Bernoulli 8(2), 2002, 255-274

Estimation of the innovation quantile
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In this paper, we propose two types of estimator (one of histogram type, the other a kernel estimate)
of the quantile density (or sparsity) function o — [f(F '(a))]"! associated with the innovation
density f of an autoregressive model of order p. Our estimators are based on autoregression quantiles.
Contrary to more classical estimators based on estimated residuals, they are autoregression-invariant
and scale-equivariant. Their asymptotic behaviour is derived from a uniform Bahadur representation
for autoregression quantiles — a result of independent interest. Simulations are carried out to illustrate
their performance.
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1. Introduction

Denote by Y := (Y1, ..., ¥,)T an observed realization of length n of some solution of the
autoregressive (AR) model of order p,

Yt:Q1Y1—1+"'+Qth—p+€ts IEZ, (11)
where p is a fixed integer, 0 = (01, ..., 0 p)T is a vector of unknown parameters, and

{&:, t € Z} a sequence of independent and identically distributed (i.i.d.) random variables
with distribution function F and density f. We do not assume that f is known; we just require
that it belongs to the family F of non-vanishing densities satisfying

deF(x) =0, 0<o02:= szdF(x) < 0. (1.2)

As usual, the autoregressive parameter @ is supposed to be such that the polynomial
j2
o) :=1-> giz"", zeC, (1.3)
i=1

has no root within the unit disc (the usual causality assumption). Model (1.1) then admits a
stationary solution; however, we do not require (Y1, ..., Y,)" to be a realization of this
stationary solution, since all solutions of (1.1) are asymptotically stationary; see Hallin and
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Werker (1998) for a detailed discussion of this issue. Furthermore, we assume that
(Y_ps1, ..., Yo) are also observed; if they are not, they can safely be set equal to zero
without affecting asymptotic results.

Denote by QO : a— Q(a):=inf{x: F(x) = a}, 0 <a <1, the quantile function of f
and put ¢ : a — g(a) := [ f(Q(a))]~". This function ¢, or, more precisely, its value g(c) at
some o € (0, 1), plays a role in a variety of inference problems — mainly in the semi-
parametric or nonparametric context, as a nuisance. For instance, the construction of
confidence intervals for the population quantile of order a involves the asymptotic variance
0% = a(l —a)g*(a) of the corresponding empirical quantile; see, for instance, Csdrgd
(1983) or Csorgo and Révész (1984). The same factor appears in the asymptotic covariance
matrices of the a-regression and a-autoregression quantiles (Koenker and Bassett 1978;
Koul and Saleh 1995). The adaptive procedures and tests based on L;-regression or Li-
autoregression also involve the estimation of g(a) at some fixed value of a (Koenker 1987;
McKean and Schrader 1987). Finally, g(a) appears in the problem of building bounded-
length sequential confidence intervals for quantiles (Geertsema 1992). Tukey (1965)
proposed the term sparsity function for g, which never really caught on; Parzen (1979)
reverts to the more classical term quantile density function, to which we henceforth also
adhere.

A vast literature has been devoted to the estimation of g(a) in the context of location or
linear regression models, including works by Siddiqui (1960), Bloch and Gastwirth (1968),
Bofinger (1975), Lai et al. (1983), Sheather and Maritz (1983), Yang (1985), Falk (1986)
and Zelterman (1990) in the one-sample case, and Welsh (1987a; 1987b), Koenker and
Bassett (1982), Dodge and Jureckova (1987, 1991, 1992), and Dodge et al. (1991) in the
regression context.

The most general results in the linear regression set-up have been obtained by Koul et al.
(1987) (see also Koul 1992), who discuss the consistency of functionals of the type

1
0(f) = deqs(F) - L.f(F“(a))dfp(a), (1.4)

where ¢ is a non-decreasing right-continuous function on (0, 1) with bounded total variation.

The time series context has so far been much less explored. To the best of our
knowledge, the only attempt in the direction of serially dependent observations can be
found in the monograph by Koul (1992). The methodology described there, and further
developed in Koul (1996), would allow for a class of nonlinear regression and
autoregression models much larger than the AR(p) models considered here. On the other
hand, this methodology only allows for consistency results over bounded intervals of the
form [a, 1 —a], 0 <a < %, or, equivalently, over bounded functions ¢ in (1.4). Moreover,
the resulting estimates do not necessarily enjoy the desirable invariance or equivariance
properties we now describe (for instance, the estimator Qf proposed by Koul (1992) is
invariant when based on equivariant estimators of the nuisance parameter — p in this
context — only).

In view of its role in the estimation of the variance of estimators of location and/or
regression, it is highly desirable that an estimator 7,(Y) of g(a) be location- and/or
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regression-invariant. This was pointed out by Dodge and Jureckova (1995) in the context of
regression models with independent observations. The same arguments remain valid in
the autoregression context, where an estimator 7,(Y) of g(a) should be scale-equivariant
and autoregression-invariant. More precisely, defining

X =Y., Yo pe)t and x, = (1, xIDT, t=0,...,n—1,
consider the random matrices
% ook % \T o T
X, =&y, .--> %, ) and X, :=(Xp, ..., Xp_1)

((n X p) and (n X (p + 1)), respectively. An estimator 7,(Y) of g(a) should satisfy the
following properties:

(i) T,(aY) = aT,(Y), for all a > 0 (scale equivariance);
(i) T.(Y +X,b) = T,(Y), for all b € R?*! (autoregression invariance).

Classical estimators of g(a) — see the references above — unfortunately do not satisfy (i) and
(ii). In the linear regression model, this led Dodge and Jureckova (1995) to construct
estimators based on regression quantiles, which do possess these two essential properties.
The objective of the present paper is to propose similar estimators, based on autoregression
quantiles, for the quantile density of the non-observable innovation of the AR(p) model (1.1).

Two estimators based on autoregression quantiles — the first one of histogram type, the
second one a kernel estimator — are proposed in Section 2. In order to study their
asymptotic behaviour, we first obtain, in Section 3, a uniform Bahadur—Kiefer rep-
resentation for autoregression quantiles. This asymptotic representation, of independent
theoretical interest, is used in Section 4, along with the strong approximation results for
quantile processes obtained by Csorgdé and Révész (1978) and Csorgd (1983), in the
derivation of the asymptotic distribution of our estimators. Finally, the finite-sample
performance of the proposed estimators is investigated, in Section 5, by means of numerical
simulations.

2. Two estimators of the quantile density function, based on
autoregression quantiles

Following Koul and Saleh (1995), we define the a-autoregression quantile as a solution

0n(a) == (0%a), o)),  0%(a) € R, pl(a) € R?

of the minimization problem
n
Z ha(Y; = ro — x T 1)) := min, (2.1
=1

where the minimum is taken with respect to r = (7o, r?)T € R and

ho(u) == |ul{allu > 0]+ (1 — a)I[u < 0]}, ueR, ae(0,1).
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The finite-sample and asymptotic properties of autoregression quantiles and the related
autoregression rank score processes are studied in Koul and Saleh (1995) and Hallin and
Jureckova (1999). Letting &, ==&, — F X (), Yg:=a—I[u<0],0<a <1, ucR, and

a, := n"'(log n)*(loglog n)?, 2.2)

it has been shown — see Theorem 3.1 or Hallin and Jureckova (1999) — that, under the
assumptions (F1) and (F2) given below in Section 3,

26" @x(@) — 0(@) = 1" Pq(a)E,) D O xT Palera) + Ru(a), (2.3)
t=1

where g(a) == (0, 00)T + F(a)er, ¢ :=(1,0,..., 0", £, =n'1>" x,x', and
sup R,(a) = op(l), 2.4)

a,<a<l-a,
as n — oo.

The results obtained by Koul and Saleh (1995) require less stringent assumptions, but
consistency then only holds over fixed-length intervals, of the form oy <a <1 - ay,
ay < %, while the uniformity of (2.4) plays an essential role in the context of this paper.

We propose two estimators of g(a). Our first is of histogram type,

QA?z(a + hn) B @(,),(a - hn)
2h, ’

where %, = o(n~'/?) and nh, — oo as n — oo; this estimator is in the spirit of Siddiqui
(1960). Our second, k,(a), is of kernel type, in the spirit of Falk (1986),

H,(a) =

(2.5)

1
(@) = L@‘;(u)hnzk<a - ”) du, (2.6)

n

where the following condition holds:

(K1) h, =o(n"'/?) and nh® — oo as n — oo, and k : R — R is a compactly supported
continuous kernel function such that [ k(x)dx =0 and [xk(x)dx = —1I.

In order to derive the limiting distributions of the proposed estimators H,(a) and x,(a),
however, we need the exact rate at which the approximation error R, in (2.4) goes to zero.
We therefore establish a uniform Bahadur—Kiefer representation for autoregression quantiles.

3. A uniform Bahadur—Kiefer representation for
autoregression quantiles

In this section, we establish a uniform Bahadur representation for @,. This representation,
which is of independent interest, will be used in Section 4, in the study of the asymptotic
behaviour of H,(a) and x,(a). This Bahadur representation, however, requires some
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regularity assumptions on the innovation density f, which we borrow from Hallin and
Jureckova (1999):

(F1) fe€ F is absolutely continuous, with derivative [’ almost everywhere and finite
Fisher information for location Z( f) := [(f"(x)/f (x))*f(x)dx < oo; moreover, there
exists K = 0 such that, for all x| > K, f has two bounded derivatives, f’ and [,
respectively;

(F2) f is monotonically decreasing to 0 as x — *oo and, for some b= b, >0,
r=rp=1,

o log F@) - —log(l— F(x) _
xmmoo o Dlx|m ameo blx|"

1.

We then have the following result.

Theorem 3.1 Assume that f € F satisfies (F1) and (F2). Then

n'(@)(a) — F (@) = n"q(a) Z Yalera) + Op(n~*(log m)'/" (log log n)' /)

t=1

'@, () — 0) = n” ' Pg(a)(=*)"! Z X Walera) + Op(n~*(log )/ (loglog n)'/*),

t=1

as n — oo, uniformly in a € [a,, 1 —a,], where £ denotes the p X p autocovariance
matrix in the distribution of the stationary solution of (2.1) and a, is given in (2.2).

The proof of this theorem relies on the following lemmas.

Lemma 3.1 Under (F1) and (F2),

= Op((log n)"/"(loglog n)'/*),

> xi[l(e < X1 (@n(@) — @(@) + F (@) — a]
t=1

as n — oo, uniformly in [a,, 1 —a,].
Proof. Denote by H, the subset of p + 1 values of ¢ for which ¥, = x| _,0,(a), and by Yy,

the matrix with rows {x' |, # € H,}. Optimality of @,(a) implies (Koenker and Bassett
1978, Theorem 3.3) that

S ox (Y < x) 0u(@) —a] = (1—a) > X, 1 =Y, u,
t=1

teH,
for all a€la,, 1 —a,], where u= (ug,..., upﬂ)T is a vector in RPt' such that
—a<u;j<1-a, j=1,..., p+ 1. From Hallin and Jureckova (1999, Section 5.1), we

have
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r = max ||x,—i|| = Op((log m)'"(loglog m)'"*) 3.1
as n — 0o0. The lemma thus follows from the fact that
Y3, 0l < (2 + DIV, Yoy )72 < (p + 1) max [[x,

and

g Xz-1

< (p+ 1) max x|

teH,
O
Now, for all 6 € R”*! and «a € [a,, | — a,], define
0/0, @) ==y, 1[l[e, <x| 0+ F ()] — I[e, < F ()], I<r<n. (3.2)

Denote by A, the o-algebra generated by {—Y,.1, ..., Yo; &l|s < t}. For each 7, ¢ is
independent of 4, ;, and the sequence

i[gﬁ-’)((s, @) ~E(0Y®, allAi1)] = ig;{z, 1<j<p+l, (33
t=1

=1
forms a square-integrable martingale with respect to the filtration {A,}.
Lemma 3.2 Under (F1) and (F2), for any 2 >0 and any K > J*/2,

P [

as n — oo, where B, := Cn'/*(log n)*/"(loglog n)'/2.

n

max g (/)
I<j=ptl ‘= it

-K

=n ,

= AB,

Proof. We have, by (3.1),
P[ S e =18, < P[
=1

Again by (3.1), we have that, for n= n, - < 5(}7])[ <1, where 7,:= K(logn)/"
(loglog n)'/*. Hence, for n = ny, 0 < (5(,/)[ +12)/(ta(1 +7,)) < 1, and thus, by Hoeffding’s
inequality, for any 4 > 0 and for n = ny,

1
= \B, = 1B, r, < K(log n)"/"(loglog n)'/*| +=n"X.

n -
Y&
=1

[\
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{

n

> &D

t=1

= AB,, r» < K(log n)"/"(log log n)l/ﬂ

n (J) 2 (J) 2
_»p &L+, E &t T, - AB,
— | Tn(1 +70) Tp(l +7) Tp(l +74)
2 32) 1 o 1
< _ 2| <2yt /2 <_,K
eXp( 2 ) 2" 2"
for K > 2%/2; the lemma follows. O
Lemma 3.3 Under (F1) and (F2),
sup D Eni(®, @)|| = O(By)
(0,0)eA, X[a1—a,] Il 7=1

as n — oo, where A, := {6 € RP*!|||8]| < C(n~'/?log n)"/"~2(log log n)~'/?}.

Proof. We shall apply the chaining argument of Pollard (1984), in the same spirit as in
Lemma A.2 of Koenker and Portnoy (1987). First, let S, denote the set of centres of spheres
of radius n=5/? covering A, X [at,, | —a,]. Clearly, the number of elements in S, is
O(n>P*D/2) Hence, letting 1 = \/5(p + 1), Lemma 3.2 implies

sup > Eni(0. @) < P2 K g (3.4)

(0,0)eS, 11

P =2p\/p+ 1B,

as n — oo. Now, consider two elements (d1, ;) and (d;, a,) in the same sphere. Define

Dy = | D 1011, ar) — 0u(&>, az)]”
=1
= th—l[l[‘?t <x;,01 + F Ya)] - I[e; < x;_10, + F_l(az)]]H
=1
< max ||x,_]| Z [I[e, < xf_lél + F Y an] - I[e; < xf_léz + F Yy

1=rt=n

t=1

= max ||x,—1]|S,, say. (3.5)

1=st=n
By (F1), |F~'(a)) — F~'(ay)| < Cn=3/2, so that
IXT 01 + F ' (a)) = x" 0, — F'(ap)| < Cn™*? + Cn~*(log n)!/"(log log n)'/*
= Op(n*?(log n)"/"(log log n)'/4).

For t, # t;, we have
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Plle,, —&,| < Cn>(log n)"/"(log log n)'/*]
= Ple,, €&, — Cn~*(log n)"/"(log log n)'/4, &, — Cn~*(log n)"/"(log log n)'/*1]
< Cn~**(log n)"/"(log log n)'/*.
Therefore,

P m;n ler, — €| < Cn~>*(log n)"/"(loglog n)'/*| < Cn(n — 1)n">*(log n)"/"(loglog n)"/* = o(1).
h#th

This means that, with probability arbitrarily close to one, S, # 0. Hence, still with probability
arbitrarily close to one,

D, < 21max [x,—1]| = Op((log n)"/"(log log n)'/*).
<t<n

Now we have

lz E(Q/(01, a1)| A1) — E(Qu(8s, a2)|At_1>] H
t=1

< el X 0L E T @)+ D x|l K] 82l F(F (e
=1 t=1

<> I lPI0all 1A (F @) = FET @D+ D Ix [P F T a)l|or — 8
t=1 t=1

= Op(n>*(log n)®/"72).

Thus, with probability arbitrarily close to one,

= O((log n)"/"(log log n)'/*),

D Endd1, 1) = £4i(B2, @)
t=1

uniformly in (81, d;) € A2 and (ay, a3) € [a,, | —a,]’, where [d; — 8| < n*? and
la; — ay| < n~°/%. The lemma thus follows from (3.4). O

Proof of Theorem 3.1. A Taylor expansion yields, for any d € A,

D EQ(0, )| A) =D X [F(X] 0+ F (@) - F ()]
t=1 =1
=Y x X Of(F @) + > x1(x) 10 f'(F ! (a™))
=1 t=1

= nf(F ' (@)E,0+ > [xi1] - On(n™" (log n)*/"*(loglog n)™").
=1



Innovation quantile density function of an AR(p) process 263

Corollary A.1 in Hallin and Jureckova (1999) implies that ||x,|| has finite moments of all
orders, so that >_7_,[Ix,—1|]* = Op(n). Hence,

S E(OU8. )l Ar1) = nf (F (@)E,d + Opl(log mf® (loglogmy ™. (3.6)
=1

From Theorem 3.1 of Hallin and Jureckova (1999), we have

sup 0, [|0x(@) — o(a)|| = Op(n~"/*(log log m)'/?).

a,<o<l—a,

where 0, := (a(l — a))'/?/f(F~'(a)); Lemma A.1 of Hallin and Jureckova (1999) implies
that

oa(a(l — a)'(—log(a(l — a))! =" — (rb'/")~!
as a — 0, 1. Consequently,

sup 0, '[[9n(@) — @(@)]| = Op(n~"*(log )"/" 2 (log log n)~'7?). 3.7

a,<a<l-a,

Now define 9, := 0.(a) — o(); it follows from (3.7) that 5,, € A,. Applying Lemmas 3.1
and 3.3, we have, in view of (3.6),

ixt_l[a —I[e, < F Y (@)]] = nf (F ' (@)Z,d, + Op((log n)'/"(log nlog n)'/*)
=1

+ Op((log m)®/"~*(log log )™
+ OP(n1/4(10g n)z/r(log log n)'/?).

The result then follows using the fact that

1 0
z, = (0 Z*) + op(1),
as n — oo, which is an immediate consequence of Corollary A.1 of Hallin and Jureckova
(1999). O
4. Asymptotics of the estimators of g(«)

The following theorems characterize the asymptotic behaviour of the estimators defined in
Section 2. We start with the consistency and asymptotic normality of the histogram-type
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estimator H,(a), in the same spirit as Theorems 4.1.3 and 4.1.4 in Csorgd (1983); it can be

verified that the range of consistency [a,, | — a,], with a, given in (2.2), is the same as that
appearing in these theorems.

Theorem 4.1. Under (F1) and (F2), we have

sup | Hy(a) — g(a)| = Op((nh,)""/?), (4.1)

ap<a<a,
as n — oo, uniformly for o € [0,, 1 — a,).

Proof. Denote by F, the empirical distribution function corresponding to the non-observable
errors (gq, ..., &,). Theorem 3.1, the assumptions on /4, in (2.5), and Theorem 4.1.3 in
Csorgo (1983) then imply that, as n — oo,

Hy(a) = 2h,) ' [O(a + hy) — O(a — h)] + 2hy) " Hgla+ hy)la + hy — Fu(O(a + h,))]
— qla — hy)a — hy, — Fo(Q(a — h)]} + Op(n™"* 1, (log n)"/"(log log n)'/*)
= g(a) + Op(n~* 1, (log m)"/"(loglog m)"/*) + Op((nh,)~"/?) + O(h%)

= g(@) + Op((nh,) '),
uniformly for a € [a,, 1 — a,], as required. O

Theorem 4.2 Under (F1) and (F2), there exists a sequence of Brownian bridges
{B,(u), 0 < u < 1} such that

sup  [2nk,) A(H(@) — g(@)) — q(a)2h,) " 2(Bu(a + hy) — Bu(a — hy))|

a,<as<l-a,

= Op((nhy) *logn) (42)

as n — oQ.

Proof. From part (i) of Lemma A.1 of Hallin and Jureckova (1999), and using 1’Hopital’s
rule, we obtain

wp a(l - o/ E @)

< 1/r 71'
S FAE Ty P



Innovation quantile density function of an AR(p) process 265
Therefore, one can apply the theory of strong approximations of quantile processes (see

Csorgo and Révész 1978; and Theorem 3.2.4 of Csorgd 1983). This implies the existence of a
(e1, ..., €,)-measurable Brownian bridge B,(-) such that

Q@nh,) 2(H (@) — g(@) = k)" (g0 + hi)Bu(a+ hy) — gl — hy)Ba(o — hy)]
+ Op((nh,) ' log n)
= q(a)2h,) " P[Bu(a+ hy) = Bu(a — hy)] + Op((n})'1?)
+ Op((nh3)™"*) + O(h,/?) + Op((nh,)~'/* log n)
= Qhy) Plg(a+ hp)Bu(a + hy) — gla — hy)Bu(a — hy)]

+ Op((nhy)~"* log n),

uniformly in a € [a,, | —a,], as n — oco. O

The asymptotic normality of (nh,)/>(H,(a) — g(c)) follows as an immediate corollary:

Corollary 4.1 Under (F1) and (F2), we have
() P(Hy(@) = g() = N (0, 3g(@)), 43)

as n — OoQ.

We now turn to the asymptotic behaviour of the kernel-type estimator x,(a) defined in
(2.6).

Theorem 4.3 Under (F1), (F2) and (K1),

sup  [Ka(a) — g(a)| = Op((nh,)~'72), (4.4)

a,<a<a,

as n — oQ.

Proof. 1t follows from Theorem 3.1, the definition (2.6) of x,, and Theorem 4.1.4 in Csbrgo
(1983) that
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1
on(@) = hijQ(u)k(a -

n

1
“Yaut 7| atotu— Facoene( G )

0

+ Op(n* 1 (log n)"/"(log log n)'/*)

b

= q(a) + h;lJ g(a — hp)la — hpx — Fp(Q(a — hyx))]dK(x)
+ Op(n™ 41 (log n)'/"(log log n)'/*) + O(K?)

= g(a) + Op((nh,)™V?) + Op(n 41, (log n)!/"(log log n)'/*) + O(K?)

= g(a) + Op((nh,)""/?), (4.5)

uniformly for a € [a,, 1 — a,], as n — oo. O
Theorem 4.4 Under (F1), (F2) and (K1),
() (1c0(ct) — g()) i>/\/'(0, qz(a)JKZ(X)dX> (4.6)
as n — oo, where
Ko = ko, (4.7)
Proof. Asymptotic normality readily follows from (4.5) and classical central limit
theorems. (]

Clearly, the kernel estimator r,(a) beats (asymptotically) the histogram estimator H,(a)
if and only if

JKz(x)dx <1
If we choose K as the Epanechnikov (1969) kernel, that is, K(x) := ffoo k(y)dy with
—X, —a<x<a, (4.8)
then
if a > g 4.9)

Note that the choice of the bandwidth %, for computing the estimators H,(a) and x,(a)
is crucial. Bofinger (1975) showed that
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I
h, = nl/ (4.5 (;f(a;)) ) (4.10)

is optimal (in the minimum mean square error sense) under mild regularity conditions on F.
Note that g(a)/q"(a) is location- and scale-invariant, so that (4.10) is only influenced by the
shape of the distribution function F. Of course, g(a) and ¢"(a) are unknown in practice;
Sheather and Maritz (1983) accordingly propose a preliminary estimation of ¢ and g,
showing that, under appropriate regularity assumptions,

q(0) _ f?
q"(@) 2"/ N+ =SS

Fortunately, this quantity is not very sensitive to F, and little is lost if the bandwidth %, is
chosen as if the underlying distribution were Gaussian. In the Gaussian case, (4.10) yields

1/5
_ 15 ' (@ ()
hy = n (4.5 @ @rai) (4.11)

where ¢ and @ denote the density and distribution function of the standard normal
distribution, respectively. A bandwidth choice suggested by Hall and Sheather (1988), based
on Edgeworth expansions for studentized quantiles, is

= n 13220 (15409 v (4.12)
n — (1/2 . q//(a) B .

where z, := @~ !(1 — «). Note that, for symmetric F, h,(a) = h,(1 — a).

5. Simulation results

Considering model (1.1), with p = 1, we generated N = 1000 series of length » = 100, 150,
200, and 500 from the AR(1) model

YtZBYt_]+€t, tGZ, (51)

with initial value Yy = 0, 6 = 0.5, and i.i.d. innovations &,, under standard normal, standard
Laplace and standard Cauchy densities. The estimators H, and k, were evaluated at two
distinct values, a = 0.25 and a = 0.50, for two choices of the bandwidth, referred to as
Bofinger (equation (4.11)) and Hall and Sheather (4.12), respectively. The estimator x, was
computed on the basis of the Epanechnikov kernel (4.8), with a =4/3. The classical
estimator of Siddiqui,

_FyNathy) — F, (@ hy)
a 2h, ’
where F, denotes the residual empirical distribution function resulting from some

preliminary estimation, was also computed. We report two versions of this estimate, SI,;S
and S‘;‘,‘Q, based on least-squares and autoregression quantile residuals, respectively.

S, :
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The numerical results on the asymptotic performance of our estimators are summarized
in Tables 1—4, where we report the biases along with mean square errors (in brackets). The
tables show that, for the three innovation densities considered, the four estimators H,, k,,
SI,I‘s and S;\Q perform better with the Hall and Sheather bandwidth than with Bofinger’s. The
kernel estimator x, performs better, and seems to converge more rapidly to the true values
than the histogram estimator H, and the Siddiqui estimators Sbs and SﬁQ. Note that
convergence appears to be slower under Cauchy innovations, irrespective of the method
adopted.

Two other simulation studies were conducted in order to explore the resistance of the
various estimators in the presence of innovation and additive outliers, respectively. Still
from model (5.1), with initial value Y, =0, standard normal innovation density, and
0 = 0.5, N = 1000 series of length n = 200 were generated. Ten per cent of the innovation
values, however, were (randomly) contaminated with a A/(0, 3) distribution (innovation
outliers). The same model with i.i.d. standard normal innovations was then contaminated
with additive outliers: a quantity 10 was added randomly, with probability 0.1, to Y,_; on
the right-hand side of (5.1). Results are reported in Table 5.

Clearly, our two estimators H, and k, perform better, from the point of view of
robustness, than S’;Q which, in turn, seems to be more robust than SI;S. In all cases, the
Hall and Sheather bandwidth choice yields better results than Bofinger’s.

Table 5. Mean bias and mean square error of the estimators H,, k,, S];S and S‘;Q, in the presence of
innovation and additive outliers, respectively, for a = 0.25 and a = 0.50

Bofinger Hall and Sheather

a=0.25 a=0.50 a=0.25 a=0.50
Innovation outliers
H, 0.579 (0.612) 0.254 (0.150) 0.443 (0.466)  0.269 (0.156)
K 0.663 (0.573) 0.277 (0.167)  0.465 (0.453)  0.270 (0.144)
S];S 0.629 (0.626)  0.379 (0.178)  0.495 (0.501) 0.254 (0.156)
X’;Q 0.587 (0.564) 0.323 (0.167) 0.436 (0.439) 0.227 (0.156)
Additive outliers
H, 0.770 0.941) 0.776 (0.903) 0.656 (0.772)  0.753 (0.733)
Ky 0.820 (1.033) 0.923 (0.987) 0.769 (0.875) 0.764 (0.729)
SES 0.942 (1.164)  0.935 (1.021) 0.813 (0.987) 0913 (0.897)
S‘;‘Q 0.870 (1.122)  0.887 (0.903) 0.686 (0.772)  0.743 (0.697)
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