j = 2, 3. This statement will be shown in Lemma 4.7. This shows the second statement of
Theorem 1.

In the proofs of Lemmas 4.4—4.7, we will make use of the fact that X, and X T have
approximately the same distribution. For the proof of this property, we now use strong
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approximation methods. For this purpose we construct samples of error variables &j, ..., 7
that have conditional distribution P, (given the sample Xi, ..., X7). We will use these error
variables to construct a process {X,} with conditional distribution equal to the
unconditional distribution of {X,}. We will show that E*|X* — X,| = op(1); see Lemma
4.2. This implies the claim that X, and X7 have approximately the same distribution.

We now choose samples of error variables €, ..., €7 with the following properties:
(i) &, ..., &r are conditionally i.i.d. (given the original data X, ..., X7);
(ii) & has a conditional distribution (given the original data Xj, ..., X7) which is

identical to the unconditional distribution of {e}, i.e. L) = L(&);
(iil) E*(&, — &¥)? = d5(&,, €¥) = d5(&,, €F), where d; denotes the Mallows distance.

For two random variables X and Y, the Mallows distance is defined as
d3(X, Y) = d5(L(X), L(Y)) = inf{E(U — V)’ |L(U) = LX), L(V) = L(Y)}.

Existence of random variables &, with (i)—(iii) follows from the fact that the infimum in the
definition of d, is attained; see Bickel and Freedman (1981).

From (AB7) it follows that d3(e, €)= d5(P., P:) = op(1). This holds because
dx (P, P,) = op(1) and E*(¢*)> = Ee?; see Bickel and Freedman (1981). This leads to

E*(& — &) = op(1). (28)
We now define the process X,. We define X, such that £*(X,) = £(X;) and we put
Xt = m(Xt—l) + O'(thl)gr
For the comparison of the distributions of X ;and X j‘, we show that under our assumptions
|X¥| < yr holds with probability tending to one.
Lemma 4.1. Under assumptions (AB1)—(AB10),
[nax P*(|X¥| = y1) — 0 in probability.
stis
Proof. We start by showing that
max E*|X7F| = 0p(1). (29)

0=<t=<T
With D,, = supjy>y, |7(x)| = Op(1) and Dy = sup|y=,, |0(x)| = Op(1), we have
X7 1l = [+ Do el 1 sy g + (X7 + G XEL T 1x712)

< D, + D, |3;k+1| + |m(X>;k) + O(X;k)f);iﬂ + op(1),

where in the second equality boundedness of E*|¢¥| has been used. This follows from (AB7).
For L= L,, + L,E*|¢¥| we have, because of (28), L = L,, + LyE|&| + op(1) <A + 0p(1)
with a constant 0 <A < 1; see (AB2). Put D = D,, + DyE*|e¥| + |[m(0)| + o (0)E*|¥|.
Then D = Op(1) and, by Lipschitz continuity of m and o, we have, iterating with respect
to ¢,
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t
E*|XT, | < L-E¥[Xf|+D< .. <LVE*X5|+) LF-D
k=0

D

This shows (29). We now prove
max P*{X;k > vyr} = op(l). (30)

0<t<T
With similar arguments one shows maxo<,<7 P*{X} < —yr} = op(1). This implies the
statement of the lemma. For the proof of (30) we use the notation

r — m(x)

gr(x) = 14 s T_im(x)

@ =5
Observe that gr(x) = D;lyT — D;D,, for |x|>yr (where Dj = supjysy, |6~ (x)| =
Op(1)) and that, by assumption,
Gr(x) = gr(x) + op(1) uniformly in |x| < yr.
Therefore,
PHXT > yr} = PHel > gr(X7 )
<P*{ef > D,'yr — Dy Dy, |X7 1| > 1}

+ PHeF > qr(XT )+ op(l), | X7 | < vr}

The first summand is bounded by P*{e¥ > D 'y; — D, D,,}, which converges to 0 for
yr — oo, using (AB7). Denoting by PT_I the (conditional) probability of X ;k_,, the second
summand is

7 BYe]

*
a0+ op(D) L@

YT
J P*{eF > qr(x) + op(1)} PT | (dx) <
—rr
YT E* 8*

le7] pa
YT ('IT(X)
YT G(x)

= mPde){l + op(1)}E* [¢F].
—yr

()dx{1 + op(1)}

For the inequality, we have used Markov’s inequality and the fact that gr(x) is positive
and bounded away from O uniformly in |x| < y7. Now, by Lipschitz continuity of m
and o, yr—m(x)=yr— Ly |x| = |m0)| = (1 — Ly)yr — |m0)| for [x|<yr, o)<
Ly - |x| + 0 (0). Therefore, for a suitable constant C*, the last integral is bounded by

c* T * * LOE*|XT—1‘ +0(0)
Lo 0)}P* (dx) < C -
(A= Loyr — [m()] J_yr{ X+ o) P @) = € S o)
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for y7 — oo. Because of (29), this shows (30). ]

Lemma 4.2. Under assumptions (AB1)—(AB10), for a constant 0 < A <1 and for random
variables Sy = op(1), S = Op(1) and L < A + op(1) that do not depend on t, we have, for
1<t<T, that

sup E*|XT — X | =8 +L"'S,.
I=t=T
Proof. We have
E*|XF - X/|
= E* (X)) = m(X 1) + (6(X])) — o (Xm)ef + o(Xm)(e] — &)
< E*[m(X7)) = m(X, )| + E*[(G(X]_)) — o(X-1)el | + EF|o(X)(e] — &)
For the treatment of the first summand we use
E* (X)) = m(X )| < E*m(X X | > yr} + EXm(X )
= m(X7 DX < yr}+Ef|m(X7 )
— m(X - DHXE | < yr} + E¥mX )| XE, | > yr).

Now, the first term on the right-hand side converges to 0 (uniformly for 0 < ¢ =< T, in
probability). This follows from Lemma 4.1. The same holds for the second term by
assumption (AB9Y). For the third term we have, from Lipschitz continuity of m,

E¥|m(X* ) — m(X,_D|{|XT || <vyr} < LE*| X", - X, 4|
For the last term we obtain, for constants C > 0,
EX|m(X, )[{IXT | > yr} < E¥[m(X,_DI{|X] | > yr}
< E¥|m(E | X | > e, [Bia] > Y+ E¥m(E )| HIXE | >y, [X] < C)

< E*(Lu|m(X )| + [mODH{|X 11| > C} + E*(LnC + [mODI{IXT_ | > yr}.

The second term on the right-hand side of this last inequality is of order op(1), unifor-
mly for 0<t¢<T, because of Lemma 4.1. The first term, E*(L,|m(X, )| +
m(O))H{|X -1 > C} = E(L|m(X,_)| + [mOD1{|X,_1| > C}, turns out not to depend
on ¢t and can be made arbitrarily small by choice of C. This leads to

max E*[m(X, )[1{|X7 | > yr} = op(1).

So we arrive at
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E¥|m(XT ) — m(X, )| < L,E*|XT | — X, 1|+ RY,

where R7 = op(1l) is a random variable that does not depend on z. Exactly along the same
lines, we obtain

E*|6(X7)) — o (X -l lef | < E¥[e] [[LoB¥[ X7, — Xoi[] + RS,

where R% = op(1) is a random variable that does not depend on ¢. Finally, by assumption
(28),

E*o(X,1)|e] — &| =E*o(X)E*|e] — & = op(1).
Thus, we have shown that, with L = L,, + E*|¢]|L, and a random variable R = op(1),

E¥|X¥ - X,| < LE*|X" | — X, | +R

[SS]

t_
<) L'R+ L"YE*[Xo] + E*[X;1}.

v

Il
o

The lemma follows from L < 1 + op(1) (see Lemma 4.1) and E*[.X,] = E[X;]. U]
From Lemma 4.2 we obtain the following corollary.

Lemma 4.3. Under the assumptions of Theorem 1, we have
IS5y
BT 7 2 K= X0l = o),

Lemma 4.4. Under assumptions (AB1)—(AB10),

A [LOVThi v 1(x0)), N(O, T(x0))] = o(1), G1)
dx[L¥(VThFY, 5,(x0)), N(O, T(x0))] = op(1), (32)

where T*(x0) = 0%(x) p(x0) [ K*(v)dv.

Proof. We only give a proof of (32). Claim (31) can be proved along the same lines; see also
Hérdle and Tsybakov (1997). The results of Bosq (1996), Masry (1996) or Masry and Fan
(1997) cannot be easily applied because they require conditions on the conditional density of
(Xo, X)) given (Xj, X;1) that are not easy to check in our case. For (32) it suffices to verify
the assumptions of a version of the central limit theorem for martingale difference arrays
(Brown 1971), namely

h ~ *
7 2 B IK (0 — X))o (X)) ) F] — Uz(xo)P(xo)JKz(U)dU (33)

in probability, and, for all 6 > 0, again in probability,
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72 | Ky - T)62<X2">(8T+1>21{ FRY 0~ XDGE ) > 5} ‘f?‘] —0.
t
(4)

Here | = 0(X}, ..., X7). Note that K and o are bounded in a neighbourhood of xo and
that sup,_y < |62(x) — 0 2(x)| = op(1); see (ABY). So assertion (34) can be concluded from

1
o DL BN (@) (€] > eohT}) < TN (eonT) " PPEX(e],,) = op(1),
t
for all ¢ > 0 with a constant y > 3; see (AB7). To see (33), we write

h -
7 2 B IK (0 — X))o (X )| FT]
t

E*(e])? (X0 = X7\ o s | 2 (X0 = X7\ 0,
= Zt: K=t o) — B | K2 === ) o?(x))

E*(e¥)? Xo — (X ) — (X u
R

)

)62(rh(Xf_1) + 6(XF Du)Pdu).

Now the second conditional moment of the first summand (given Xy, ..., X7) is of order
Op(1/(T?h*)). This can be easily seen by the fact that K is bounded and that 62 is
stochastically bounded in an A-neighbourhood of xj; see above. So the first summand is
of order Op(1/(Th*)) = op(1). It suffices to consider the second summand. Because
E*(e)* = 1, it is equal to

1 J s _fxo—m(X7 )  hv 1

— K*(v)o“(xo + hv) pe = + = ~ do.

T Z [-1.1] o) o)) axr)
The argument of p, is bounded in absolute value by

]+ SUpL =y, [6) — M) + Ui, ) U=y, [mx)| +
min[inf|y<,, 0(x), inf|y~,, 0(x)] — sup|y<y, |0(x) — o (x)|

This is of order Op(yr) by assumptions (AB1), (AB8) and (AB9). Therefore, by assumption
(AB9), we can replace p. by p. Using uniform convergence of & to o on compact sets (see
assumption (AB9)), we obtain that the last expression is equal to

1 ., Xo— m(X* ) ho 1
7 Z JK (v)o“(xo + hu)pé( GO ) + 6(XT1)> GO ) dv + 0p(1).

We now use the fact that ¢ and p, have a bounded derivative and that ¢ is stochastically
bounded from below. This shows that the last expression is equal to
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) 0y 1 Xo — m(Xt D 1
JK W)dv-07(x) - 7 ZP6< (X% ) )6(X’,*1)+Op(l)'

t

Finally, we have to verify that this term converges in probability to 72(xp). For this claim it
suffices to show that

1 xo — (X)) 1 xo — m(X,1) 1
r Zp( 6(X7 ) > () T Zp( (X ) )o()@l)””(l)’ o

1 xo — m(X,_1) 1
T Zp( o, 1) ) o(Xy P ot eo

Recall that (X,) is a process with conditional distribution equal to the unconditional
distribution of (X;). The process (X ;) was constructed in the discussion before Lemma 4.1.
The expectation of the left-hand side of (36) is equal to p(xp). Thus, (36) follows from the
ergodicity of the process (X;). Claim (35) means that the bootstrap process has in some sense
an ergodic behaviour. Such a result will be needed at several points later on. We present the
arguments in some detail here. The proof of (35) can be split into the following steps:

*Z (xo—m(X, 1)>~ 1 1{|X 1| > vr} = op(l);

1) G(X7,
(37)
1 xo — (X7 xo — m(X7F ) 1 -
T Zt{pe< 5’(XT71) )O(X P.e< G(X;k,l) O‘(X B 1{|X < vyr} =op(l);
(38)
— m(X* 1
(JCO 0(;"(( t— 1)> O_(X?i 1{|X 1| > ’}/T} = Op(l) (39)
1 m(X, D X —mX, 1)) 1
P2 ps( (X )o(X ps( o(X, 1) ) o(X, 1)

1 ~
— 0<T Zt: X Xt|>. (40)

With (37)—(40), claim (35) follows from Lemma 4.3. This completes the proof of (32).

To see (37), observe that p is bounded and that sup|y~,, 0~ '(x) = Op(1). Thus the left-
hand side of (37) is bounded by (1/7)Y_,1{|X7 | > yr}Opr(1), which is op(1) by Lemma
4.1. Similarly, (39) follows from Lemma 4.1 and the boundedness of p. and o ~'. Claim
(38) follows from the boundedness of p, and p; and from the fact that m and o converge
uniformly on [~y 7, y7]. For the proof of (40), note that by the boundedness of p; and o ~!
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and by assumptions (AB1), (AB4) and (ABS5), the function o(-)~! p([x — m(-)]/o (")) is
Lipschitz continuous. U

The next lemma discusses kernel estimates of the stationary density.
Lemma 4.5. Under assumptions (AB1)—(AB10),
Pin(x0) — p(xo) in probability, 41
ﬁ}‘:(xo) — p(xp) in probability. (42)
Proof. Claim (41) follows from Theorem 1 in Masry (1996). It can also be obtained along the

lines of the following proof of (42).
For a proof of (42), observe that

2
E* <1T Z{Kh(x - X)) - E*[Ku(x — XT)|,7:;’<1]}> = Op <%) = op(1)

and

—oax* ) —
E*[Kh(xX;ka;kl]J[II]K(U)@-()C (X7 ) uh) 1

= ~ do.
O(X;‘:l) U(X;kfl)

The argument of p. is bounded in absolute value by Op(yr); see the proof of Lemma 4.4. By
assumption (AB9), p, converges uniformly on [—Cyr, Cyr] towards p.. Thus, it suffices to
consider

1 xo — (X ) — vh 1
73 Jxwr ( G(YE,) ) oy @

B 1 X0 — ”h(X;k—l) 1
= 0p(h) + JK(v)de Zp’f( G(X* ) ) G(X7))

t

Lemma 4.5 now follows by application of (35). O
Finally, it remains to treat the bias terms.

Lemma 4.6. Under assumptions (AB1)—(AB10),

V Thig n(x0) — b(xo) in probability, (43)
v Thﬁ;h(xg) — b(xo) in probability, (44)

where b(xo) = B - [U*K(v)dv - [p'(x0)m'(x0) + 3p(x0)m" (x0)]-
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Proof- We only give the proof of (44). Claim (43) follows as in Masry (1996) or by a
modification of the following proof of (44).
A Taylor expansion gives

VThit (%)
h * * ~ 1 h * * 2 ~niy
=\ 72 Knloo = X))XT = xoyi (x0) + 3/ D Ko = X)X = x0)* (X ),
t t
(45)
where X, denotes a suitable value between x, and X ’f We will show that
h ’
\@ S EM[Ku(x - XX - 0)|FF 11— Bp (x)JuzK(v)dv, (46)
t
h
\@ D EFKux = XX - P F ] — Bp(x)JfK(v)dv. (47)
t

Claim (44) then follows from convergence of m’ and m"” (see (AB9)—(AB10)), and from the
fact that the conditional variances of the both terms on the right-hand side of (45) are of
order op(1).

For the proof of (46), note that the left-hand side of (46) is equal to

n L[ x— (X)) + ho 1
\FTZ,J”K(””’{ GOV )6(}(?‘_1)‘1"'

A Taylor expansion for p, yields, for a suitable value Z* between (x — m(X™ |))/G(X* )
and (x — m(X} )+ hv)/G(X ), that this expression is equal to

= |
\/;Z:JU K(U)pg(Zt )m dU.

In the proof of Lemma 4.5 we have already seen that |Z;k| = Op(yr) for a suitable constant
C > 0. Since py(x) converges uniformly to pi(x) for |x| < Cyr, for all C > 0 (see (ABY)),
and since p; is bounded, the left-hand side of (46) is asymptotically equal to

5[ o 1 , x—rh(X;k_l) 1
VK Zp( 6T )6(}(?‘_1)'

Claim (46) now follows by similar arguments to those in the proof of (35). Claim (47) can be
obtained along the same lines. O

For the proof of the second statement of Theorem 1, we use the following lemma. Recall
that
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~2 ~2 ~2 A2
05.4(%0) = 031 ;(x0) — 2073, ,(xX0) + 0733 4(x0),
~ %2 ~ %2 . %2 %2
05.1(%0) = 041 1 (X0) — 20, ;,(xX0) + 053 4(0),

where (3%’]-’;!()60) and 6;2/5,, are defined in (22)-(27), j=1, 2, 3.

Lemma 4.7. Under assumptions (AB1)—(AB12), for j=1 and j =2,

VThG3 ; 4(x0) = op(1), (48)
\/T_hééi,h(xo) = op(1). (49)

Proof. For a proof of (48) under mixing conditions, see Fan and Yao (1998). Their mixing

conditions are difficult to check for the bootstrap process where the distribution of the

simulated process is random and not fixed. For j = 2, we now give a proof of (49) that makes

no use of mixing conditions. For j = 3, claim (49) can be shown by similar arguments.
For the proof of (49) for j =2 we now write

. (X ) = XT)

~ %2 * * *\5 *y ¥
¥ ) = — Kn(xo — X))Kn(X, — X)0(X))e
22,4(%) Tuu4>g; o T XD = et o)

1 — * * Ky~ vk vk Kk oAk Lk kT
+T(T—l) Yz:Kh(xO_Xt)Kh(Xs _Xt)O(Xz)O(Xs)€z+1€s+1[Ph(x0)Ph(X;)] L (50)

s,i=1

We now argue that the first term on the right-hand side of (50) differs only by terms of order

op(1/+/Th) from

1 A N (X ) — m(X*)
> Kilxo — XDKu(XF = X))G(X)ef, | = 51
T =) 2 00 T AORIE = T8 T 0 b
This follows from
A~k 2
sup | p5(0) — p(0)] = Op (W +/log T/Th). (52)

|[x—xo|<h

Claim (52) can be shown with similar arguments to those for (55) below. The expression in
(51) can be decomposed into the following three terms:



30 J. Franke, J-P. Kreiss and E. Mammen

: B [0 8 B L0 99
T =) 2 Ko = KR = X0 =
! * ky1—1 ~ f pky Lk
T Ty 2 Ko = XG0P DI 16

{Kn(X* — XX — m(XT)] — EX[Kn(XT — X)X ) — m(XXE 1)

1

D 2 Kio = XDpCo) pOO) 1o

s>t

E*[Ku(X* — XX — m(xXHIXF ],

where E*[... |X 311] denotes the conditional expectation, given Xy, ..., X7 and X :11. By
calculation of the second conditional moments of these terms, one can show that these terms
are of order op(1/ V/Th). This implies that the first term on the right-hand side of (50) is of
order op(1/ V/Th). Tt remains to show that 4 = op(1 / V/Th), where A is the second term on the
right-hand side of (50).
For the proof of this claim, we will use the fact that, for 0 < p <%,
sup

log T
=0 \/—‘ , 53
[x—xp|<h P( 7] ) ( )
S 1P = ploo)| = 0P<h byt ) (54)
_ _, [logT
= OP<T N >.(55)

A proof of claim (55) will be given below. Claims (53) and (54) follow by similar arguments.

For —T% < j < TP +1, with 0 < p <2, we now define

1 &2 .
o > Kux — XHo(XDer,,
s=0

1 =1 , .
sup 0 D [Knx — X7) — Ka(x' = XDIo(X DS,
[x—xo|<h|x—x'|<T~rh s—0

(P(x0)) 2 N
A; = -1 ; 1y < XTF < x)Kn(xo — XHKW(XE — x)6(XF)a(X5)ek, ek, ),
with x; = xo + jT*h. From (53)—(55) we obtain
A= > Adj+o ( - ) (56)
= .] P — .
—TP<j<Tr+1 Th

We now apply



Bootstrap of kernel smoothing in nonlinear time series 31
12

2
- 1 = 5
E*|4,] < p(xo) 2] E* [7 > Kl - Xi‘)o(X;*)e::l]
s=1

1/2

2
1 = -
x { E* [(T — ; 1(xj 1 < XF < x)Kp(xo — XT)O(XT)STH]

T—p/2)
_0P< Th )

This implies E*|4| = Op(T?/?/Th) and, in particular, our claim 4 = op((Th)~'/?), because
p < ‘5—‘.

It remains to prove (55). Put 55 = sjl(|s:‘| < 7'/%) and ns =1, — E*n,’. Then we have,
because of (AB12), that

P (n} # € for some 0 < s < T) < P*(lef| > 7'/ for some 1 < s <T)
< (T + DP*(ef| > T'°)
< (T + )T SFE*|ef|®
= op(1).

Furthermore, |E*ni| = [E*e* — n,'| = |[E*e¥1(|e*| > T'/5)| < T4PE*|eX|P1(]e¥| > T1/%)
= Op(T~*/%). So for (55) it suffices to show that

log T
sup |B(x, x")| = Op <TpF>’ 58)
|x_xu‘<h,|x—x’|éT*/)h hT

-1

B, ) = 7 S [Kne = X — Kyl = XWX
s=0

where

We will show that, for all C > 0, there exists a sequence C' > 0 with

log T
sup P* (B(x’ x/) = C’Tip og ) < T7C7 (59)
|x—xo|<h,|x—x'|<T~*h hT

P log T
sup * <B(x’ x') < C/TpF> < T*C. (60)
|X_XO‘§h,‘x—x/|§T7;)h hT

Inequalities (59) and (60) imply that (58) holds with a supremum that runs only over a grid of
o(T€) points (x, x"). By an appropriate choice of grid, this shows (58) with a supremum that
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runs over all points of the set. We give now a proof of (59). Claim (60) can be shown by
similar arguments.

We will show (59) by splitting B(x, x') into two terms B(x, x") = By(x, x') + Bax(x, x"),
with

(T-1y/2
Bi(x, x') = Y waulx, X )asi, (61)
s=0
wy(x, x') = T [Ky(x — X7) = Kp(x' = XDNG(XT), (62)

where, without loss of generality, we have assumed that 7 is odd. We will show that, for all
C > 0, there exists a sequence C’' > 0 with

log T
sup P* (Bl(x, XY= T8 ) < 7€ (63)

[x—xo|<h|x—x'|<T-*h hT

With a similar expression for By(x, x’), this implies our claim (59). With
wy(x, x") = \/hT log TT?wy(x, x"), we have, for ¢ > 0, that

log T " (T2 log T
P*{ Bi(x,x")>C'T™* W) = P Z wag(x, X g1 > C’Tfp\lﬁ

s=0

(T-1)/2
<E*exp| ¢ Z was(x, X as+1 | exp(—tC'log T).
s=0
For two constants 4; and 4,, we now use the inequalities

E* [exp(twhs(x, X Wass1)|Fa] < 1+ 2 Awh(x, x')°, (64)
sup E*[1 + A why(x, X'V | Fo1] < 1+ 24, T og T (65)

|x—xo|<h|x—x'|<T~*h
< exp(t24,T ' log T),

which hold almost surely. For the proof of (64) one uses the fact that wr_(x, x")7 is almost
surely bounded. By iterative application of (64) and (65) we obtain that

log T
sup P* (Bl(x, Xy > T 28 )
|[x—xo|<h,|x—x'|<T—*h hT

T-1
sexp< 5 tzAgT_llogT—tC'logT). (66)

By appropriate choice of ¢ and C’, the right-hand side of (66) is smaller than n~C. This
shows (63). U
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4.2. Proof of Theorems 2 and 3

Consistency of the bootstrap for Lp(xo) and L{g(xo) (for Theorem 2) follows by standard
smoothing arguments. As in the proof of Theorem 1, one decomposes the estimates 71, and
6%, , and their counterparts in the bootstrap world into a variance and a bias component.
Smoothness of the pilot estimate m (or ¢) entails correct approximations of the bias terms by
bootstrap. Asymptotic normality of the variance term follows by a standard application of the
central limit theorem For an analysis of the regression bootstrap of 6 02 »(x0) one decomposes
02 #(x0) and 02 h(xo) as in equations (22)—(27). Now one shows that the unconditional
distribution of 021 ,» and the conditional distribution of 021 , are asymptotically equivalent.
This can be seen with the same arguments as for 71j,. Then Theorem 2 follows by showing
that \/ﬁég,j’h(xo) and \/ﬁéé‘;’h(xo) are of order op(1) for j = 2, 3. This can be shown as in
the proof of Lemma 4.7.

4.3. Proof of Theorem 4

First one shows that the finite-dimensional distributions of Z7(7) converge weakly to the
finite-dimensional distributions of a Gaussian process with mean function 4 and covariance
function R. This can be done along the lines of the proof of Theorem 1. It remains to prove
the tightness of the process Zr(-). This follows from the tightness of the following three
processes:

T7-2/5

Zra(n) = Z K( TI/S)U(XI)&H, (67)
,/ _

Zra(n) = T; 5 > K(xTXf Tl/S), (68)
T-2/5

Zra(p) = Z K( TI/S)(mom — m(x)). (69)

To prove the tightness of these processes, we make use of a tightness criterion of Billingsley
(1968, Theorem 12.3).
For the first process Zr;, we have, for 5, 172 € [a, b], that

2
E(Zra(n) — Zra(7)) =j<%n_11<<n—”l> —\%K(%)) 02— T~ u)p(x — T v)do.

The differentiability of K, boundedness of 62 and p, and the fact that 3, 7, = a > 0 imply
that this expression is bounded by some constant times (17; — 772)?. This implies tightness of
Zr,.

For the tightness of Zr,, one first verifies the tightness criterion of Billingsley (1968) for
the process
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—4/5 _ _
5 Z{KCTX’T‘”) —e[x(557 ) ’f”
t

This can be done as for Zr ;. It remains to consider

X—Xi s 1 m(X,_1) — noT~'/3
K( ; T ) ]-'t_ll == ZJK(U)p ( ) X, | d.

It can be shown that the difference between this last expression and
— m(X;-1)
— K(v)d X
73 | (i) s xe

converges uniformly in # to zero. The last term does not depend on # and converges in

probability to
er (i) o~ P

T74/5

=

t

o(X)) )o(X)

cf. (10).
The tightness of Zr3(-) can be shown by using a Taylor expansion for m(X;) — m(x) and
similar arguments to those for Z7,(:).

4.4. Proof of Theorem 5

We will show that (P1)—(P3) imply, for all ¢ > 0, that

|SI‘1P |m'(x) = m'(x)] = op(1), (70)
sup @) — mI )| = op(1). (1)
[x—xp|<h

Note that by a trivial argument this would imply that (70) holds with ¢ replaced by a
sequence Y7 that converges slowly enough to oo. The other claims of (AB9) and (AB10) can
be shown by similar arguments. Furthermore, (ABS) trivially holds and (AB7) immediately
follows from sup|, <, |724(x) — m(x)| = op(1). This can be shown in the same way as (70).
So for the first statement of Theorem 5 it remains to show (70) and (71). The second
statement follows by similar arguments.

We now come to the proof of (70). We will show that

1 7—-1
sup | — ST KX, = 0)0(X et | = op(1). (72)
t=1

|x|<c

T

It is easy to see that this expression and bias considerations imply (70). For a proof
of (72), put n; = &1(|e,| < /Tg>). Then, under our assumptions, 7; = ¢ forall 2<¢<T
with probability tending to one; compare (57). This implies that, with probability tending
to one (1/(T — 1)1 Ky(X: — x)0(X et = S Wix), where W,(x)=(1/(T —1))
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Ko(X: — x)0(X)n+1. Now, by construction, W,(x) is absolutely bounded for 1 < r < T — 1
and for all x. This enables us to show (72) by the same methods as in the proof of (59).

It remains to show (71). For |z <1 consider the process R(z)= m®(xy +
zh) — m®(xo + zh). 1t is easy to check that R(z) = op(1) for all |z <1. Claim (71)
follows by showing the tightness of the process R. This can be done as in the proof of
Theorem 4.
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