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On positive spectral density functions
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A necessary and sufficient condition is given for a weakly stationary random field (indexed by the
integer lattice of an arbitrary finite dimension) to have a spectral density which is bounded between
two positive constants. As a corollary, a necessary and sufficient condition is derived for a positive
continuous spectral density. The conditions involve ‘linear’ dependence coefficients.
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Introduction

In the estimation of the spectral density (if it exists) of a stationary random field, an
important role is played by basic properties of the spectral density itself, such as continuity,
differentiability and positivity; see, for example, Rosenblatt (1985), Zhurbenko (1986),
Ivanov and Leonenko (1989) and Miller (1995). In these and other references, such basic
properties of spectral density are connected with certain dependence coefficients, and in
particular with certain ‘linear’ dependence coefficients. The purpose of this paper is to re-
examine the question of the existence of a positive continuous spectral density in light of
certain ‘linear’ dependence coefficients.

For the sake of simplicity, the discussion here will be restricted to the case of centred
(mean zero) random variables. The definitions and results can trivially be transcribed to
random variables with non-zero mean. All random variables are defined on a given
probability space (€2, F, P). In Definitions 1.1, 1.2 and 1.3, d is an arbitrary fixed positive
integer.

Definition 1.1. A random field X = (X, k € Z9) is said to be ‘centred, complex and weakly
stationary’ (CCWS) if the following conditions hold: (i) For each k € Z¢, Xy is a complex-
valued random variable such that E|X;|> < oo and EXy = 0. (ii) There exists a function
y . 79 — C such that for any elements j, k € 79, EX; Xy = y(j — k).

Here Z is the complex conjugate of a complex number z. Of course y(0) = E|X,|> and
y(—u) = y(u) for all u € 7.

Definition 1.2. Let T denote the unit circle in the complex plane. Let ur denote (one-
dimensional) normalized Lebesgue measure on T (i.e. normalized so that ur(T) = 1). Let

U =ur X ... X ur denote the d-dimensional product measure on T¢. A Borel non-
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negative integrable function f on T9 is said to be a ‘spectral density’ for a given CCWS
random field X = (X;, k € Z%) if

vkezd, EXTo= | eMpodudon (L1)

teTd
where, for a given t:=(t,...,t;)) € T A=A(t) =, ..., q) is the element of
(—m, w]? such that ¢, = exp(id,) for all u € {1, ..., d}. In (1.1) the notation k - 1 denotes

the dot product.

Since an integrable function on 77 is uniquely determined (modulo null sets) by its
Fourier coefficients, the spectral density (if it exists) is unique (modulo null sets).

The notation for the ‘linear dependence coefficients’ in (1.3)—(1.11) below may seem
somewhat arbitrary. It is chosen to coincide with, or at least avoid conflicting with, the
notation in certain other papers that will be cited below.

Suppose X := (X;, k € Z9) is a CCWS random field.

Definition 1.3. For any two non-empty finite disjoint subsets Q, S C Z¢, define the non-
negative number

|EVW |

S) = _—
(@, S) = s

(1.2)

where the supremum is taken over all pairs of (complex-valued) random variables V and W
of the form

VZZaka and W:Zaka,
keQ keS

where the ay, k € QU S, are complex numbers. In (1.2) and in the equations below, 0/0 is

interpreted as 0.
keQ keS

For each positive integer n, define

q(n) = q(X, n) := sup ) (1.3)
DXl || 2 Xk
k€0 H I kes )
r(n) = r(X, n) :==supR(Q, S). (1.4)
Here the supremum is taken over all pairs of non-empty finite sets Q and S C 7% with the
property that there exists u € {1, ..., d} such that
Oc{k:=(ky,...,kg)eZ%: k, <0}

(1.5)
Scik:=(ky,...,kq)€Z%: k,=n}.

(Because of weak stationarity, the numbers q(n) and r(n) in (1.3) and (1.4) will not change if
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in (1.5) the inequalities k, < 0 and k, = n are replaced by k, < j and k, = j+ n, where j
is an arbitrary integer.)
For each positive integer n, define

{(50) (57)

={(X, n) := s 1.6
En) = 6K, m) = sup - (16)
, , keQ keS
q'(n) = q'(X, n) := sup , (1.7)
DXl 1D X
keo 5|l kes 5
r'(n) = r'(X, n) := sup R(Q, S). (1.8)
Here each supremum is taken over all pairs of non-empty finite sets Q and S C Z9 with the
property that there exist u € {1, ..., d} and non-empty disjoint sets A, B C Z, with
. S = .
dist(A4, B) : aerE,IbIéB la — b| = n, (1.9)
such that

Qc{k:=(ky,...,kg)eZ¢: k,c A}

(1.10)
Sci{k:=(ki,...,kq)€eZ%: k, <€ B}.

(1t is understood that the sets A and B can be ‘interlaced’, with each set containing elements
that are ‘between’ elements of the other set.)
For each positive integer n, define

¥ (n) = r*(X, n) = supR(Q, S), (1.11)

where the supremum is taken over all pairs of non-empty finite sets Q and S C 79 such that

dist(Q, §) := min ||g —s|| = n. (1.12)
qeQ,seS
Here, for k:=(ki, ..., kq) € Z¢ one defines ||k||:= (ki + ...+ k%', the Euclidean

norm.

Remark 1.4. Obviously r*(n) in (1.11) is non-increasing as n increases; and the same
comment applies to each of the other dependence coefficients here. Also, for each n = 1, one
has that 7(n) < 7'(n) < r*(n), that §(n) < ¢q'(n) < '(n), and that §(n) < r(n). If g'(n) — 0
as n — oo, then {(n) — 0 as n — oo, by Bradley (2001, Remark 1.6). If >~ (r(2") < oo,
then r'(n) — 0 as n — oo, by a result communicated to me by Utev in 1993 (see Bradley
and Utev 1994, Theorem 3). If d = 1, then (trivially) #'(n) = #*(n) for each n = 1.
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Theorem 1.5. Suppose d is a positive integer, and X := (X;, k € Z7%) is a CCWS random
field. Then X has a continuous spectral density function on T? if and only if

(X, n)—0 asn— oco. (1.13)

This is background information from Bradley (2001, Theorem 1.4). Ibragimov (1962,
Lemma 2; 1970, Lemma 5.1) had proved that if a CCWS random sequence (d = 1) satisfies
> or(2") < oo, then it has a continuous spectral density. See also Ibragimov and Rozanov
(1978, p. 182, Lemma 17). In papers such as Bradley (1992), Bradley and Utev (1994) and
Miller (1997), that result and its proof were adapted to CCWS random fields under various
linear dependence conditions (> 7r(2") < oo, r*(n) — 0, #'(n) — 0). (Miller (1997) dealt
with the index set R? instead of Z?) Theorem 1.5 and its proof, in Bradley (2001),
involved an adaptation of Ibragimov’s argument and an idea of Peligrad (1997).

The continuous spectral density function in Theorem 1.5 (if (1.13) holds) may have
zeros. In this paper, we shall re-examine the question of when that continuous spectral
density will be (strictly) positive. This question will be addressed via Theorems 1.6 and 1.7
below, the main results of this paper.

In a related vein, Helson and Sarason (1967, Theorem 5) (see also Sarason (1972, p. 62,
the Theorem)) characterized the spectral densities of CCWS random sequences (d = 1)
satisfying 7(n) — 0. Those spectral densities do not need to be either continuous or
positive. Ibragimov (1965, p. 104, Corollary 1) had earlier shown, among other properties,
that those spectral densities cannot have ‘jump discontinuities’. Ibragimov and Rozanov
(1978, pp. 179-180, Example 1) discussed specific classes of examples of stationary
Gaussian sequences satisfying r(n) — 0, such that the spectral density could (in a critical
way) have a zero or be unbounded.

Theorem 1.6. Suppose d is a positive integer, and X = (X;, k € Z) is a non-degenerate
CCWS random field. Then the following three conditions are equivalent:

(A) X has a (not necessarily continuous) spectral density f on T? such that f is
bounded between two positive constants.

(B) r*(X, 1)< 1.

(C) One has that

X, 1)<1, and (1.14)
dn =1 such that r'(X, n) < 1. (1.15)

Theorem 1.6 is largely based on ideas that were developed in earlier papers by various
researchers (especially the papers cited after Theorems 1.5 and 1.7). Theorem 1.6 will be
proved in Section 2.

Helson and Szegd (1960) (see also Helson and Sarason 1967, Theorem 6) characterized
the spectral densities of CCWS random sequences satisfying 7(1) <1 (as in (1.14)). From
that characterization, one sees that when r(1) < 1, the spectral density can have zeros and/
or be unbounded.
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Theorem 1.7. Suppose d is a positive integer, and X := (X, k € Z9) is a non-degenerate
CCWS random field. Then the following four conditions are equivalent:

(@) X has a positive continuous spectral density function on T?.
(b) (X, 1)< 1, and r*(X, n) — 0 as n — oo.

(o) X, 1)<, and r'(X, n) — 0 as n — oo.

(d) Expressions (1.13), (1.14) and (1.15) hold.

The equivalence of (a), (b), and (c) is already known. Condition (d) is new here.
Kolmogorov and Rozanov (1960) showed that for a CCWS random sequence (d = 1),
condition (a) in Theorem 1.7 implies r(n) — 0. Adapting their argument, Rosenblatt (1972;
1985, pp. 73—74, Theorem 7 and Lemma 2) showed that for a stationary Gaussian random
field (indexed by Z?), condition (a) in Theorem 1.7 implies 7*(n) — 0 as n — oo. Building
on that work, Bradley (1992, Theorem 2) showed that for CCWS random fields (indexed by
7%, conditions (a) and (b) in Theorem 1.7 are equivalent, and then Bradley and Utev
(1994, Theorem 2) showed that (a) and (c) are equivalent. Of course (b) = (c) = (d) by
Remark 1.4. Also, (d) = (a) by Theorems 1.5 and 1.6 and the uniqueness (modulo null
sets) of a spectral density function. Hence, once Theorem 1.6 is proved (in Section 2), the
proof of Theorem 1.7 will be complete.

Remark 1.8. In Theorem 1.7, condition (d) appears to be in some sense as ‘weak’ a condition
(equivalent to (a)) as one can formulate simply in terms of the dependence coefficients in
Definition 1.3. In Section 3, this will be illustrated with three examples.

From the arguments in Section 2 and in Bradley (2001), one can discern other conditions
(equivalent to (a)) that are ‘weaker’ than (but more complicated than) condition (d). One
such condition is discussed in Remark 3.5 in Section 3.

Remark 1.9. The definitions, theorems and proofs here carry over from CCWS random fields
to arrays (hy, k € Z9) of elements of a complex (or real) Hilbert space such that (/;, hy)
(the inner product) depends only on j — k. Alternatively, such ‘Hilbert space’ versions of
Theorems 1.5, 1.6 and 1.7 can be derived from Theorems 1.5, 1.6 and 1.7 themselves via a
Hilbert-space isometry. Such techniques are well known from works such as Ibragimov and
Rozanov (1978).

2. Proof of Theorem 1.6

The argument will primarily be adapted, with one major change and some minor ones, from
the proof in Bradley and Utev (1994, Section 2) that (c) = (a) in Theorem 1.7. The argument
will involve a series of lemmas. The first six will involve random sequences (i.e. dimension
d=1).

For a given CCWS random sequence X := (X, k € Z), the partial sums will be denoted
(for n=1) by
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Sy =X + ...+ X @.1)

Lemma 2.1. Suppose X := (Xy, k € Z) is a CCWS random sequence such that EX Xy — 0
as k—oo. Then either E|S,? =00 as n—oo, or sup,=ElS,]><oo If
sup,1>1E|S,l|2 < 00, then there exists a CCWS random sequence Y := (Yy, k € Z), with
EY; Yy — 0 as k — oo, such that for all k € Z, X; = Y — Yy_ almost surely.

This theorem is due to Leonov. Its proof can be found in Ibragimov and Linnik (1971,
p- 323, Theorem 18.2.2). The formulation and proof there involve real-valued random
variables, but they extend quite trivially to complex-valued random variables, as in Lemma
2.1. (The property EY;Yy — 0 follows from the assumption EX; Xy — 0, the definition of
Y, and the observation in Ibragimov and Linnik (1971, p. 324, lines 4 and 5).)

Lemma 2.2. Suppose X := (Xy, k € Z) is a CCWS random sequence such that r(X, n) <1
for some n=1. Then EX; Xy — 0 as k — oo.

This is well known. It has a fairly elementary proof based on the weak compactness of
the unit ball in a (complex) Hilbert space. However, it is also an immediate corollary of
Helson and Sarason (1967, Theorem 6), which asserts that the condition »(X, n) <1 is
equivalent to the existence of a spectral density with certain properties. By (1.1) and the
Riemann—Lebesgue lemma, it follows that EX; Xy — 0.

Lemma 2.3. Suppose X := (Xi, k € 7) is a non-degenerate CCWS random sequence such
that ¥(X, 1) < 1. Then E|S,|*> — oo as n — oc.

This has long been part of the folklore. However, it seems hard to find a reference for it.
Here is a review of its (well-known) proof.

Proof. By Lemmas 2.1 and 2.2, either E|S,|> — oo as n — oo, or sup,=; E|S,|> < occ.
Suppose sup,=; E|S,|> < co. We shall obtain a contradiction.
By Lemmas 2.1 and 2.2, there exists a CCWS random sequence Y := (Y, k € Z) with

EY.Yy — 0 as k — oo, such that for all k€ Z, Xy = Y, — Y4, as.
For each n =1,

Yo—n 'Y Yi=n"Y (Yo-Y)=-n"> (Xi+...+ Xp). (2.2)
k=1 k=1 k=1

Since EY;Yy—0 as k—o0o, one has by a simple calculation that E|"h +
..+ Y, > = o(n?) as n — oo. Hence by (2.2),

—n_IZ()ﬁ + .+ X)) — Yoin £° as n — oo. (2.3)
=1

By a similar argument (using Yy — Yy = X441 + ... + Xp for &k < —1), one has that
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—1
'Y (Xper .+ X))o Yoin L2 as n— oo (2.4)
k=—n

Now E|Yp|? > 0. (Otherwise, since X; = ¥; — Y;_; a.s., one would have X; =0 as.,
contradicting the hypothesis of Lemma 2.3.) Hence by (2.3), (2.4), and a simple argument,
#(X, 1) = 1. But that contradicts the hypothesis of Lemma 2.3. Hence E|S,|*> — oo as
n — oo after all. O

Lemma 2.4. Suppose 0 < R < 1, and A is a positive constant. Then there exists a positive
integer M = M(R, A) such that if X := (X, k € Z) is a CCWS random sequence such that
H(X, 1) < R, then there exists n € {1,2, ..., M} such that E|S,|* = 4 -E|X,[*.

Under the extra restriction 7#(X, n) — 0 (and with the integer M involving that ‘mixing
rate’), versions of Lemma 2.4 were proved for real-valued random variables by Bradley
(1988, Lemma 2.2) and for complex-valued random variables by Bradley and Utev (1994,
Lemma 2.2). The proof of Lemma 2.4 here will have to be quite different from the
arguments in those references, because of the absence of the extra restriction (X, n) — 0.

Proof. Suppose there does not exist a positive integer M such that the second paragraph of
Lemma 2.4 holds. We shall obtain a contradiction.

For each positive integer L, let X := (X\”), k € Z) be a CCWS random sequence such
that

XY, 1)<R, and (2.5)
Vne{l,2,....,L}, EX\" 4+ . +xPP2<a.ExPP (2.6)

By (2.6), E|X{"2 = 0 cannot hold. For each L = 1, we normalize the CCWS sequence X©)
so that

ElX{PPP=1. 2.7

Denote N := {1, 2, 3, ...}. Define the infinite sets Qp, O1, s, O3, ... C N recursively,
as follows. First, let Qp:=N. Now suppose k is a positive integer and the sets Q,
O, ..., O are already defined, each being an infinite subset of N. By (2.7), the
sequence of complex numbers EX (,{L)X (()L), L € Qy_1, is bounded within the closed unit disc,
and therefore has a convergent subsequence. Let J; be an infinite subset of Q;_; such that
EX (kI‘)X E)L) converges as L — oo, L € Q. That completes the recursive definition of the sets
Oy, 01, 05, - ...

Note that ND Oy D 0, D 05 D.... Let Ly, Ly, L3, ... be a strictly increasing sequence
of positive integers such that for each k£ = 1, Ly € O, (Cantor diagonalization). Define the
set A:={Ly, Ly, L3, ...}. Now for each k =1, one has that {Lj, Liy1, Lis2, ...} C Ok
(since L; € Q; C Oy for j = k), and hence

= lim Ex®Pxb 2.8
cpi= lim EX"X (2.8)
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exists in C. Of course by (2.7), weak stationarity, and trivial arithmetic, the c; in (2.8) exists
for £k <0 as well, with ¢ =1 and ¢, =c¢_j for k < —1.

Refer to Doob (1953, p. 473, Theorem 3.1). In_the terminology of that theorem, for each
L =1, the sequence of complex numbers (EX (kL)X E)L), k € 7) is positive definite. Hence by
(2.8) and a simple calculation, the sequence of complex numbers (cy, k € Z) is positive
definite. Hence by Doob (1953, p. 473, Theorem 3.1) itself, there exists a CCWS random
sequence Y := (Y;, k € Z) such that EY;Yy =c; for all k€ Z. By (2.8) (and weak
stationarity), for any (not necessarily disjoint) finite sets Q, S C Z and any choice of
complex numbers a;, k € O, and by, k € S, one has that

E (Z a; Yj> (Z b_kYk> = lim E <Z a,X“)) (Z b_kX(kL)> : 2.9)
jeo kes —ooleh \ 55 kes
in particular,

= 1lim E
L—oo,LeEA

2
E ZakYk

k€0

ZakX(L)

k€0

(2.10)

and an analogous equation holds for >, ¢ b Y.

Let us use the notation Corr(V, W) := EVW)/(|V]|2||W]2) for complex, square-
integrable, mean-zero random variables ¥ and W. (Interpret 0/0 :=0.) For any pair of
finite sets QC {...,—2,—1,0} and SCN, and any choice of complex numbers
ay, k€ Q, and by, k € S, such that E|ZkeQ arYi> >0 and E|> ies byYi|> >0, one has
that

Corr (Z ax®, 3 ka(kL)>

k€0 kes

Corr (Z arYy, Z bm) ‘ - Légr’r;@

keQ kesS

by (2.9), (2.10) and (2.5). Hence

Y, )< R<I. (2.11)
Also, for any positive integer n,
ElY, +...4+ V,)* = , lim EXP +. ..+ xP2 <y (2.12)
—o00,LEA

by (2.6), (2.7) and (2.10).

Since E|Yy|> =co =1 (see (2.7) and (2.8)), the CCWS sequence Y is non-degenerate.
However, (2.11) and (2.12) together now contradict Lemma 2.3. Hence, after all, there must
exist a positive integer M such that the conclusion of Lemma 2.4 holds. This completes the
proof of Lemma 2.4. O]

Lemma 2.5. Suppose 0 < R < 1, and B is a positive constant. Then there exists a positive
integer N = N(R, B) such that if X := (X, k € Z) is a CCWS random sequence such that
r(X, 1) < R, then, for all n = N,

E|S,|> = B-E|X,|. (2.13)
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It was actually a version of this statement, but with the extra restriction (X, n) — 0 (and
with N involving that ‘mixing rate’), that was proved in the two references cited after
Lemma 2.4. Technically, Lemma 2.5 can be omitted from the chain of arguments in this
section, but it is a natural and elementary strengthening of Lemma 2.4.

Proof. Define the positive number

B
A::(lfR)'

Define the positive integer N := M(R, A), where M(R, A) is as in Lemma 2.4. Then N is a
function of just R and B.

Now suppose X := (Xi, k € Z) is a CCWS random sequence such that r(X, 1) < R.
Suppose n = N is an integer. To complete the proof of Lemma 2.5, it suffices to prove
(2.13) for this n.

From Lemma 2.4 and the above definition of N, there exists a (henceforth fixed) positive
integer m < N such that

(2.14)

E|S,[> = 4-E|X,*. (2.15)

Now m < N =< n. Also, A = B by (2.14). If n = m, then (2.13) holds by (2.15) and we are
done. Therefore, assume that n = m + 1.
Now

\ES,,,(S,, - Sm)| =rX,1)- ||SmH2||Sn - Sm||2

< R-YEIS,|* +E|S, — Sul’].
Hence by (2.15) and (2.14),
E|S,> = E[Su|> + E|S, — Sul* + 2Re ES,(S, — S»)
= (1 = R)- [E|Sul* +E|S, — Sul’]
=(1—-R)-4-E|X,
= B-E|Xo|%.
Thus (2.13) holds. Lemma 2.5 is proved. Ol

Lemma 2.6. Suppose 0 < R <1, and L is a positive integer. Then there exists a positive
constant C = C(R, L) such that if X := (X, k € Z) is a CCWS random sequence such that
r(X, 1) < R and q'(X, L) < R, then for every positive integer n,

E|S,]> = C-n-E|Xo]* (2.16)

Bradley and Utev (1994, Lemma 2.3) proved a version of this lemma, but with the
condition ¢'(X, L) < R replaced by r*(X, n) — 0 (and with the constant C involving that
‘mixing rate’). The proof here will be somewhat similar, but will involve an adaptation of
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an argument from Peligrad (1996) in order to accommodate the assumptions here. The use
of the dependence coefficient ¢’(X, n) in results on rates of growth of E|S,|> for random

sequences was suggested by Peligrad (1997).

Proof. Define the positive constant

41%(1 + R)?
— 2.1
1 —R? 2.17)
Let N = N(R, B) be as in Lemma 2.5. Define the positive constant C by
= ! (2.18)
(N 2L '
Then C depends only on R and L.
Now suppose X := (X, k € Z) is a CCWS random sequence such that
nX,1)<R and ¢q'(X,L)<R (2.19)

Suppose n is a positive integer. To complete the proof of Lemma 2.6, our task is to prove
(2.16).

The set {1,2,3,..., n(N +2L)} will be partitioned into 2n blocks of consecutive
integers, with no gaps between the blocks. In order, the blocks will be denoted I(1), J(1),
1(2), J?2), ..., 1(n), J(n). The cardinalities will be given by card I(u) = N + L and
card J(uy=L for u=1,..., n. For each u€ {1, ..., n}, define the (complex) random
variables

Vy:= Z Xy and W, .= Z X
kel(u) keJ(u)

Then

n

Sunsany = D _(Vu+ W), (2:20)

u=1
From (2.17), Lemma 2.5, and the above definition of N, one has that
41%(1 + R)?

E[Sy+.|* = B-E[Xo” = (1—R?

- E|Xo[*.

Hence by (weak) stationarity and Bradley (1992, Lemma 1),

i Vlt

u=1

2

E =[-¢'X, D]-[1+4¢'X, D] EV.
u=1

=1 - R(1+R) " n-E[Sy:.

_ 412n(1 4+ R)

2
T -E|Xo|%. (2.21)
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Also, by (weak) stationarity and Bradley (1992, Lemma 1),
0 2
> W
u=1

E <U+qX N+D]-[1-q¢X N+ D" Ew,
u=1

<(+R(1-R7" n-ES

_n(1+R
T (1-R

By (2.20), (2.21), (2.22) and a simple calculation,
>V
u=1

_ a2+ R)'
(1-R)/2

- L*E| X )% (2.22)

n

> W

u=1

[Sav+2nll, =

2 2

|1 Xoll, = 22| Xoll, (2.23)
Also, Syn+2r) = l],V:JFIZL(SU,, — Sw-1yx), and hence by (weak) stationarity, ||S,yi21)l2 <
(N +2L)||S,|]2. Hence by (2.23), ||S,|l2 = [#"/2/(N +2L)] - | Xo||». Hence (2.16) holds by
(2.18). Lemma 2.6 is proved. O

We now turn our attention to random fields. For any positive integer d, any CCWS
random field X := (X, k € Z9), and any positive integer n, define the sum

Sy =Su(X) =) Xy, (2.24)

k
where the sum 1is taken over all k:=(ky, ..., ky) € 7% such that, for all ue
{1, ...,d}, 1<k, <n. Itis the sum of n? random variables Xj. In the case d =1 it

coincides with (2.1).

Lemma 2.7. Suppose 0 < R <1, and L is a positive integer. Let the positive constant
C = C(R, L) be as in Lemma 2.6. If d is a positive integer and X := (X, k € Z9) is a
CCWS random field such that (X, 1) < R and q'(X, L) < R, then for every positive integer
n,

E[S.(X)]* = C? n? E|X. 0 (2.25)

,,,,,

Bradley and Utev (1994, Lemma 2.4) gave a version of this lemma, but with the
condition ¢'(X, L) < R replaced by r'(X, n) — 0 (and with the constant C involving that
‘mixing rate’). The proof here will be similar — a well-known type of induction argument
described (in a similar context) by Gaposhkin (1991) as ‘layering’.

Proof. The proof will be done by induction on d.
In the case d = 1, Lemma 2.7 is simply a restatement of Lemma 2.6.
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Now suppose that D = 2 and Lemma 2.7 holds for 1 < d < D — 1. Our task is to verify
Lemma 2.7 for d = D. Suppose X := (X;, k € ZP) is a CCWS random field such that
r(X, 1)< R and ¢'(X, L) < R. Suppose n is a positive integer. Our task is to prove (2.25)
with d = D.

For each j € Z, define the (complex) random variable Y; := ", X, where the sum is
taken over all k:= (ky, ..., ks) € ZP such that k; =j and k, € {l,..., n} for all
u€{2,...,D}. Then by a simple calculation, Y :=(Y;, j€ Z) is a CCWS random
sequence. Also, S,(Y) = S,(X). Also, r(Y, n) < r(X, n) and ¢'(Y, n) < q'(X, n) for all
n=1.

Also, the random field W := (X, k€ {0} XxZP~!) is CCWS and satisfies
(W, n) < r(X, n) and ¢'(W, n) < q'(X, n) for all n= 1.

Hence by Lemma 2.6 and our induction assumption,

,,,,,

Thus (2.25) holds with d = D. Lemma 2.7 is proved. UJ

Lemma 2.8. Suppose 0 < R < 1, and L is a positive integer. If d is a positive integer and
X := (X, k € 2% is a CCWS random field such that q'(X, L) < R, then for every positive
integer n,

E|S,(X))* < [L(+ R(1 — R ] n? - E|X 0. 0

This is formulated as a counterpart to Lemma 2.7 (though it does not require
r(X, 1) <1). It is a trivial consequence of Bradley (2001, Lemma 1.5).

We are now in a position to prove Theorem 1.6. The proof that (A) = (B) is a standard
argument (part of the folklore), given, for example, in Bradley (1992, p. 365, lines —15 to
—3). (That particular calculation only required the spectral density function f to be
bounded between two positive constants; it did not require f to be continuous.) Also,
(B) = (C) by Remark 1.4. To complete the proof of Theorem 1.6, all that remains is to
prove that (C) = (A).

Suppose condition (C) in Theorem 1.6 holds. For each ¢ € T¢, define the random field
X0 .= xV, kez? by x\:=e ¥ X, where 1€ (—m n]? is related to ¢ as in
Definition 1.2 and & - A denotes the dot product. For each # € T¢, by a simple argument, the

,,,,,,,,,,

For each n = 1, define the function f, : T¢ — [0, co) as follows:
Vie T4, fn(8) := n" B[S, (X )], (2.26)

Referring to (1.15), let L be a positive integer such that »'(X, L) < 1. Referring to
(1.14), define the number R € [0, 1) by R := max{r(X, 1), (X, L)}. Let C = C(R, L) be
the positive constant from Lemma 2.6. For each ¢ TY by a simple argument,
rXO, 1) =rX,1)<R and (X, L)=r'(X, L)< R. Hence by (2.26) and Lemma

.....

,,,,,
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=inf{f,():tc T n=1}>0. (2.27)
Also, by (2.26) and Lemma 2.8,
L(1 + R)]¢
1o = [ Ele

for each 7 € T¢ and each n = 1. Hence
=sup{fu(t): t€ T, n=1} <. (2.28)

Let H denote the real Hilbert space of (equivalence classes of) real Borel square-
integrable functions on T¢, with the usual inner product (g, & = ghdug and norm
lel,=1] & 211/2. Here and below the integrals are taken over te T 9, with respect to the
(probablhty) measure u%. By (2.27) and (2.28), sup,=i|| fn|| < 0o. Recall that the closed
unit ball of a Hilbert space is weakly compact (see, for example Halmos 1974, Problem
17). As a consequence, there exists an element f € H and an infinite set I" of positive
integers such that

lim (fo, by =(f, h)  VheEH. (2.29)
Refer to (2.27) and (2.28). To prove condition (A) (under our assumption of (C)) in Theorem
1.6, we shall show that

0, < f(£) < 0, for almost every ¢ € T, (2.30)

and
Vk e 74, EX; X, = Jei“ £ (). (2.31)

The type of argument used to prove (2.30) is well known. Suppose &€ > 0. Define the set
A:={teT?: f({)= 6, +¢}. Suppose u%(A4)>0. Let I, denote the indicator function
of 4 on T Then by (228), jf,, I4<0, u(4) for each n=1, and
[f1i=0+¢)- ,uT(A) but this contradicts (2.29). Hence uT(A)—O instead. Since
£ >0 was arbitrary, f(f) <6, for ae. t€ T¢ By a similar argument, f(f) =0, for a..
t € T9. Thus (2.30) holds.

Finally, by a well-known standard argument, for each k € Z¢,

lim Jei“ - fu(1) = EXi Xo. (2.32)

This argument can be found, for example, in Bradley (1992, p. 365, proof of (2.9)). Also, by
(2.29) (applied with h = cos(k-A) and & = sin(k - 1)),

lim Jei“ fu(t) = Jei“ - f(). (2.33)

n—oo,nEA

Now (2.31) holds by (2.32) and (2.33). This completes the proof that (C) = (A), and
Theorem 1.6 is proved.
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3. A further look at condition (d) in Theorem 1.7

In this section, some extra perspective on condition (d) in Theorem 1.7 will be provided with
Examples 3.1, 3.2 and 3.4, and Remark 3.5. Each of the three examples will be a stationary
real centred (i.e. mean-zero) Gaussian random sequence (the case d = 1).

Example 3.1. For a given ¢ € (0, 1), there exists a stationary real centred Gaussian random
sequence X := (X4, k € Z) with the following five properties: (i) r(X, 1) < r'(X, 1)
= r*(X, 1) < & (ii) (X, n) — 0 as n — oc; (iii) lim,_on 'ES? fails to exist; (iv) X has
a spectral density fy (defined on T) which is bounded between two positive constants, and
(v) the spectral density fy(e") has (in a critical way) a discontinuity at A = 0. Of course
(iii) = (v), by Ibragimov and Linnik (1971, Theorem 18.2.1, eq. (18.2.3)).

Such an example was given in Bradley (1999, Theorem 1). It was an embellished version
of an example — a CCWS (‘complex Gaussian’) random sequence with similar properties —
studied by Ibragimov (1970, p. 29) and Ibragimov and Rozanov (1978, p. 180, Example 2).
The sequence X described above satisfies (1.14) and (1.15), but by Theorem 1.5 it fails to
satisfy (1.13). Thus in condition (d) in Theorem 1.7, (1.13) cannot be omitted altogether, or
even replaced by r(X, n) — 0.

(A stationary Gaussian sequence very similar to X had been used earlier by Bryc and
Dembo (1995) to provide counterexamples in connection with large deviations.)

Example 3.2. Let W := (W, k € Z) be a sequence of independent, identically distributed
real normal random variables with mean 0 and variance % Define the stationary real centred
Gaussian sequence X := (Xy, k € Z) by Xy = Wy — Wi_1.

One has that EX% =1,EX Xy, = —%, and EX; Xy =0 for k= 2. This sequence X is
1-dependent, and therefore satisfies (1.15), with »'(X,2) = r*(X,2)=0. By a simple
calculation, the sequence X has spectral density fy on T given by fy(e¥)=1— cos4,
A € (—m, m]. This spectral density is continuous on 7, and hence (1.13) holds by Theorem
1.5. However, the spectral density fy(e*) has a zero at A = 0. Hence by Theorem 1.6 (and
the fact that (1.15) holds), inequality (1.14) fails to hold.

In fact, in condition (d) in Theorem 1.7, (1.14) cannot be replaced by the weaker
condition g(X, 1) < 1. To show this, suppose Q and S are non-empty finite sets such that
oc{...,-2,—-1,0} and ScC{l,2,3,...}, and one defines the random variables
U:=> reoXk and V= > kesXk. Letting j and £ denote the least and greatest elements
of S respectively, one has that V' = W, — W;_; + Y where Y is a linear combination (with
coefficients —1, 0 and/or 1) of the random variables Wy, j<k</{¢—1. (If j=/, then
Y =0.) Hence, EV?=EW]+EW;  =1. Similarly, EU>=1. Also, by a simple
argument, EUV = —EW% = —% if 0€6Q and 1€ S, and EUV =0 otherwise. Hence,
g(X, 1) S%. (In fact g(X, 1) :%; consider the case Q = {0} and S = {1}.) Since (1.13)
and (1.15) both hold (as was noted above), this shows that in condition (d) in Theorem 1.7,
(1.14) cannot be replaced by g(X, 1) < 1.



On positive spectral density functions 189

Lemma 3.3. (i) If g : [0, w] — R s a strictly increasing function, then fg g(x)- (cosx)dx < 0.
(i) If h: [0,2n] — R is a strictly concave function, then foh h(x) - (cosx)dx < 0. (i) If
1[0, ®] — R is strictly increasing and strictly concave, then for each n=1,2,3, ...,
Jo £(x) - (cos nx)dx < 0.

This is just some elementary information that will be needed in Example 3.4 below. A

function 4 : [0, 2] — R is ‘strictly concave’ if —# is convex on [0, 27] and 4 is not linear
on any interval C [0, 2m].
Proof. To see (i), note that f(f g(x) - (cosx)dx = On / 2[ g(x) — g(m — x)] - (cosx)dx, and
the latter integrand is negative on [0, m/2). To see (ii), note that
02:: h(x) - (cosx)dx = jon[h(x) + A2t — x)] - (cos x)dx, note that h(x) + h(2m — x) is strictly
increasing for x € [0, =], and then apply (i). To prove (iii), we shall just give the argument for
odd integers n = 3. The argument for even integers »n = 2 is similar. (For » = 1, (iii) holds
by (i).)

Suppose n = 3 is an odd integer, and the function f is as in (iii). Represent n = 2J + 1,
where J is a positive integer. Then

TT

J  2mj/n
f(x) - (cos mx)dx + > J F(x) - (cos nx)dt

2n(j~1)/n

Jnf (x) - (cos nx)dx = J

0 2 /n =

= rf (% + ﬂ) - cos (u + 2707 - (1/n)du

0 n
J  2n P

+ZJ0 f(%—k@) -cos(u+2n(j— 1)) (1/n)du
=1

<0,

with the inequality holding by (i) and (ii), since the functions u — f(u/n + ...) in the last
J + 1 integrands are strictly increasing and strictly concave. O

Example 3.4. Define the function g : T — [0, c0) as follows:

ity . J 1/10g(30/]4]), if 2 € (—=m, mt] — {0},
g(e”) = {o if 4= 0. G-

Then g is continuous on 7. Also, g is ‘symmetric’: g(e'?) = g(e*). Also, for
0 <<, (d/dA)g(e*) > 0 and (d?/dA%)g(e'*) < 0, by simple calculus. Hence the function
A +— g(e*) is strictly increasing and strictly concave on [0, t]. Applying Lemma 3.3(iii) and
using the symmetry of g, one has that

Vn=1,2,3,..., J (cos nl) - g(e)dA < 0. (3.2)

Let W :=(Wy, k € Z) be a stationary real centred Gaussian random sequence with
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spectral density function g. As a trivial variant of calculations in Bradley (1980, first
paragraph of p. 97), the function g has the form g = exp(u + 0), where u and v are real
continuous functions on 7, ||v]|s < /2, and D is the conjugate function of v. Hence, by
theorems of Helson, Sarason and Szegdé (see Helson and Szegdé 1960; or Helson and
Sarason 1967, Theorem 6; and also Sarason 1972, p. 62, the Theorem),

r(w,1)<1 and r(W,n)—0 as n — oo. (3.3)

Also, by (1.1) and (3.2) (and the symmetry of g), one has that
T
Vn=1, EW, Wy = (2n)4j (cos nl) - g(e®)dA < 0. (3.4)
—7T

Now for each n =1,
n—1

0<E(W + ...+ W) =nEW5+2Y (n— DEWW,,
k=1

and hence ZZZ;}(I — k/n)(—EW;W,) <EW}]. For each k=1, by (3.4), Iik<ny
(1 —k/n)(—EWWy) 1 (“EWW,) as n— oco. Hence, by monotone convergence,
23 ((“EW W) < EW%. (Actually, equality holds there by a further argument using the
fact that g(e"*) = 0 for A = 0; but that will not be needed here.) By (3.4), —EW, W, > 0, and
hence, by deleting that term, one obtains the strict inequality

2-) (—EWiW,) < EW;. (3.5)
k=2

Next, let X := (X, k € Z) be the random sequence defined by X := (—1)*W;. Then X
is a stationary real centred Gaussian sequence. By a trivial argument, r(X, n) = r(W, n) for
each n = 1. Hence by (3.3), the sequence X satisfies (1.14) (as well as (X, n) — 0). Also,
by a standard simple argument, the sequence X has spectral density function fy on 7 given
by fyx(e#) = g(e*™). Hence fy is continuous on 7, and hence (1.13) holds for the
sequence X by Theorem 1.5. However, the spectral density function fy(e*) has a zero at
A=m (see (3.1) again), and hence by Theorem 1.6 (and the fact that (1.14) holds),
inequality (1.15) does not hold.

To complete Example 3.4, we shall prove that

q'(X,n) —0 as n — oo. (3.6)

That will show that in condition (d) in Theorem 1.7, (1.15) cannot be replaced by the
condition that ¢'(X, n) <1 for some n = 1, or even by ¢'(X, n) — 0.
Referring to (3.4) and (3.5), define for each positive integer n the positive number

Cpi=— > EWW. (3.7)
k=n

By (3.9), EW% —2C, > 0. Also, C,, — 0 as n — oo. To prove (3.6), it suffices to prove that
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2¢C,

=1,  gX.om<—a
R Yo

(3.8)

Let n = 1 be arbitrary but fixed. Suppose O and S are (disjoint) finite subsets of Z such
that dist(Q, S) = n. To prove (3.8), it suffices to show the following three inequalities:

2
E <Z Xk> = (card Q) - [EW? —2C,]; (3.9)
keQ
2
E (Z Xk> = (card S) - [EW2 — 2C;]; and (3.10)
keS

< 2(card Q)'/*(card $)"/%C,,. (3.11)

(x0) (57)

Now EX] =EW?2 and EX,Xo = (—1)"EW,W, for all n=1. In particular, by (3.4),
EX Xy >0, EX, Xo=EW,W, for all n =1, and |[EX,Xo| = —EW,W, for all n= 1.
These observations and (3.4) and (3.7) will be used in the calculations below. One has that

E(ZXk>2 =Y EXi+>. > EXX

keQ ke Jj€Q keQ—{j}

= (card 0)-EXg + > > EXX
JE€Q keQ—{j-1,j.j+1}

= (card Q) EWG + ) > EW, W,
JeQ keQ—{j-1jj+1}

= (card Q)-EWG+2> Y EWW,
j€0 =2

= (card Q) - [EW} —2C,].

Thus (3.9) holds. By an analogous argument, (3.10) holds. To prove (3.11), we may assume
without loss of generality that card O < card S. (Otherwise, interchange Q and S.) Since
dist(Q, S) = n, one has by (3.4) that



192 R.C. Bradley

E(%XQ (; Xk> <> D IEXX =D ) (—EW; )

JjEO kes JjEOQ kesS

<> > (Ewwy=>)_ ZOO:(—ZEWz Wo)

JEQ keZ:\k—j|=n JjEQ l=n

= 2(card Q) - C,, < 2(card 0)'/?*(card 5)"/>C,.
Thus (3.11) holds. This completes the proof of (3.8), and of (3.6).

Remark 3.5. Suppose d is a positive integer, and X := (X}, k € Z¢) is a non-degenerate
CCWS random field. As in the last part of Section 2, for each # € T¢, define the (CCWS)
random field X := (X(kt), k € Z%) by X(kt) = e X}, where A € (—m, m] is related to ¢ as
in Definition 1.2 and % - A denotes the dot product. Theorem 1.7 still holds if in its condition
(d) inequality (1.15), borrowed from Theorem 1.6, is replaced by the following condition:

Vie 77, 3n = n(f) = 1 such that ¢'(X?, n) < 1. (3.12)

Obviously (1.15) implies (3.12). We only need to prove that if (1.13), (1.14) and (3.12) hold,
then condition (a) in Theorem 1.7 holds: X has a positive continuous spectral density on 7¢.
Here is a sketch of the argument.

Suppose (1.13), (1.14) and (3.12) hold. By (1.13) and Theorem 1.5, X has a continuous
spectral density f/ on T9. By a well-known application of Fejér’s theorem in dimension d,
for each ¢t € T¢,

f(H) = lim n “E|S,(X")?, (3.13)

in the terminology of (2.24). (In the proof of Theorem 1.5 that was given in Bradley (2001,
Section 2), equation (3.13) was used, after appropriate preliminary work, to define the
function f.) For a given tc T? observe that »(X), 1)= r(X, 1), define R = R(t)
= max{r(X?, 1), ¢'(XY, n(¢))} and define L = L(¢) := n(¢), where n(¢) is as in (3.12).
For a given ¢ € T9, by (1.14), (3.12) and Lemma 2.7, inf =, n “E|S,(X?)[> > 0, and hence
f(#) > 0 by (3.13). Thus the spectral density f is both continuous and positive.
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