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We discuss a new way of evaluating the performance of a statistical estimation procedure. This
consists of investigating the maximal set where a given procedure has a given rate of convergence.
Although the setting is not vastly different from the minimax context, it is in a sense less pessimistic
and provides a functional set which is authentically connected to the procedure and the model. We
also investigate more traditional concerns about procedures: oracle inequalities. Difficulties arise in the
practical definition of this notion when the loss function is not the L, norm. We explain these dif-
ficulties and suggest a new definition in the case of L, norms and pointwise estimation. We
investigate the connections between maxisets and local oracle inequalities, and prove that verifying a
local oracle inequality implies that the maxiset automatically contains a prescribed set linked with the
oracle inequality. We have investigated the consequences of this statement on well-known efficient
adaptive methods: wavelet thresholding and local bandwidth selection. We prove local oracle
inequalities for these methods and draw conclusions about the maxisets associated with them.
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1. Introduction

The recent appearance of nonparametric estimation methods offering a high degree of
adaptivity has led to renewed interest in minimax theory.

During the 1970s and 1980s, minimax theory was essentially a jumble of results from
worldwide researchers seeking solutions in situations where one specified the problem
(density estimation, regression, spectral density, ...), the risk (L, L, norms), and the
functional class (Holder, Sobolev, ...). Its impact on the statistical community was not
uniformly positive. The main reasons were probably the lack of connection between the
minimax paradigm and the actual situation where one is confronted with real data: minimax
estimators either depended on smoothness assumptions which were mostly impossible to
verify, or (for some procedures which were really new) were impracticable.

At the same time the statistical community was influenced by the practical need for spatial
adaptation methods. During the 1990s, the development of wavelet methods and, in parallel,
of local bandwidth selection led to some reduction in the gap between theory and practice.

The minimax paradigm has not disappeared. The general framework was enhanced with
new spaces to better reflect spatial adaptivity (Besov, Triebel, ...). Moreover, the search for
adaptive procedures by the minimax community is a useful approach to the question of
tuning the smoothing parameters. Indeed, the easiest way to theoretically prove the high
performance of these procedures for the analysis of functions with inhomogenous

1350-7265 © 2002 ISI/BS



220 G. Kerkyacharian and D. Picard

smoothness, was still to establish that they allow minimax convergence rates close to
optimal over large function classes. In parallel, a deep understanding of the minimax most
striking evidence, the traditional trade-off between bias and stochastic terms has been an
essential source of inspiration for the construction of these efficient methods.

However, part of the aversion and reluctance of the statistical community remained and
some arguments are substantially difficult to deny. The tendency to expect the worst seems
generally to be too pessimistic for practical purposes. Moreover, in the nonparametric
context, the minimax theory investigates the rates of convergence for different sets of
functions. Another drawback lies in the essential difficulty of making an appropriate
deductive choice of these sets. Even in an adaptive context, this difficulty remains.

Our first aim will be to discuss a new way of evaluating the performance of a pro-
cedure. This approach, fairly standard in approximation theory (linking approximation
procedures with saturation classes), is more unusual in statistics. It consists of investigating
the maximal set where a procedure has a given rate of convergence. The setting is not
vastly different from the minimax context, but it has the main advantage of providing a
functional set which is authentically connected to the procedure and the model. In a sense it
is also less pessimistic. When looking for minimax procedures over a fixed functional set,
or adaptive procedures with respect to a range of sets indexed by a smoothing parameter
(for example, Holder spaces indexed by the smoothness parameter o) we are in fact seeking
the most difficult functions in this set that can be estimated by a general procedure. But in
fact this set of ‘bad functions’ is strongly dependent on the way smoothness is defined:
most unfavourable a priori measures or sets of functions in Assouad’s cube or Fano’s
pyramid do not look the same at all if we refer to Holder classes or to Sobolev spaces, for
instance. Moreover, they usually do not reflect what we expect to find in practical situations.
As a consequence it is somewhat difficult to find the motivation to continue. When seeking
maxisets, we look for functions which are the most difficult to estimate for a given
procedure. Besides the fact that this is an interesting piece of information on the procedure
itself, the main advantage of this approach is that the smoothness parameter will not come
from an artificial external choice of spaces, but will be naturally connected to the pro-
cedure. We still are looking for the worst, but in a ‘pragmatic’ context, not in an imaginary
one. Another incidental advantage of this approach is often to produce new classes of sets
(or to rediscover forgotten ones, as here) which contain the classical Besov spaces, for
instance. This provides an opportunity to enhance the minimax paradigm, since procedures
automatically are minimax on their maxisets.

The second aim of this paper is to show that maxisets are connected not only with
minimax theory, but also with another new and important way of evaluating the per-
formance of statistical procedures, i.e. oracle inequalities. The concept of the oracle
inequality was introduced in statistics by Donoho and Johnstone (1994) to reflect the idea of
performing as if having an ‘oracle’ choosing the procedure (see also Donoho and Johnstone
1995). One of the major differences between oracle inequalities and minimax theory is that
oracle inequalities are more oriented towards the function being estimated. This notion can
prove very efficient in many contexts. However, it becomes more difficult to use when the
loss function is not the L, norm. We will explain the difficulties that arise, and suggest a
new definition in the case of L, norms and pointwise estimation.
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Surprisingly, the connections between maxisets and local oracle inequalities are in fact
profoundly important and one of our goals in this paper will be to emphasize them. They
will in particular be illustrated by Proposition 3, where it is stated that verifying a local
oracle inequality implies that the maxiset automatically contains a prescribed set linked
with the oracle inequality. We have investigated the consequences of this statement on
efficient methods that are well known: wavelet threshold and local bandwidth selection.
From the adaption or minimax point of view, all these procedures are equivalent. We can
prove local oracle inequalities for both methods, as well as for a hybrid procedure which
has turned out to be of particular interest in various contexts — especially for confidence
interval purposes (see Picard and Tribouley 2000). We can precisely identify the maxisets of
the thresholding procedure but not of the two other procedures. However, this allows us to
formulate the following concluding remarks. As far as maxisets are concerned, local
bandwidth selection and the hybrid procedure are at least as good as thresholding. Whether
they are strictly better is an open question, as is the relation between the two procedures.

The paper is organized as follows. Section 2 is devoted to maxisets. In particular, we
give the explicit maxisets for linear kernel methods as well as thresholding procedures.
Section 3 concerns oracle inequalities. We provide definitions of such inequalities for L,
norms and in the local context. We investigate the consequences of oracle inequalities over
the magnitude of the maxisets. Section 4 investigates the examples of adaptive procedures
mentioned above. Finally, Sections 5 and 6 investigate the respective positions of the
functional spaces appearing in the definition of the maxisets, and the consequences for
comparisons of the procedures.

2. Maxisets

The study of the set of functions f € X, for a family of operators U, in some functional
space X, such that

Hf_ Un(f)HX = O(en),

where €, is a sequence of positive numbers decreasing to 0, is a classical topic in
approximation theory. This family is known as the saturation class linked with the sequence
U, and the rate ¢,; see, for example, Butzer and Berens (1967), Butzer and Nessel (1971)
and DeVore and Lorentz (1993).

We will now define maxisets and set out the motivation for their study. The definition is
illustrated with nonparametric examples. We consider a sequence of models &, =
{P}, 6 € ©}, where the Pj are probability distributions on the measurable spaces Q,,
and © is the set of parameters. We also consider a sequence of estimates ¢, of a quantity
q(60) associated with this sequence of models, a loss function p(g,, ¢(0)), and a rate of
convergence o, tending to 0.

Definition 1. The maxiset associated with the sequence q,, the loss function p, the rate a,
and the constant T is the set
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MS(Gn, p, an)(T) = {9 € 0, supEjp(gn, g(O))(a,) ' < T}-

In various parametric cases, we can easily prove in regular sequences of models that we
have

MS(G, p, 0~ ")T) = ©

for various homogenous loss functions and sufficiently large constant 7. Although it might be
useful and interesting to further investigate those domains where the rate is different from
n~'/2 (domains of superefficiency, or underefficiency), we will focus, in this paper, on the
nonparametric situation. Instead of a priori fixing a (functional) set such as a Holder, Sobolev
or Besov ball, as in the case of the minimax framework, we choose to situate the problem in
a very wide context: the parameter set © can be very large, for example the set of bounded,
measurable functions. Then the functional set (maxiset) is associated with the procedure in a
genuine way. Let us start with two examples.

2.1. Density estimation: kernel methods

Let X, ..., X, be n independent and identically distributed random variables with density
J. We wish to estimate /. Let us fix 2 < p < o0, and investigate the problem with L, loss:
that is, for a procedure f,,

p(fur 1) =1fu = 1IIE.

We take as our set of parameters © the set of all densities included in a (large) L, ball. This
is reasonable, given our choice for the loss function. We will investigate the maxisets of the
following sequence of kernel procedures:

. 1 &
Ejom(x) == ;Z Ejom(x, X5).
i=1

E(u, v) is a kernel E;(u, v) =2/E(2/u, 2/v). Typically, E; will be the projector onto the
space V; of a multiresolution analysis (i.e. E(u, v) =), ,¢(u — k)p(v — k)) or the con-
volution E(u, v) = E(u — v). The sequence j(n) is increasing, 2" = n!=9_ with a € (0, 1)
(see Kerkyacharian and Picard (1992).

Let By ,, denote a Besov space and By ,,(M) the associated ball of radius M (for the
definition and properties of Besov spaces, see Meyer 1990; Nikol’skii 1975).

Then a consequence of Theorem 2.1 in Kerkyacharian and Picard (1993) is the following
result (see also Hirdle et al. 1998, Chapter 10):

Proposition 1. Suppose that the following conditions hold:

e E is compactly supported.
o [(y —X)*E(x, y)dy = o4, for all k=0,1,..., N.
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e EoE;=E;0F, for all j =0 (where E o E; stands for the composition of E and
E;).

e x — E(x, y) is N times continuously differentiable.

° q,:= (zj(n)/n)p/2 — par/2,

Then

. . a 2s
MS(EJ(n), f, a,,) =: 0N Bs,poc with s = m or o = m

Here, and throughout the paper,
MS(E](")? f’ an) =:0N Bs,poo (1)
means that:

(i) for any 7, there exists M such that MS(EZ]-(,,), [y an)(T) CON By (M),
(ii) for any M, there exists T such that MS(E), f, a,)(T) D © N By ,o(M).

2.2. White noise model: wavelet thresholding
Let us examine the differential equation

n_ 1
dY” = f(Hdt + ﬁdW,, tefo, 1], )

where W, is a standard Brownian motion on [0, 1]. Our aim is again to estimate f. Let us fix
1 < p < oo, and investigate, as in Section 2.1, the problem with L, loss. Let us fix, as
above, a € (0, 1). We take as our set of parameters © a ball in the space B . This set
corresponds to the idea of minimal regularity which is always necessary for nonlinear
procedures. Notice that «/2 is always smaller (and often much smaller) than s introduced in
Proposition 1. In particular, if a <2/p, © contains discontinuous functions. For a scaling
function ¢ and a wavelet v, let us define the following sequence of procedures:

ST = >0 > Bul{lBul = Ktup} gj-1.4(),

o<j<J, &k
where

ik = Yjks for j =0, g-1.k = Dok

b :J &) 14 (AT, (0,
[0,1]

log n
PR oL 27 < 172 < 20t
n n

Let us introduce the following sets of functions:
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W*(p, q)(M) = {f € Ly, supa® Y 2PNt 1By > ) < MQ}. 3)
>0 =

Obviously, for p =2, W*(2, ¢)(M) selects the functions such that their total number of fs
greater (in modulus) than A for j = 0 is less than (MA~")9. For p > 2, we also ‘count’ the fs
greater than A, but incur a penalty for large j. These spaces prove to have a special
importance in approximation theory (Cohen et al. 2000), coding (Donoho 1996) and
estimation (Donoho and Johnstone, 1996). Then a consequence of Theorem 7 in Cohen ef al.
(1999) is the following result:

Proposition 2. For a, = (t,)%/* = (log n/n)®/?,

MS(fT, £, an) = ONW* (p, 1 —a)p).

3. Local oracle inequalities and maxisets

This section is divided into two parts. Section 3.1 is essentially concerned with oracle
inequalities. In particular, we begin with the standard case of L, oracle inequalities. Then we
explain how to overcome the difficulty of generalizing to other norms and to local
inequalities. This part is a priori essentially unconnected to the previous section on maxisets.
The relations between the two notions are clarified in Section 3.2, where the consequences of
local oracle inequalities in term of maxisets are studied.

We again consider a sequence of models £, in which we estimate a function f defined
on X — R. X is a measurable space equipped with a measure u, such that u(X') < oo. The
most common example of X is [0, 1] or [0, 1]¢ equipped with the Lebesgue measure. f is
assumed to belong to some basic functional space V (e.g. V = L,). We consider a sequence
of linear operators £, j = 0, associated with any measurable function f, defined on (X, u),
a measurable function E;f. Typically, as above, E; will be the projector onto the space V;
of a multiresolution analysis (E;/(x) = [ > ,,2/¢2/u — k)p(2/x — k) f(u)du), or the con-
volution E;f(x) = [2/E(2/(u — x))f(u)du.

3.1. From L, oracle inequalities to local ones

3.1.1. L, oracle inequalities

Following Donoho and Johnstone (1994), we say that the estimate f satisfies an L, oracle
inequality with the class C of estimators at rate ¢, if, for all n =1,

E |/ = /I3 < e, inf{E,|® - f|3, & €c}. )

Inequality (4) says precisely that, up to rate ¢, f behaves as the oracle estimate of the class
C — that is, the best estimate among the class C (as if an oracle was telling us for each
function which estimator was to be chosen). ¢, measures the loss of efficiency of f compared
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to the oracle estimator (which generally is not an estimator since the optimal choice may
depend heavily on the function being estimated).

As a prototype example, it can easily be proved that the wavelet thresholding estimator
in the white noise model satisfies an L, oracle inequality with the class {E i=
| Ej(x, )dY?, j = 0} of estimators at the rate

cpn=1+logn,

if the E; are the projections on the V.

Hence, we immediately see that oracle inequalities may be a very useful property for a
procedure. However, it seems that hitherto there has been no full agreement in the statistical
community about the most suitable distance for reflecting the visual properties of estimation
procedures. In particular, two functions may look very different although they are very close
in L, norm. As a consequence, it is natural to ask whether we can also prove oracle
inequalities for different norms (L ,, for instance), as well as oracle inequalities at a point.
Let us first observe that an oracle inequality of type (4) gives us information about the
quality of the procedure for L, norms, with 1 < p < 2, because of the finiteness of the
measure . However, it does not tell us anything about the other norms. To be able to
consider oracle inequalities for general L, norms, it is more convenient to have a slightly
different understanding of (4).

Let us evaluate in the prototype example above (still in the white noise model) the
quantity

inf{E, || £} - fll2, j = 0}.

Standard calculations give

) 2/
n 2 2
Bl B} = fll2 = e+ IEif = fll>-

Hence we observe the standard trade-off between an increasing and a decreasing quantity.
This last quantity is decreasing in j because we use the L, norm and a family of projection
operators on increasing subspaces. Precisely this will be the difficulty when we want to
extend to other situations. Let us introduce

J(f) =mf{j €N, 272 E;f = fll, < A}
So, for A > 0 we have, for j =1,
S )= e 2 UVPE L f = fll, > 2= 27| E;if = fll,
and, for j =0,
IW(f)=02=[Ef — fl,-
Setting

A2
zn(ﬂ L =), 5)

n

it is not difficult to prove that



226 G. Kerkyacharian and D. Picard

e R ) 2¢27
e <inf{E,||E"— f|3, j =0} < ,
2 (B - 113 = 0y = 2

using the following lemma.
Lemma 1. Let {a;} and {b;}, j € N, be two sequences, the former non-increasing and the
latter non-negative and non-decreasing. Let j* = inf{j € N, a; < b;}. Then

bj*—l = 1nf{] e N, a;+ bj} = 2bj*.

(By convention b_; = by.)

Proof. Clearly b,

-
o1 < ap_y, if j© >0, and b = a. So

inf{j €N, a;+b;} <ap+by <2by
On the other hand,
JjEj = aj+b=b;=bp=bp .
Further,
0sj<j*:>aj+b‘,->aj>aju>bj*7l. O

We observe that obviously (as ;7 strongly depends on f) E”, is not a true estimator.
Hence, without loosing much with respect to (4), we define the following property:

Definition 2. We say that f satisfies an oracle inequality for the L, norm, on the space V, the
class E; of estimators and at the rate c, =1 +logn if
E|lf — fI} < Cen222,  VfeV, (6)

where the sequence j*, defined in (5), reflects the complexity of the function with respect to
the sequence E;.

3.1.2. L, oracle inequalities associated with a sequence of operators E;

We begin by defining the L, analogue of j;( f). Let F( f)(/j) be a non-negative, non-
increasing functional defined on N. An important example is

F(f))) = sup2 /| Epf — [l ()
J=j

Now let
Jr(f) =inf{j € N, F(£)(j) < A}.

So, for j =1,

N =je F(NHG—1)>i=F(f)),
and, for j =0,



Minimax or maxisets? 227

JF(f)=0s 1= F(f)0).
Again, let us define

1 1/2
Anz(—> . =Ji (). (8)

n

This leads to the following definition:

Definition 3. For | < p < oo, we say that f satisfies an L, oracle equality on V, associated
with a sequence of operators E; and the functional F at rate c, = 1+ log n if the following
inequalities are true for all n = 1:

Elf = f117 < Cea@ 2P, VfeV; 9)

IEjr pf = fllh = C'@AEDPYP, VeV, vA>0. (10)

Remarks. First, this definition easily generalizes to the case p = oo, with the usual modi-
fication consisting of ignoring all the pth powers in (9) and (10). The inequalities also are
embedded: because of the finiteness of the mesure u, satisfying an L, oracle inequality
implies satisfying an L, oracle inequality for any 1 < ¢ < p.

Second, inequality (10) is obvious in the case where F( f) = F( f) is defined by (7). In
fact, if F( f)# F( f), this inequality is needed to establish a relation between F( f) and
the approximation properties of the sequence E;f.

Finally, if we compare (9) with (6), we notice that the two right-hand sides are equi-
valent. If we now compare (9) with (4), we cannot deny that there might be a loss, since
the only thing that can be said is that there exists C with

inf{E,[|£7 — f]|2, j = 0} < C2"/22,)".

For p = 2, the two quantities were of the same order. For p # 2, as we are considering L,
norms, we can only hope that they do not differ much — and also observe that this is
confirmed by the minimax rates for standard classes of functions.

3.1.3. Local oracle inequalities associated with a sequence of operators E;

We will mimic locally what has been done above. Let F( f)(j, x) be a non-negative
functional defined on N X X, such that, for w-almost every x, j — F( f)(j, x) is non-
increasing. We also suppose that, for u-almost every x, F( f)(0, x) < oco. An important
example is

F()y %) = sup 27 PR f(x) = f(0)]. (11)

J'=J
F is now a ‘local’ functional. Let

Jr(f. x)=inf{j € N, F( f)(j, x) < }.
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Now let

log n 172 s F
I = and  j, (x) = j, (f, %) (12)

n

For practical reasons, it is generally necessary also to introduce a stopping sequence J,
tending to infinity, reflecting the fact that, in practice, a procedure will never be able to
consider an infinite number of possible bandwidths.

Definition 4. Let p = 1 be fixed. We say that the sequence of estimators fn satisfies a local
oracle inequality of order p on V associated with a sequence of operators Ej, the ‘local’
functional F and the stopping sequence J,, if the following inequalities hold for all n = 1:

Ealfu@) = f@)|7 < C{QID21,)P + |Ejpo f () — FRIP + |Eg, f(x) = £(0)|7}
Yxe X, Vf eV, (13)

< C'QPPulx, jE(f, x) = j}

sup | By f — f11{ji (f, ) = j}
J=j

p
p
YA>0,Vj=0,VfeV, (14

where I{A} denotes the indicator function of the set A.

Remarks. 1If we omit the terms depending on J,, and again compare (13) with (9), besides
the localization of the inequality, we notice two differences. The first is the presence of the
term |E+( f(x) — f(x)[?, which was not in (9). However, we could have added a similar
term to (9) without changing the rates of convergence, because of (10). The second difference
is that a logarithmic factor now appears in the rate ¢,, where ¢, replaces 4,, while the
logarithmic term ¢, has disappeared.

Also, if we now compare (14) with (10), we see that we require here a local comparison
between F( f)(j, x) and sup;=;|E;f(x) — f(x)|I{x, jE¥(f, x) = j} instead of a global one.
However, this comparison is made after averaging, that is, in a somewhat mild way.

The following definition corresponds to letting p tend to infinity:

Definition 5. We say that the sequence of estimators f,, satisfies an ‘exponential’ oracle
inequality on V associated with a sequence of operators E;, the stopping sequence J, and
the ‘local’ functional F if there exist C, C' vy, Ao, such that the following inequalities hold
forall n=1 and all f € V:

R 2
Pl 272 t,)7" sup |fu(x) — f(X)| =4 p < Cexp{—z%} VA=A, VI, = =0, (15)

X/ =) 0

Isup |E; f — fII{jE ([ ) = j}e < C'27P4)  ¥YA=0,Vj=0. (16)

J'=J
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This oracle condition is of course much stronger than the previous ones. Using the fact that a
sub-Gaussian random variable has moments of any order, we deduce that satisfying an
‘exponential’ oracle condition implies satisfying a local oracle of order p for any p =1,
especially since u(X) < oc.

3.2. Local oracle inequalities and maxisets

Let us begin with some definitions of sets which will be connected later to maxisets:

3.2.1. Besov bodies

Let us write, for y > 0, r > 0,
By roo(M)={f €V, |E;f — f

Though obviously depending on the sequence of kernels E;, B, , . is deliberately referred to
as a ‘Besov body’. The reason is that, in fact, these spaces coincide for a large variety of
kernels E; (for instance, projectors on a multiresolution analysis, or translation kernels, with
standard cancellation of the first moments; see Meyer 1990). In these cases, the balls also
coincide with the standard Besov balls. Of course, we can also generalize the definition above
with

Ldwy < M2777,¥j = 0}.

By,r,m(M) = {f eV, Z(ZWHEjf - f‘

L))" <=M "’}
=0

3.2.2. Weak Besov bodies

Recall the definition of Lorentz spaces (also called weak L, spaces or Marcinkiewicz spaces),
for ¢ > 0 and v a non-negative measure:

Lyo(v) = {g; supAiv{|g| =1} < oo}.
>0
Let us introduce the following measure on N X X

v, = Z 2jp/25j ® u,

j=0

where O is the Dirac measure. For F a non-negative functional defined on N X X (see
Section 3.1.1), suppose, for p > g > 0, that

W(F)(p, q9) = {f eEV,F(f)e Lq,oo(Vp)}

= {f €V, supa? Y 2P Pufx, F(f)(j, ) > A} < o0},

A>0 =0
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with associated ball

W(F)(p, ¢)(M) = {f eV, supa? > 2P ulx, F(f)(j, %) > A} < M‘f}

>0 =0
We investigate two examples. For the first we consider the functional

F' ()G x) = 27P1E;f () = f (), (18)

not necessarily monotone, and its associated ball W(F')(p, ¢)(M). Let a € (0, 1),
q = p(1 — a). The following lines prove, using Markov inequality, that if f belongs to
By qq4(M), and y = a/(2(1 — a)), then f belongs to W(F")(p, ¢)(M). Hence, in this case,
W(FY)(q/(1 — a), ¢)(M) appears as a weak analogue of B, ,(M). We summarize this fact
in the inclusion

Boea-ay.qq(M) C W(F 1)<%, q) (M).
Indeed, we have, as p — g = aq/(1 — a),

D 2Pudx, F(N)G ) > 2y =Y 2P ufx, 2P 1E f(x) - f(0)] > A}

=0 J=0

<" 2RI Ef ~ f14

j=0
<A 1M1

If v is a wavelet, and f; denotes the wavelet coefficient of f (B = [ fy ), and
Xk(x) = 2/21{2/x — k € [0, 1]} is the Haar scaling function, let us consider, by way of a
second example, the case of the functional

FA( )0 0 =272 Bl e,
k

also not necessarily non-increasing, and its associated ball W(F?2)( p, g)(M). We notice that
W(F?)( p, ¢)(M) coincides with the set W*( p, ¢)(M) introduced in (3).

In Section 6, we investigate in greater depth the weak Besov bodies for some classes of
local functionals F. In particular, we establish that they happen to coincide rather often. For
instance, we prove that if the E; of (18) are projections on the spaces F;, then
W(FY(p, g) and W(F?)(p, q) are equal.

3.2.3. Local oracle inequalities and maxisets

We consider a sequence of estimates f » associated with a sequence of models &,. Let us, as
above, define the maxiset associated with the sequence f,, the L, loss and the rate (¢,)*”
(recall that 7, = (log n/n)'/?):
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MS(fn’ P, a)(T) = {f eV, sup En”fy, — f”fp(dm(tn)—al’ < T}

The following proposition establishes a natural correspondence between the previous local
oracle inequalities and maxisets:

Proposition 3. Let [ be a positive constant. Suppose that the sequence of estimates f,,
satisfies a local oracle inequality of order p, associated with the sequence of operators Ej,
the sequence J, and the local functional F on the space V = By g, ,oo(M). Then, if J, is such
that 27 < t;ﬁ < 27t then there exists M' such that

W(F)(p, p(1 = a)(M") C MS(f,, p, a)(T).

Remarks. The constant M’ may be chosen such that
T =C[2(1 +2M’p(1—a)) + Mp(l—a)]’

with C is from inequality (13).
Membership of the set W(F)(p, ¢)(M), with ¢ = p(1 — a), may also be written in the
following way. Let vy be the measure on N X X defined, as above, by the formula

Vo = (Z 6j> ® u.
jeN
Then f belongs to the set W(F)( p, p(1 — a))(M) if and only if
sup A2V I{F( ). x) > A}
>0

Lh(Vﬂ) = M(lia) :

In this way, it is easier to let p tend to infinity. One can prove that we obtain as a limit, when
F(f)=F(f); Bajoa-apocoe(M). This introduces the following proposition, corresponding
to the case p = o0, F(f) = F(f).

Proposition 4. Suppose that the sequence of estimates f,, satisfies the exponential oracle
inequality associated with the sequence J, and the local functional F on 'V = B g o oo(M).
Then, if 27" < t;ﬂ < 270t gnd

MS(fr, 00, a)(T) = {f €V, sup E, || /u(x) = £ ()| e ()™ < T}
for a <1, there exists M', such that

Be /1 —apone(M") C MS(fn, 00, a)(T).

Remark. The constant M’ may be chosen such that
T=CQ2+V2)M'1~9,
with C from inequality (15).
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Proof of Proposition 3. Let f be arbitrary in V = B, g , (M), ¢ = p(1 — a). Then

17,60~ 01 du = 3", [170 ~ 00171550 = s

j=0

<cy j{(zf/ztn)p FIES() — ()P

=0
+|Eg, f(x) = QP H (x) = j}du
< Ctﬁ{z > 2PPu{jie) =y + 11 Esf - f|£}
=0

<2C( +2M' Tt 1 4 CMP2—@/Bnp < (M)t

We have used the definition of V = B, /g , (M) and the decomposition

Do ulin) =207 = i) = 0) + 3 ulin@ = jy27
J=0 <

o0

< {F()O0, %)< ta} + > 2PPu{F(f)(j =1, %) > 1}

j=1
< u{X}+2) 2PPu{F(£)(j, x) > ta}
Jj=0

= i{ X} + 2 {F(S) > ta}
< u{X} +2F(ONL, o) n

< u{X}+2M"1,9 < M"t, 1,

as t, < 1 and u{X} is finite. O

Proof of Proposition 4. Because of the definition of By 3(1—a)),00,00(M), We obtain that, for all
7' 277 E; f(x) — f(x)] < M27/11/20-9)] Hence, if we recall the definition of j*(x) (see
(12)) and the fact that we use the functional F to define J¥(x), we find that we must have
J¥(x) < jo such that 20 < Cr;2179,

Using the same argument, we see that the condition f € V ensures that J, < jo.

By the two previous paragraphs, we obtain:
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Eullfu0) = £l = Ensupsup [£,0) = f 175 () =/}
]2 X

=E, sup sup|f.(x) — f)|I{j5(x) = j}

0=<j<j, x

< ) E, suplfn(x) F@I{jnx) = j}

0<j<Jjo

Z 2, < Co. O

0<j<jo

4. Applications to wavelet thresholding and Lepski’s procedures

In this section, we prove a local oracle inequality for wavelet thresholding, as well as for
adaptive local bandwidth selection. We first state the assumptions on the sequence of models
(which will be roughly the same for the different procedures). We exhibit standard examples
where these conditions are fulfilled, and then prove the local oracle inequalities. It is
interesting to notice that the associated functionals F7 and F are different. F'© is very easy
to understand since it is, up to a constant, our standard example F introduced in (7).
Surprisingly, F7 is much less intuitive since it requires the introduction of the maximal
function (see (29)). We also investigate the behaviour of a hybrid procedure, intermediate
between the two previous ones, which turns out to be very efficient for the construction of
confidence intervals (see Picard and Tribouley 2000).

4.1. Assumptions on the sequence of models

Our assumptions on the sequence of models will only be relevant with respect to its ability to
estimate the £;f. Let p =1 be fixed. Let us also fix a constant K = 4 and an increasing
sequence of integers J,. The latter quantities will appear as tuning quantities for both
procedures.

Moreover, we assume that there exist a sequence of estimates E’}’, and a sequence of
class of distributions C; such that [(E 7 — E;/)do is defined for any 6 € C;. In what follows,
C; will be:

e cither the class CP of all the Dirac masses of X, for any j, and then
I(E}’ — E;f)dd, = E 7(x) — E;f(x). This case will be concerned with local bandwidth
selection.

e or the class CJW of measures 0 with density functions 2//2 gj-1.k» k € Z, associated
with a pair (¢, 1) of father and mother wavelets in the way defined above: g = v,
for j =0, g_1x = ¢ox. Here the E; are projection kernels on the space V;_y, for j =1,
E; = Ey, and ijfdéjkuJ/zﬁjk We define JE"déjkfzf/zﬁjk, and then f(E”

E;f)dd; = =212 it — Bjr). This case will obviously be concerned with thresholding.
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In either case, we assume there to exist: some constant C; such that, for all » = 1, for all

0eCj forall j,0<j=<J,
2p 2j P
scl( ) ; (19)

E, J(E; — E;f)do —

and some y > 0 and some C, such that, for all » =1, for all 0 € C;, for all j, 0 < j < J,,
A K2/ (log n\ " 1\’
P, J(E'? — E;f)do| = (Og ”) <G (-) . (20)
J : 4 n n

Remarks. The expectation (19) and probability (20) are taken when f is the true parameter.
Notice also that if condition (19) holds for one value of p, it automatically holds for any
p=<p

It is worth noting that neither (19) nor (20) implies the other. However, it is easy to
verify that the following condition implies both for any p = 1: there exists C3, vy > 0,
Ao = 0 such that, for all n =1, for all 0 € C;, for all j, 0 <j=<J,, for all 1= A,

. 22712 —A?
P,,(HE;‘—Ejfdé‘ >W> < Qexp{E}. (21)

4.1.1. Examples of models where such conditions are satisfied

Let us take the two examples where E; is either a projection on V; or a convolutor with
bandwidth 27/, It is well known that in the following basic models, in which the classical
kernel estimator and the Bernstein and Rosenthal inequalities are used for E7, conditions (19)
and (20) are satisfied: '
e white noise model (see section 2.2),
1
Vn

e equispaced regression model, with Gaussian errors,

dY" = f(ndt +—=dw,,  t€]0, 1]; (22)

y,.:f@ﬂ,., =1 (23)

e density model (see Section 2.1),
Yy, ..., Y, iid., with density f. (24)

However, with more elaborate arguments one can also prove that they are satisfied for sta-
tionary processes of spectral density f, evolutionary spectra (Neumann and von Sachs 1997),
locally stationary processes (Mallat et al. (1998), partially observed diffusion models
(Hoffmann 1999a; 1999b and 1999¢) multivariate extenstions (¢ € [0, 1]¢) (Donoho, 1997;
Neumann, 1998).
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4.2. Local bandwidth selection

The following procedure has been introduced by Lepski (1991) and can be found presented in
this local version in Lepski ef al. (1997). It is associated with a general sequence of operators
E;.

Let ¢, be (logn/ n)'/2 as before. We define the index j(x) as the minimum of the set of
admissible js at the point x, where j € {0, ..., J,} is admissible at the point x if

B0 = Epo)| < K2 Pty NGNS T <<
We also define the estimate
AL
Fle) = B2 ).

The sequence J, will again be chosen in such a way that 2/» < t;ﬁ < 2/+*! for some
positive constant /3. Let

M = {f, limsup [E;f(x) — f(x)| = 0 ,u-a‘e.}.

J

Proposition 5. If conditions (19) and (20) are satisfied for some order p* and y > p*f3/2
and for the class CP, then f L satisfies, for any 1 < p < p*, the local oracle conditions or
order p of Definition 4 on the space V = M, associated with the sequence of operators E;
and the functional

FYCf)Gox) = fsupz TRIE; f(x) — f(x).

1/1

Notice, in particular, that the conditions of Proposition 3 for any 1 < p < p* are fulfilled,
since By /g poc(M) C M. Moreover, the result of Proposition 5 holds for any p =1 if (21)
holds.

Proof. First, we observe that, as mentioned above, because of the precise form of FZ( f), we
only have to establish (13), as (14) is naturally fulfilled in this case. We recall (see Section
3.1.3) that j:(x) :jf‘;L(x). Notice that j’,':(x) is finite since f € M.

We begin the proof with the following lemma.

Lemma 2. Under the conditions above,

2

P{j(x) > jE(x)} <

Proof. Observe that, by the definition of j(x), when j(x) =1, j(x) — 1 is not admissible
(when J(x) is admissible), so there exists J, ](x)— 1 <j'<J,, such that |E” (x) —

E% (0] = K, 27"/ In addition, if j(x) — 1 = j*(x), we have
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K ”
|Ej f(x) = Ej 1 /)] < [Ej f(x) = f)] + | Ejy 1 f(x) = f(0)] < 5 ta27'12.

So, on the set j(x) > J¥(x), we have that there exists j’, Jx)— 1</ < J,, with

B () = E% (0] = K6,2/ 2 and |Ejp f(x) = Ejy o f(3)] < gznzf’/z.
Hence, using (20),
P{j(x) > jn()}
=P U {|Ej,(x) —Elx)| = Kt, 27 |Ej f(x) — E;f(x)] < K tnzf'}
I SjSjI<J, 2

A . K .
< Z P{|E.7,(x) —Eif(x)— E]'.’(x) +E;f(x) = 3 t,20 /2}

JJ'<Tn

N K " N K .
Z P{|E7,(x) —Epf()] = 41,2 /2} + P{|E7(x) —Ef )= t,,ZJ/Z}
J2
Y

=
=

JJ'<Jn
C.

n

Let us now investigate the two different cases. In the case Ji(x) < J,, we can divide
E,|lf L(x) — f(x)|? into two terms:

T

> BB — fIP 1) = '}

0sj'<j%(x)

Ty= Y EJEN® - f@1{jx) =}

Ji<j=,
To bound T, we observe that
|E(x) — f()]”
<377 EF) = BN+ B () = Ejro f )P + [E (0 /() = f(0)]7).
On the set {j(x) = '},
|E5(x) = Eli ()] < K, 27097,

For the second term, we use (19) and the Cauchy—Schwartz inequality. We obtain
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e ((Kt"zjj(x)/z)"f’{i(x) < ji@)

i\ P2 "
+ (25" (i = 707 + 1) — 0

0<j'<j%(x)

FME)

r/2
=3 ((Kr,,szm/z)p + (T) Jn @ PG < FLGOY | E o () —f(x)l”>

n

ok o fn P
< 37! <(Ktn2f"(x)/2)p +2/x0r/2 <—log 2) HE o (%) = f(x)|p> .

For the last inequality, we used the fact that j*(x) < J, < flogn/log2, and p = 1.
For the term 75, using Lemma 2, the Cauchy—Schwarz inequality, (19) and the definition
of j(x), we obtain:

n= Y 2 HEAEN® - ES@PPU@ = 7Y 4 Ep @)~ S0P = '} }

Jro+1s)'<J,

A 1/2 .
ot [ > EnlEf'(X)—Ej'f(X)fp} [PUE) + 1700 = 1,17

Jro+1s)'<J,

2 t,\"
20) i = 1)

+

Jhr+1sj'sJ,

2 1/2 Jn p >
< 2plc{2an/2np/2 [CJn} +(KZ t,,) CJn}.
n? 4 nv

This concludes this case since, for y > pf3/2, the right-hand side of the last inequality is
easily bounded by Cr? < CtﬁZjif(x)P/z.

The case j¥(x)>J, is parallel to the previous one except that the term 7, has
disappeared. Again we observe that

B} = )7 =377 (1B} = E5,017 + |E) ) = Ea, SN + B, f ) = f(9)]”)
On the set {j(x) = '},

|En(x) — E (0)] < Kt,27"2.
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For the second term, we again use (19) and the Cauchy—Schwarz inequality. Thus
> ENEN) — 1P I{(x) = j'}
0<;'<J,

27
<377 K2+ N (
n

0=<,'<J,

p/2
) (P(j(x) = j'N'? + |Ey, f(x) — f(x)]7

N
e <( k2 () B —f(x)l”>

* o te \?
< 3p-1 ((Ktnzjn(x)/Z)P 4 2/n®p/2 <10g 2) +|E; f(x) — f(x)|p> ] 0

4.3. Thresholding wavelet coefficients

Various descriptions of this procedure can be found, for instance in Donoho et al. (1994,
1996), in different frameworks (white noise, equispaced regression, density). As above, we
consider ¢, = (log n/n)"/?, and fix J, such that 2/ < (n/log n)’ < 27+*!. Note that in the
references just cited we generally have f§ = 2.

Here the space X is [0, 1], equipped with the Lebesgue measure, and the E; are the
projection kernels on the spaces V;_; (for j <1, Ey = E;) of a multiresolution analysis
generated by a pair of mother and father wavelets ¢ and y. We assume that ¢ and 1y are
compactly supported and regular (at least bounded). We again assume conditions (19) and
(20) on the sequence of models for these particular E; and recall the following
thresholding procedure:

Ffo= 3" Y Bul{lBul = Ktu} gj-1.4(),

0<j<J, &k

where g = Y, for j >0, gox = or, Bk = [0 Ej(x)gj-1,5(x)dx.

We prove an analogue of Proposition 5. Here, the difficulty lies in the definition of
F(f)(J, x). We have to be a little careful and, in particular, we introduce the following
tools.

As usual, we denote by W; the ‘innovation’ space defined by V.1 =V; & W, W; is
spanned by the collection {1, k € N}. If fis a function of Ly, A;f =" ,By, denotes
its projection on W;, and if y; denotes the Haar wavelet, we define

Aif =" Bk
k
Notice that A ;f is in general a slightly modified version of A;f and enjoys the following

nice property: |Ajf(x)| = |Bx|2//? when yi(x) # 0.
Now, for g locally integrable in R, » > 0 let us define the maximal function



Minimax or maxisets? 239

1/r
M@mzsw<m{bw). (25)

{B,xeB}

The supremum is taken over all the balls B containing x, and |B| denotes the volume of the
ball. The function M ,(g) obviously satisfies M ,(g) = |g| a.e., and enjoys the following nice
properties.

Lemma 3. For any r > 0, there exist universal constants C,, C, such that, for any j =0, k,
A S < CMu(A;)x),  Vxae., (26)
A f )] < CIMAA (), Vxae. 27)

There also exists, for any f locally integrable, for any q > 1, a constant C,. such that

[, < e fisir = eyl (28)

Remark. Inequality (28) states the equivalence of the L, norm of f and M,( f). This is a
classical result in harmonic analysis. Its proof can be found in Stein (1993). The proof of (26)
and (27) is given in Lemma 8.

Proposition 6. If the inequalities (19) and (20) are satisfied for some order p* and y > p*
and for the class CJW, f T satisfies a local oracle inequality of order p on the space Loo(M) of
functions bounded by M on [0, 1], associated with the sequence J, and the local functional

K

T i —
FIOG =56

27723 M(A £)(x) (29)
J=)

for any choice of r < p, 1 < p < p*.

Remark. Again, here the conditions of Proposition 3 are fulfilled for instance if a/f > 1/p,
since in this case By poo(M) C Loo(M). O

Proof. The proof will follow, with some differences the proof of Proposition 5.
First, we need to prove inequality (14).
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P

[sup .00~ 171 i3 = b = [ a1 0 = ) du(x)

J=j

D 1A @)

J'=j

I

P
Hx, ja(fo ) = ) lz M,.(Aff)<x)|] du(x)

=i

< |Hx, ja(f. x) = j}Q/* ) du(x)

< C'QPNPufx, ji f, x) = j}.

To establish (13) we have, as above, to distinguish two cases: j¥(x) < J, and j*(x) > J,.
We only investigate the first case. The second can easily be treated using the same
technique as above. In this particular case, we can divide E,|f7(x) — f(x)|? into three
terms:

p

er =3B, D D (Bul{lBal = Ktn} — Bi)gu(x)

—l<jsjnx) kK

>

p

er=3""E,| > D (Bul{lBil = Ktn} — Bi)gi(x)

Jre+lsjisJg, k

e3 =3V E;, f(x) = f)]”.

Notice that we already have e; on the right-hand side of (13) so we only need to bound e;
and e;.

>

We prove the following lemma.

Lemma 4. Under the conditions above, for all n = 1, for all j, such that —1 < j < J,, for

all k,
EnlBi — Bufr =< Cn 7, (30)
) Ktn _
P(‘ﬁjk_ﬁjk’ = 1 > < Cn7, (31)
E, Bjkl{(,éjk) >Kt(n)}—ﬁjk’ffsc{tg+n—7’} for y’:%+§. (32)

Proof. Inequality (30) follows directly from condition (19), and (31) follows from (20).
For (32), we have to investigate separately the different cases |Bx| > 2Kt,, |Bu] <
Kt,/2, Kt,/2 < |Bjx| < 2Kt,. For the first case, we write
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EdlBul{1Bjx| = Ktu} — Bixl” = EulBi — Bil "I{|Bjxl = Ktu} + |Bl? PRl < Kt}
< EulBjc — Bil” + 1Bl " P{IBjx — Bl = Kt}
< C{n P}
Here we have used (30), (31) and the fact that boundedness of f implies that its wavelet

coefficients are also bounded for j = 0.
For the second case, using the Cauchy—Schwarz inequality, we have

A - A o Kt 1/2 Kt,\?
Ea Bl {B| = Kt} — Bil? < (EnlBjx —ﬁjk|2p)l/zp{|ﬁjk — Bl = Tn} +( ")

2
p
< Cp (P2 + (I<2t”> .

The third case uses the arguments of both previous cases:
3 3 P -p/2 Ki,\”
EnlBil{IBil = Kin} = ul? < Cym™ P+ (=] .

This ends the proof of the lemma. O

To bound e; and e, we use the following triangular inequality, true for p = 1:

P\ /P 1/p
(E’ in' ) <> <E|X,~|”) (33)
1 1

To bound e; we use (33), (32), the fact that as g is compactly supported only a finite number
of k (N, say) at each level j are such that g (x) # 0:

r p

e < 377! Z Z{En|(3jk1{|,3jk| = Kt,} —ﬁjk)gjk(x)|p}l/p

| -Is/</y K

r p

1/p
=37 >0 D> e # 0} (2f"/26{r5 +%}>

| -1</=/ie) &

p

, 1
—1 19j/2
<37 Y NCY {tn+ny,/p}

|- 1</</5()

< C/r21t<x>p/2{tg n L}
nv
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To bound e,, we observe that we can write:

> Z(ﬁjk1{|ﬁjk| Ktn} = B gu(x)

Jn *)Flsj<J,

= (Ejiof () = f(x) = Ey,[(x) + [(x))

FO B BBl = K] 18l = gt

Srot+isj=J, k

We are permitted to use the indicator function /{|5| < Kt,/2} here because we are dealing
with js larger than j*(x). Because F( f)(J, x) is non-decreasing in j, we have, for j = j*(x),
F(f)(j, x) < Kt,/2C}, hence M.(A;f) =< Zf/thn/2C’,. Therefore, using (27), we obtain
that necessarily |Bi| < Kt,/2 if g(x) # 0. Now it remains to write:

e < C{|Ej/(x) = f@I +|Ey, f(x) = f(x)]”

1/2p P
S (e P { il = ) gl g0 £ 0)
JSo+lsj'sJ, k
1
C"{|Ej¢<x>f(x)—f<x>|”+|Ejnf(x) F@I + m} O

4.4. Local bandwidth selection using wavelet coefficients

We also consider the following procedure, which can be considered as a hybrid version
between thresholding and Lepski’s procedure. We define the index j%(x) as the minimum of
the set of -admissible js at the point x, where j € {0, ..., J,} is f-admissible at the point x
if

Byl < K271, Yk, j's j<j' < J,.
We also define the estimate
) = E% ().

The sequence J, is again chosen (for the sake of simplicity) in such a way that
27n < t,# < 2/*1. Notice that 7/ H looks very much like /7, except that it somehow ‘fills
the holes If j is such that |ﬂ,k| = Kt, and g;(x) # 0, and if for instance |[3’, 1| < Kt for
all k" with g;_ x(x) # 0, then 7 restores all that |ﬂ i—1,k'| < Kt, which were killed in the
f T expansion. This estimator has similar minimax and adaptation properties to f T but turns
out to be strictly more efficient for the construction of confidence intervals (see Picard and
Tribouley 2000). We also can prove the following proposition:
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Proposition 7. If the inequalities (19) and (20) are satisfied for some order p* and y > p*
and for the class C"i f " satisfies a local oracle inequality of order p on the space L..(M)
of functions bounded by M on [0, 1], associated with the sequence J, and the local
functional

FUCGn %) = (2C, )2 2 1A,

=i

for any choice of r < p, 1 < p < p*.

Proof. The proof combines the arguments of thresholding and bandwidth selection. We have,
as above, to distinguish two cases: j*(x) < J, and j¥(x) > J,. We only investigate the first
case. The following lemma summarizes the essential properties of /.

Lemma 5. Under the above conditions,

(i) PUE) > jE@)} < Clu/n?;
(ii) E,,|EJ’.'(x)ijf(x)|2PSC1(2j/n)1’, for all n=1, for all xe X, for all j,
0<j<J,.

Proof. (i) We observe that, by the definition of ;j%(x), when j%(x) = = (x) is not
B-admissible (when j%(x) is adm1551ble) then there exists k, /g (x) # /|ﬁj «r| = Kt,. If, in
addition, we suppose j* = j¥(x), then |B+;| < K1,/2. Hence,

. R Xt
P > /() = P{ U 1Bk — Byeil = Tt}

Th@=<j*<Jy k) g p(x)F£0
A Kt
< Z Z P{{|ﬂj*k_ﬁj*k|27n}
J=Tn kg r i £

_ G

n

(i) Using (33), we easily obtain

En|Ejn(x) - Ejf(x)|217 < Z Z (En|Bj’k _ﬁj'k|2p2ijg”oo)l/zp}ZP

0</'<j k,/gji(x)#0

Jj P
sC(z). l
n

In the case j¥(x) < J,, we can divide E,[f #(x) — f(x)|” into two terms:
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Tv= Y EJEN0)— I I{0) =/

0=/'</5(x)
= Y BJEN® - @@=/}
Jro+1=s)'<J,
To bound 7, we again observe that
B3 @) = f@)P < 3PN L) = Efe NP+ [Ele () = E s o SOOI 4 [Eje o f(0) = f(0]7),
and on the set {/#(x) = '},
|EZ’(X) - EA'.;%(X)(XN Z Z ﬁ]kg]k(x)
<SS k) g r(x)#0
< CK1,2/:09/2,

At this stage, we can bound 7| and T, just as in the proof of Proposition 5.
To end our proof, we need to establish (14):

[sup 2100 017110 = Shduto

J=i

N

'3
> |A,-ff(x>|] d(x)

=

Jl{xajl(fs x):]}

N

J I gllscI{x, j2(f, x) = j}

p
> |A,~rf(x>|] du(x)

=i

< | I{x, ja(f, 0) = jH2PPA) du(x)

< C'QP)Pulx, ja(f, x) = j}.

5. Comparison among various adaptive procedures

We now compare the methods investigated above. Let us restrict ourselves to the case where
the E; are the projection kernels onto the spaces V; of a multiresolution analysis generated
by a pair of mother and father wavelets ¢ and ¥ having the properties mentioned above. To
simplify, let us also take the most common stopping sequence J, corresponding to the case
B = 2. From Propositions 3, 5, 6 and 7, we know that the maxisets MS(f,,, p, a)T) as-
sociated with the rate 1“7 of f* (f7, f#) contains the set Baj2, p.oo(M) NW(FE)( p, g)(M),
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Beja, poc M) NW(E Y p, @)(M), (Bajz,poc(M) NW(F ) p, g)(M)), where g = p(1 — a)
and, if we omit the constants,

FE( ), x) = sup 2/ |E; f(x) — [(x)]

=i

FIC)Gax) =272 My(A; f)()

i=i
FECNG 0 =273 A f ().
i

It is thus natural to ask how far is the inclusion from equality, and whether the above-
mentioned spaces can be compared.

By virtue of Theorem 7 in Cohen et al. (1999) (see also the example in Section 2.2), we
have equality between the spaces B3 .o N W*(p, q) and the maxiset associated with the
thresholding procedure MS( f ,Tl , D, @), in the sense described in (1).

Recalling that

F2( )y x) = 2772|A, £ ()],

we already have that W*( p, q) = W(F?)(p, q).
A consequence of Theorem 1 in Section 6 is that

W(EF M (p, @) = WE?)(p, 9) = W (p, 9).

If we introduce the auxiliary function
F( )Gy ) = 27718, £ (),
and refer to Theorem 1 for the definition of T, we observe that
FX (NG 0 < 2 Ejf = 1+ |Eif = f1}
< FY( ) %)
FE Oy %) < TF)C)Us %)
We deduce, using the first inequality, that
W(F")(p, ) € W(E)(p. ),

and, from the second one, that

W(F)(p, §) € WT(FH)(p, 9)-

Now, using Theorems 1 and 3,
W(F")(p, ) = W(T(FY)(p, 9),

W(F?)(p, ) = W(F?)(p, 9).
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Hence,

W(F(p, ) = WEF)(p. 9) = WEF ) p, 9) = W¥(p. 9).

Now, writing
FY ) %) = 2772 MAA X)),
we have, from Theorem 2 below,
W(FH(p, ) = W(E)(p. ),
and from Theorem 1,
W(FH(p, g) = WT(FH)(p, 9) = WEF ") p, 9),

Hence,

W(F(p, @) = WE ) p. ) = WEF ") p, 9 = W¥(p. @)

As a consequence of the foregoing remarks, we can easily state that as far as maxisets
are concerned, f ﬁ and f nH are at least good as f ,{ . Whether they are strictly better is an
open question, as is the relationship between them.

6. Comparison of weak Besov bodies associated with different
functionals

6.1. Weak Besov bodies associated with max or sum functionals

Let y be a measure space with a o-finite measure u. Let 0 < p < oo, and let us define on
N X X the measure v, = (Zj6N2j< P/z)éj) ® u. Let G(J, x) be a measurable function defined
on N X X. Define

G*(Jj, x) = sup |G(j", »)],
J=j
T(G)(Jj, x) =277 Y "2 |G, 0.
J=J
Theorem 1. Let 0 < g < p. Then
W(F)(p, 9) = WF*)(p, ) = WT(F))(p. ).

Because of the definition of W(F)(p, q) (see (17)), this theorem is a consequence of the
following lemma:

Lemma 6. Ffor 0 < g < p <o
G € Lyn(vy) & G" € Lyos(v)) & T(G) € Lyoo(v)).
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Proof. Since |G| < G* < T(G), we only have to prove that
G € Ly(vy) = T(G) € Lyoo(vy).

We begin by proving that, for all 0 < g < p, there exists some C, < oo, such that for all G,

17O, < Coll G4

L[](Vp)'
We observe that

||G||L(v,,) = ZZJP/ZHG(L ')||L(,,),

=0

I7(G)II

J(p—q)/2
Loy — Z 2

120

22’/2|G(J

Ly(p)

Hence, for ¢ < 1,

”T(G)”féq(vp) < sz(p*q)/Z sz’q/ZHGU’, ’)”2(/1)

=0 J=i

— 2214/2”6*(] )||Lq(ﬂ)22j(p 9/2

j'=0

— Y 2r Gy, g
j’=0

= CHGH%,,(VP)'
For ¢ > 1, we observe that

||G||(£q(up) < o0& ij/quG(j’ .)”Lq(/l) =¢ € ly(N).
Hence

q
1T, <Y 2P0 ( > VPR, -)||Lq(,l>>

=0 =i

q
= Z 2J(p=9)/2 ( Z 2j’(1/2p/2q)€j,>

J20 =
Z(Zz (J'=)(p/2q— 1/2)6 ) .
Jj=0

As a=p/2qg—1/2>0,
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Zz*(j’—j)(ﬁ/2q71/2)€j, = (€. x b.)j,

=
where, b; = 1;<927%. Now, using
lle. 5 b.llg < [[b-Ili[le-[lg,
we have

1T,y < cllell7, = €l FIIE (34)

¢Vp) dVp)®

All we now need to prove is that (34) can be extended to the associated weak spaces. This is
a consequence of the following interpolation theorem, whose proof is given for the sake of
completeness. O

Proposition 8. Lef (Y, v) be a measure space, let 0 < p; < q < p,, and let T be a mapping
from L, + L, to the space of measurable functions satisfying |T(f1+ f2)| <
T+ |T(f2)| a.e. We suppose that for all i € {1, 2} there exists a constant depending
only on T and p;, denoted by ||T||,, such that 0 < ||T||,, < oo and, for all f € L, (v),

ITCON L, =< ITH 1

Pi(v) P ”

Then

ITCON L, ey =< CCo1 P2 @ Ty (T DI 2, )

Proof. Let f€Lyo(Y,v),0<p <g<py,0<A<oo. We have the following
inequalities:

v
j 1P dv < [ (f] AR dv = j paxP (| f] > x)dx
Y Y 0

+ 10,0\ 2
< pzxml(* de =L 1], AP
0 x p2—9q ’

A 00
Jylfl"‘ ljfj>dv = Oplxp“IV(Ifl > A)dx + L pixP (| f| > x)dx

f q 00 f ‘ q
< (M) s [ (Wl ) =9y g
y) X qg— D

For a fixed 0 <4 < oo, let us decompose f € L, as follows:
=+ flig=a = fi + 12

Using the previous inequalities, we have
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q
q— D1

| i <A ypyg, 2,
Y

j falPdv = P2 | p1e ame,
Y P —q e
So

T P T P2
WITCH) > 20 = W7D = 2+ T = 7y = (T ) 7 (1T )

T ] P T P2
< ()" (170e2) "

- q D1 p )12 ||f Lq_OC 1
< I+ Py ) ()

2
q— D1 DP2—9q

6.2. Weak Besov bodies associated with maximal functions

Let X be either of the spaces R? or [0, 1]¢ and u the Lebesgue measure. Let 0 < » < oo. For
all measurable functions on X, we recall that M ,.(g)(x) = sup{p.cacx)(|BI™" [5 gV,
where B denotes a ball of X. For F(j, x) = F;(x) a non-negative functional defined on
N X X, let us extend the definition:

Mr(F)(]’ )C) = MF(F])(X)
Theorem 2. For 0 < r < g < p, W(F)(p, q) = WM (F))(p, q).

As above, this is a consequence of the following lemma:

Lemma 7. Let F(j, x) be a measurable function defined on N X X. Then, in the previous
notation, for all 0 < r <g,

F e Lyo(vy) & M(F) € Lyoo(vp).

Proof. We begin with the classical result (see Stein 1993, Theorem 1, p. 13), that for any
measurable function g on &, |g(x)| < M,(g)(x) a.e. and, for all ¢ > 1, there exists some Cy,
depending only on X, such that

1/q 1/q
(J Ml(g)qdﬂ> < Cq(J Iglqdu> -
X X

One can obviously deduce, as M,(g) = (M(|g|")"/", that for all 0 < r < ¢ < oo,
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1/q 1r 1/q 1r 1/q
(aern) "< o) i pra)

with an obvious extension for ¢ = cc.
Now let 0 <r <g<oo. As M.(F)(j, x) = |F(J, s)| v, a.e., we need only prove the
lemma in one direction: ||M.(F)||, < C||Fl;, s, But

4.00(Vp)
IMAENG, Ly = D2 PPAMAFDN < CULS2PPNF = CUTIFIG -
jeN JeN
The lemma follows using Proposition 8. U

6.3. Weak bodies associated with wavelet coefficients
Let X again be either of the spaces R? or [0, 1] and u the Lebesgue measure. Let
0 < p < o0, and let us define on N X X the measure v, = (3 ;.52 ?/?0,) ® u. Suppose we

have a compactly supported wavelet basis 1, ;. We associate the corresponding Haar wavelet
1j.k(x) = 2721}917(2/x — k). For f € L,(X), write the wavelet decomposition as

f= Zzﬂ-j,kwj,k-
J
We define

STl = A @),
k

> A iu®) = M),
k
Let us associate the two following functionals:
Fr(j, %) = 2720, )@

Fr(jo x) = A ().

Then we have the following theorem:
Theorem 3. For all 0 < r <pg,
W(F)(p, 9) = WE)(p, 9).
This is the consequence of Theorem 2 and the following lemma:

Lemma 8. /n the previous notation, for all x,
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A/ = CHl [l NV M (A))(x) ace.,
A = ([l N VDM (A )() ace.

Recall that
k k+N k k+1
supp(y.x) = T 5 supp().x) = 5 |

Proof. A finite-dimensional argument leads straightforwardly, for all 0 < r < oo, to the
existence of C,, C, such that

- 1/r
C, J oap(u—10)| du < J ap(u — 1)|du
[0,N] Z [0,N] ;
- 1/r
< C, oap(u— 1) du
[0,N] Z
Moreover, for all k, j € Z,
» 1/r
C, 2jJ ay ;;(u) du = ZJJ ay -,l(u) du
[k/27,(k+N)/27] Z ’ [k/2)(k+N)/27] Z ’
, 1/r
< Zaﬂ/}j,;(u) du

C! 2/'J
[k/27(k+N)/27]

I
We first prove, for all x, that
A )] < Chllplloo N7 M (A )(0):
Let x € [k/2/, (k +1)/2/]. Then

= 2P 34l =271 JAﬂ/Jj,k < 2"||1//||ooj > A

/

|K;(X)| = ‘Z/lj,l)(j,l(x)
1

[k/2/(k+N)/2/]

But, using the preceding remarks, this can be bounded by

27
c;llwlloch/’<—

A
N J[k/zf,<k+N>/2f] 2 it

- 1/r
du) < G|y lloa NV M (A))().
!

Next, we prove that, for all x,

A @)] =< ([l NY DM (A (@)
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Let x € [k/2/, (k+ 1)/2/] as before. Then

k k
A@I =] Y @] <22l > Al
K=k—N+1 K'=k—N+1
- i 1/r
<22l N+ > Al
K=k—N+1
But we observe that
_ , 1/r f 1/r
_ 2J .
M, (A))(x) = _J A',IX',I du _ N’l/’Zf/z |’1 ,’k,|r
’ N Jik=n+1y/27,0641) /271 zz: e k’:;\/-«-l ’
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