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We establish that the model generated by the observation of the path of a one-dimensional null
recurrent diffusion, when the parameter is the compactly supported drift, is asymptotically equivalent
to a mixed Gaussian white noise experiment as the observation time 7 — oo. The approximation is
given in the sense of Le Cam’s deficiency A-distance over Sobolev balls of smoothness order 8 > %
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1. Introduction

1.1. Motivation

In this paper we study the asymptotic structure of a null recurrent Markov model. By
‘asymptotic structure’ we mean the approximation of a given family of measures by other
families which are better known or more tractable.

It is certainly the basic principle of Le Cam’s (1986) asymptotic decision theory to
approximate general statistical experiments by simpler ones. Although the term simple
experiment is not defined precisely, one should be able in a simple experiment to find
optimal estimators, or at least asymptotically optimal ones, in the minimax sense, say.
Mathematically, Le Cam’s A-distance provides us with a strong enough notion to achieve
such an aim. For a review of the concepts of Le Cam’s theory, see Nussbaum (1996), Le
Cam (1986), Strasser (1985) and Le Cam and Yang (2000).

Gaussian experiments are a primary type of such simple experiments. The known results
about asymptotic equivalence include the asymptotic equivalence of Gaussian regression and
Gaussian white noise (Brown and Low 1996), density estimation from independent and
identically distributed observations and Gaussian white noise (Nussbaum 1996; Klemela and
Nussbaum 1998), asymptotic equivalence for nonparametric generalized linear models
(Grama and Nussbaum 1998).

A broad guiding principle is that experiments that are parametrically locally asymp-
totically normal (see, for example, Ibragimov and Has’minskii 1981) can be approximated
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in the nonparametric case by Gaussian white noise models. The next logical step, intended
here, is to investigate a class of nonparametric experiments that can be approximated by
mixed white noise experiments. In the parametric case, these should correspond to locally
asymptotically mixed normal (LAMN) models (see, for example, Le Cam and Yang 2000).
Emerging results of this kind have been proposed in Delattre and Hoffmann (2001).

We consider in this paper the following pilot model: for 7 > 0, we observe (X;):c[o,1],
where

t
x:mﬁﬂxm+m, reR., (1)
0

with xp € R and (W,)cr. a standard Brownian motion. The unknown parameter f is a
bounded function with support in [—r, ] and belongs to a Besov ball == 3(r, 3, p) of
smoothness S and radius p. Asymptotics are taken as 7 — oo.

Under the compact support assumption on f, the process X is Markov, null recurrent in
the sense of Harris (see, for example, Revuz and Yor 1991) with invariant measure my(x)dx
given by

2
exp(—2 [*, f(»)dy) +exp(2 |7 f(»)dy)’

my(x) = @)

1.2. Basic facts in the parametric case

In order to better understand the statistical model to hand, let us first consider the simplest
parametric model, defined by f(x) = 0g(x), where g is a given known function. The log-
likelihood is then

T 92 T
o] svtax, - T | g
0 0
We further restrict the model to the ergodic case, i.e. when the integral
Jrexp(20 [§ g(y)dy)dx < +oo. If 6y denotes the true value of the parameter, the ergodic
theorem yields

T
lTJ ZA(X)dt — J gz(x)ugo(x)dx almost surely,

0
if the integral fgz(x),ugo (x)dx is finite, where ugq, is the probability measure proportional to
meg,g. This allows the local asymptotic normality property to be derived at any 6y > 0 with
the rate /7, thanks to classical limit theorem for continuous martingales (see Liptser and
Shiryaev 1977; or Kutoyants 1984).

Returning to our original problem, when g has compact support, we have
Jrexp(20 [§ g(y)dy)dx = oo and the previous results are no longer true. Instead, we have
the local asymptotic mixed normality property with the rate 7'/4. This can be easily seen
when 6 is close to 0. Indeed, if 6, = 0, then X = W and we have
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LTgZ(Xods - TJ; FO/TB,
where B! = T='/2Wr, is a Brownian motion,
— 1| SO/TNLBT ax
where L(B7)" denotes the local time of A7 at time u and level x,
V1| foms an

and hence

1 JT 2 ol 2 :
L[ @exods — 1py Jg () in law,
VT o 1

where [ is a standard Brownian motion. More generally, the Papanicolaou—Stroock—
Varadhan theorem (Revuz and Yor 1991, p. 482) yields

T T
(T—”“JO (W), T—1/2J0 g2<Ws)ds> - (B( [ o) sy ng(x)dew)é),

where (B, ) are two independent Brownian motions. As we see, the local asymptotic mixed
normality property holds at & = 0 with rate 7'/ and Fisher information |N(0, [ g2(x)dx)|.

1.3. Results

Our first result is the local asymptotic equivalence of the diffusion model (1) with parameter
space (7, f3, p) for sufficiently large § to the mixed Gaussian white noise experiment given
by the observation of the random measure Y Jfb,T(dx) on [—r, r], defined by

Y1 p(dx) = f0)dx + TN 2 (x) 72 B(d), 3)

where B(dx) is centred and Gaussian, with intensity dx, and independent of the random
variable A, equal to the absolute value of a standard Gaussian random variable in law. Here,
local equivalence means equivalence for f in a neighbourhood of f; in a proper topology,
shrinking to 0 as 7 — oo (Theorem 1).

This result is already ‘nonparametric’ in spirit since the rate of shrinking is slower than
the ‘parametric rate’ 7~'/4, but is unsatisfactory for general purposes, since the result only
holds for vanishing sets. It remains to piece together the parameter-local approximation by
means of a preliminary estimator of f; to globalize the local version given by (3).

The form of globalization we propose is essentially different from the ones that are
usually proposed in the literature (Brown and Low 1996; Nussbaum 1996; Grama and
Nussbaum 1998), due to the absence of a simple variance-stabilizing transform in the sense
of (6) — see Section 2.2. It can be described as follows. For 7 > 0, let uy > 0 be such that
ur — 0 and uyT'/* — oco. The diffusion model (1) with parameter f in the whole space =
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is then globally equivalent to the following experiment: we observe the random measures
Y'é and Z-; defined on [—r, 7] by

Y(dx) = f(0)dx + T7V4A Y250 1 7(0) 12 B(dw),

Z4(dx) = f(x)dx + ur B(dx),

) - -1
g r(x) = 2{exp <—2J z§(dy)> + exp <2J sz’(dy))} ,

A, B(dx) are defined as in (3), and B(dx) is a centred Gaussian measure with intensity dx,
independent of (A, B).

Thus, we see that we have a form close to the classical ‘signal plus noise’ model, with
noise intensity 7~'/4 with a random component in the variance. The variance process itself
depends on f through the function 7ir 7, which converges to my as T — oo, at a rate ur
strictly slower than 7-'/4,

where

1.4. Organization of the paper

In Section 2, we give a precise definition of the statistical model. We state the local
equivalence (Theorem 1) and its global analogue (Theorem 2). As in Nussbaum (1996) and
Grama and Nussbaum (1998), the key idea for the local equivalence is a coupling technique
for the likelihood processes of the two experiments: this is the scope of Section 3
(Proposition 1). We derive a first (weaker) version of Theorem 1, to be considered as an
intermediate step. We develop the globalization in Section 4, by means of preliminary
estimators based on Nadaraya—Watson techniques together with a key lemma (Lemma 1)
which extends a former result of Nussbaum (1996). Thorough proofs of Theorems 1 and 2
are given in Section 5; the proof of Proposition 1 is given in Section 6. Some of the technical
results that can be omitted in an initial reading are postponed until the Appendix.

2. Main results

Our approximation results will be stated in terms of deficiency between experiments (the A-
distance) — see Le Cam (1986) and Strasser (1985) for a definition; see also Nussbaum
(1996).

We will often define statistical experiments in term of observed random variables: if, on
some probability space (R, A, P?), S?, ceey EZ are random variables with values in some
measurable spaces

(A1, A1), ...y (A, Ap)

the experiment generated by the observation of (&7, ..., fg'(,’,) is
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(A X - X Ay Al @ - @ Ay, (T)geo),

where 1% is the law of (S(l), cee, EZ) under P?, and © will be a parameter space to be
specified.

2.1. Statistical model

The nonparametric class £ = 2(r, 3, p) is defined by

2 ={f:R — R|f bounded, || f]|g22 < p and supp( f) C [—r, r]},
where supp( f) denotes the support of f, and the constants , p > 0 and 3 € (0, 1) are given;
we denote by || f]|g22 the Besov norm

1/2

12
1z = ([ 1)+ ([ dhors | s m—reora)

which coincides with the classical Sobolev norm. Let Pf be the unique law of the solution of
(1) on the canonical space C(R;, R) endowed with the canonical filtration (]—'0),>0 We
consider the model given by the observation, until time 7, of the diffusion process X/-*
defined by (1). Formally, for xy € R, we study the family of experiments

Eo” = (C(R., R), FY, (PXU »fEY), T >0, 4)

where P{O,T denotes the restriction of P/ to the o-field F¥.

2.2. Local equivalence

The first approximation will be given when the invariant measure m; is close to some known
function uniformly on [—r, r]: let 7 > 0 be a family of real numbers, and for f, € Z define

x€[—r,r]

Zr(fo) = {f € Z| sup L(f(y) —fo(y))dy‘ = nr}-

Let us define precisely the accompanying family of experiments: let B(dx) be a centred
Gaussian random measure on [—r, r] with intensity dx, i.e. a centred Gaussian process
(B(@), ¢ € L*([—r, r], dx)) with covariance (¢, ¥)+— f[,,,,](p(x)l/)(x)dx, and let A be a
positive random variable whose law is the absolute value of an A/(0, 1) random variable,

independent of B(dx). For two bounded Borel functions, f :[—r, 7] =R and v:
[—r, r] = R, denote by Q(f, v) the law on the canonical space

(G, g) = (RLZ(FV’V]), B(R)Q@Lz([*r,r]))

of the process

Fedx + A0 B(d) <= J F@p@dx + A2 B ), ¢ € IA([—r, r])). )

[=rr]
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Then the statistical model associated with the observation of the random measure (3) is
o — (0.6 (o(s. 722 ) )

If E is an experiment with parameter space ® and ®' is a subset of ©, denote by Eg' the
experiment with parameter space ©®’ which is the restriction of E to ®'. The local
equivalence can then be stated as follows.

Theorem 1. If § > 1/2 and nr — 0 then for all xy € R the experiments E;"T’(Tfo) and WZT’T{‘}O)
are asymptotically equivalent. ‘

Remark 1. The restriction § > 1/2 is made for technical reasons. We do not know whether
the equivalence holds for lower orders of smoothness. However, the threshold 1/2 is optimal
for the asymptotic equivalence between white noise and nonparametric regression: this
follows from a simple extension of the classical result of Brown and Low (1996), as
mentioned to us by a referee; we therefore conjecture that our result is optimal.

Remark 2. Note also that the restriction f < 1 in the definition of X is not essential, since the
equivalence also holds for subsets of X, therefore for all Besov classes with smoothness order
greater than or equal to 1.

As a corollary, we obtain that any regular parametric submodel is locally asymptotically
mixed normal:
Corollary 1. Assume that > 1/2. If (fo)eer is a family of functions such that

o fo€X(r, B, p) forall 6 €R, .
o the map 0 — fy from R into L*(R, dx) is differentiable at 6 = 0, with derivative f,,

then the parametric models (P){Z rocr, T >0, have the local asymptotic mixed normality
property at @ =0 at the rate T U4 and with random Fisher information

I= ‘N (o, J fo(x)szo(x)dx)

in law.

Proof of Corollary 1. Since

sup sup
|0|<CT~1/4 x€[—r,r]

J (o) — fo(y))dy‘ 0,

0

by Theorem 1, the model (PQ,T)MSCT*I/“ is asymptotically equivalent to the observation of
(fo = fo)@)dx + T~ /42 m ,(x)~ ' B(dx)

with the same notation as in (3). The latter model is also asymptotically equivalent to

Y(dx) = 0fo(x)dx + T~ *A~"/2 B(dx)
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because [r(fo — fo — Hfo)z(x)mfo(x)dx — 0. Finally,

[fompYdy) _ o T4
Jfo(x)?m g, (x)dx vai
is a sufficient statistic, with & = A/(0, 1) in law and independent of I. Ol

Remark 3. We were not able to obtain a homoscedastic form of the local approximation; the
local equivalence to (3) is not changed if we subtract fo(x)dx from (3) and multiply by ,/my,
since those terms do not depend on the unknown parameter f. Thus we also have local
equivalence to

mz () 2(f = fo))dx + TV/4A™2 B(dx),

with the same properties as in (3). Usually (Nussbaum 1996; Grama and Nussbaum 1998), a
first approach would consist in looking for a variance-stabilizing transform in the following
sense: find a functional f +— 7 (f) solution to

DT(f)[h] = (mp)'*h  for all h € L*([—r, r]), ©)
where D7 (f) is the differential operator of 7 at point f. Heuristically, using

m2(f ~ fo) = DT(f)Lf — /ol = T(f) ~T(fp) ~ for f close to f,

and the fact that we may ignore the term 7 ( fy) (again, this simply amounts to a translation
of the observed process by a known quantity), we would eventually obtain a global
equivalence of the form

T()(x)dx + T~*A~2 B(dx).

But this simple approach fails, since there is no solution to (6). Assume, on the contrary, that
such a functional 7 exists. From (6) and the definition of /7y, this implies that the mapping
S+ DT(f)[h] is also differentiable, for h € L*([—r, r]); but from the explicit form of ,/m;
one can readily ascertain that, for two functions 4 and k in L*([—r, r]) with h # k,
0? ?
T (ah(:) + bk(-
dadp L WO T KO # 55

since my,(x) is not local in fo, i.e. involves all the values of fy. By Schwarz’s lemma for
mixed derivatives, this is in contradiction to the function (a, b) — 7 (ah(:) + bk(-)) being
twice differentiable.

T (ah(-) + bk(-))

2.3. Global equivalence

We now state an equivalence result for f lying in the whole parameter space X(r, 3, p).

Consider two centred Gaussian random measures B(dx) and B(dx) with intensity dx, and
a positive random variable A = |[N(0, 1) in law such that B, B and A are independent. Let
ur >0, T>0, and let G” be the experiment, with parameter f € =, generated by the
observation of the following two random measures on [—r, 7]:
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Yi(dx) = f)dx + T7V4AT 2 1(x) "2 B(d), (7)

ZJ(dx) = f(x)dx + ur B(dx),

-1
g r(x) = 2{exp (—ZJ Z%(dy)) + exp (ZJ Z‘;(dy)> }

Here (717, 7(X))xe[—r,,] denotes a continuous modification and, for ¢ € LX([—r, 1)), Y4 r(p)isa
stochastic integral. (We observe that equation (7) defines (1 T((p) @ € L*([—r, r]) up to a
modification, but this suffices to characterize the law of (Y- ;, Z7).)

where

Theorem 2. If > 1/2, ur — 0 and urT'/* — 400, then for all xy € R the experiments
BT and GT are asymptotically equivalent.

Remark 4. A by-product of the proof is that we can replace 7-'/* by (7')~'/* in the
definition of G”, where T’ ~ T. This effect is due to the mixed Gaussian character of the
model.

3. Local approximation of the likelihood ratio

In this section we give a result which claims that the likelihood processes of E¥*'" and F/o"
can be coupled (Proposition 1 below). Then we deduce a version of Theorem 1 (Corollary 2
below) which is a local asymptotic equivalence result weaker than Theorem 1.

Let X be the canonical process on C(R., R). Recall from Girsanov’s formula that

APl ns
et = Z Pf0 -a.s.,
dP{g ;
where
T ) 1 T
tog 2! = | (f ~ foxxoaws =3 [ (= firccoss ®

. t
WP = X, — Xo— J Fo(Xo)ds.
0

The local approximation will be given on the following shrinking balls: for fj €
3(r, B, p) and er, nr >0, let Vr(fo) = V(fo, €7, nr) be defined by
= nT}

i =

VT(fO){f€25J If = fol> <&, sup

x€[—r,r]

where &7 and 77 satisfy the following assumption:
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Assumption A. e = O(T~ ") for some p; >1/8, and nr = O(T~P) for some p, >
1/2 —2p;. O

Proposition 1. For all xo € R, T >0, fy € Z, there exists a Pf0 Gaussian centred random
measure Y ’;" on [—r, r] with intensity my, and a non-negative random variable A(fo, T)
such that:

(i) Y';" and A( fo, T1)Vare independent under P){?),

(i) L(A(fo, T)\Pf“)—>|./\/(0 D] as T7'2xy — 0 uniformly in fo €%, and where LA
denotes convergence in the total variational norm.

Moreover, under Assumption A we have

EN(ZP -2 ) =0 as T — o, ©9)
uniformly in xg € R, fo € Z and f € Vr(fy), where
1/2

~ T r
log Zf' = TVAA(fo. T)'PYR(f = fo) = == A(fo, T)J (f = Sy @mp()dx. (10)
The proof is postponed until Section 6.

Corollary 2. Suppose that Assumption A holds. Let Ry > 0 be such that T~'/>R; — 0. Then
we have

x0,1 T,fo
([EV(;(fo)’ [meo)) 0 asT— oo,

uniformly in |xo| < Rr and uniformly in f, € 2.

Proof. Let Yf ? and A(fo, T) be as in Proposition 1. Consider a random variable A( fo, T)
defined on some probability space such that L(A(fo, T)) = L(A(fo, T )|Pf°) Let F7/0 be
the experlment with parameter f € Vr(fo) generated by the observatlon of the pair
(A( fo, T), VA fo.7)s where ]’: r denotes the random measure on [—r, 7] which equals

F@)dx + TV4A(fo, T) V2 m s (x)"/? B(dx)

on the set {A(fo, T) > 0} and which vanishes on {A(fo, T) = 0}. Here B(dx) is Gaussian
w1th intensity dx and is independent of A( fo, T). If H r denotes the law of (A( fo, T),
Yy T) then we clearly have

’Hfg,f (207, 1 evit)IPL).

From (9) we deduce the asymptotic equivalence (see Le Cam and Lo Yang 2000) of [Ejy (Tfo)
and [F ol o fo)-
Next Proposition 1(ii) and the fact that 7~'/2R; — 0 yield

HE(([\(fo, ). 70)) = £((A Y1) HTV 0
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uniformly in xy € [—Rr, Rr], fo € 2 and f € Vr( fy), where (A, Y T) generates F7-/o and
is defined by (3) To conclude the proof, it sufﬁces to remark that [Ff0 is the experiment
given by (A, Yf r) since A is a function of Yj 7> namely my(7) times the quadratic
variation on [—r, r] of [, Y (). O

4. Globalization

Following Le Cam’s principle, in order to obtain a global equivalence result, it remains to
piece together the parameter-local approximation of Corollary 2 by means of a preliminary
estimator of fj.

4.1. Preliminary estimator

We first investigate the properties of a preliminary estimator f r (being FY-measurable)
constructed using Nadaraya—Watson type techniques. Consider a non-negative compactly
supported kernel K of class C! such that [gK(x)dx =1 and [gxK(x)dx = 0. For h > 0, set
Ku(x) = b= 'K(h~'x). Let W(T) = (v/T)""/@F*tD_ Recall that X denotes the canonical pro-
cess on C(R., R). For each 7 >0, thanks to Kolmogorov’s criterion, the process
(JgK wry( Xy —x)dX,, x € R) has a PSO’T—modiﬁcation which is continuous and with which
we will work. For x € [—r, 7] set

fOTKh(T)(Xt — x)dX;
Jg Kh(T)(Xt — x)dt ’

where, by convention, 0 /0 = 0. Moreover, we set f 7(x) = 0 for x ¢ [—r, r]. The performance
of fr is summarized in the following result, the proof of which is postponed to the Appendix:

fr(x) =

(11)

Proposition 2. The random variables

(fwwmjmm FP d, (12)
¢ s ([ 0= o), (13)
||fTHﬁ,2,2> (14)

T >0, are P{O-tight, uniformly with respect to f € 2.

4.2. Globalization

This enables us to state our first global result. Let 7' = 7'(T) > 0 such that 7’ — oo and
T'/T —0 as T — oco. Consider (B, A) as in Section 2.3 and independent of the
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diffusion X/ 0. Let ExoT be the experiment generated by the observation of
(X tf "Nozi=r, ¥ -;) e C([0, T'], R) X G, where Y ; is the random measure

Y(dx) = f()dx + [T = T'T74A2m ;. (x)7"/2 B(dx), (15)
now with f € 3. Here f7 is shorthand for f7 o X /-0,

Proposition 3. If > 1/2 and T' = T? with 1 —2p/(1 4 6p) < g <1, then, for all xy € R,
the experiments BT and E*T are asymptotically equivalent.

To prepare for the proof of Proposition 3, we first give an extension to a lemma due to
Nussbaum (1996). Let (4, A, (P%)pco) be a statistical experiment. For i = 1, 2, consider a
measurable space (4;, A;), and for each 6 € ® a Markov kernel N?(w, dw;) from (4, A)
into (4;, A;). We can define the two statistical experiments

E,=(4X 4, A® Ai, (P)ge0),

where P?(dw, dw;) = PO(dw)N' ?(w, dw;). Moreover, for each w € 4, let V(w) be a subset of
© and let F;(w) be the experiment

Fi(w) = (4i, Ais (N9(W, ))ocv)-

Lemma 1. Suppose that the following assumptions hold:

(i) For each 0 € ©, the set {w € A|0 € V(w)} belongs to A.
(i) For i =1, 2, for all finite subsets ®' C O, there exists a countably generated o-field
A} C A; such that, for all 0y € ©', for P%-almost all w, A} is (N?(w, 9, 0 € O)-

sufficient.
Then, for all B € A, we have
A, By) < sup A(Fi(w), F2(w)) + sup PP({6 ¢ VI U (4\B)). (16)
we S

The proof is postponed to the Appendix.

Proof of Proposition 3. Recall that X denotes the canonical process on C(R, R.),
]-"? =0(X,, s=< 1) and Q(f, v) is the law of (5). It is easily seen that Q(f, v)(dy) is a
Markov kernel from Lg'([—r, r]) X Lg,([—r, r]) (endowed with the Borel o-field associated
with the uniform norm) into (G, G).

We will apply Lemma 1 with

0= Z(ﬂ? v, p)a (A5 As (PO)HGQ) = (C(R+9 R)? *7:0’9 (P'xfo,r')fGZL
(A1, A) = (CR,, R), F§_p), N{(@, dwy) = P ) r_p(doy),
(42, A) = (G. G), N3 (@, dwp) = O(f. (T = T) " Pm 7! (dwy).

Observe that, since fTr € C([—r, r], R) and is fOT,-measurable, sz(a), dw,) is still a Markov
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kernel from (4, A) into (4;, Ay). Then E, = Exo7. Moreover, thanks to the Markov property,
E, is the image of E*»” under the map (Q, F}) — (X Q, Fh @ F4 ), o) —
(a)() o(T'++) and [E*»T is the image of [E; under the map (Q X Q, .7-'0T, ®
T)—)(Q f ) (CU a)])l—>w107']+a)1( — T)l 7'.T] Hence A([E], IEXUT)_O
Assumptlon (ii) is satisfied with A} = A, and Ay =o(Y([—7, x]), x € [-r, r]1NQ),
where Y denotes the canonical process on A4,. Set
< sz}’

I Jx(f*fr')

x€[—r,r]1JO

Vi) = {fexf 7= Fr

where p;, p, are such that

9B 1
228+ 1)’ 2

which is possible in view of the condition on ¢ and . Assumption (i) is obviously satisfied.
Moreover thanks to Proposition 2, since p; < ¢f/22f+ 1) and p, < g/4, we have
(S V(@) — 0 as T — oo, uniformly with respect to f € .
Let K > 0 (arbitrarily large) and set

B={|Xr| < KT} {l{/rlls22 < K}.

Since 7' = o(T — T"), we can apply Corollary 2 (with p + K in place of p) and we deduce
that supyep A(Fi(w), Fo(w)) - 0 as T — oco. Therefore, upper bound (16) yields
limsupr A(E;, Ey) < limsupz sup ses PXO(B) Because infr>) feg Px()(||fT g2 < K) — 1
as K — oo by Proposition 2 and ll’lfT>0f€gP (X7 < K(T)/?) =1 as K — oo (see
Section 6), the proof is complete. O

q
=2 <pp <=

<p < 1

8

5. Proof of Theorems 1 and 2

In this section we assume that 8 > 1/2.

5.1. A key lemma

Let (4, A) be a measurable space. For f € Z and T > 0, consider an (4, A) valued random
variable 57, continuous positive random processes (VT(x) x €[—r,r), (VT(x) x € [—r,r),
(Ur A (x), x € [, r]), and random measures V7, y; and Z7% on [—r, r], defined on the same
probability space. Assume that

Vi) = f(0)dx + A2 V(x)' 2 B(dx), (17)
Vi) = f()dx + A7) 2 B(dx), (18)

Z1(dx) = f@)dx + US(x)"/2B'(dx), (19)
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where A (2 1)) B and B’ are Gaussian centred with intensity dx, and A, B,
B, (ET, V;, V;, U7) are independent.

Lemma 2. For each T > 0, consider a non-empty subset Zp of £ and assume that the
Jfollowing conditions are fullfilled:

(1) SUpxe[—r.r |Vf(x)/V (x) — 1| — 0 in probability, uniformly in f € Zr.
(ii) infre(—r.q UR(x)}/SUPxe[—r.1 T(x) — 00 in probability, uniformly in f € Zr.
(iii) The probability measures on C([—r, r], R),

A
L —T~f 5 T> O,f € ZT,
1nfx€[7 r,r] VT(x)
are tight.

(iv) liminfz infe—o jes, PGnfyer_ ., VAx) > &) = 1.

Then the experiment generated by the observation of (&7, V;, 17/;, U’;,
y’;), and the one generated by (gf; V’;, V’;, U’;, yf Zf) both with parameter space
27, are asymptotically equivalent.

Proof. 1t is clear that the experiment generated by the observation of (5 V/;, 174, U ;, 37

ZJ;) is more informative than the one generated by (E - V’;, V;, U f;, fT) Moreover, if (VJ;,

V’}, T) satisfy conditions (i)—(iv) then so does (VT, VT, Ut 7)- Therefore it suffices to show

that the experiment generated by the observation of (&7, VJT, VT, U’ T yT) is asymptotlcally

more informative than the one generated by the observation of (EJ;, V;, V;, U ;, ;))T, T)
We will split yT into two parts. Introduce the following subsets of [—r, 7]:

o 2r . 2r " r o 2r
IT=U[(z—1)n—T,(z—1+aT>n—J, JT=U[(1—1+aT)— i

i=1 i=1

where n(7) is a positive integer and ar a real number in (0, 1) which will be specified later.
Define the functions @7 and W from [—r, r] into [—r, 7] by

1 X
@10 = [ 10 W = | 1o
—ar ),
and the random measures ﬁ; and 2’; on [—r, r] by

. 1
201 = [0 @rot, Y],
T

7 1
Vi) = o oo WrtoL, e,

From representation (17) it follows that
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VI = f oW+ e Ao W) PN 0)
Z(dx) = f o 7! (x)dx + %A_I/Z(V? o @71 (x) /2 M r(dx) 1)

where Nr(¢) := /1 —arB[l,.(poW¥r)] and Mr(¢):=\/arB[l;,(¢p o Pr)] are two in-
degendent Gaussian random measures with intensity dx, independent of (A, S;, VJ}, V’},
Uz).

Observe that A is a function of (V‘;, y«é) since A7 [ V’;(x)dx is the quadractic

variation of y§ on [—r, r]. Consider two independent centred Gaussian random measures
Wi and W, on [—r, r] with intensity dx, independent of (5’;, V’;, V’;, U’;). We define

Zl(dv) = Z](dv) + (U-é(x)‘/z - \/LG_TA—‘/Z(V? o <I>;‘<x>)‘/2>+W1(dx>,

—1/2

— . A ~
Vi) = Pp@) + s (00, T PT@ = (7 0 Wi )2 W),

where

Vo d:\(x)
po(f, TY=1A sup %
x€[—r,r] V'T(X)
A regular version of the conditional law of (37/; — JA);, Z’; — 2;) with respect to the o-field
generated by (5-’;, V‘;, V‘;, U‘é, y«é) is
+
~1/2
(UW A CI>T‘>1/2>

i

2

>

Al _
R{O, 7 (EP7V2— (v ow)2) @ R 0,
—ur

which does not depend on the parameter f. Here, we denote by R( f, v) the law on (G, G) of
the Gaussian measure with drift f/ and intensity v, for two continuous functions fand v = 0
on [—r, r]. Consequently, the experiment generated by the observation of (5‘;, _VJ;, 17’}, U ’},
y-i) is more informative than the one generated by (&, V’;, 17‘;, U‘;, )_//T, Z”;).

We choose ar, T > 0, such that ar — 0 and

- 1
1 1 f = -1 f
flngr P(mf Ur @ A” sup VT) — 1, (22)

which is possible thanks to condition (ii). Due to condition (iv), there exists ey > 0 such that
inf yes, P(inf V‘; =¢r) — 1 as T — oo. Moreover, choose nr such that

e;ZJ (f=foWr' ) =0, e;zj (f=fo®7')* =0 (23)
uniformly in f € Z, a choice which is possible since

2 2
07— <, W) - <= (24)
nr nr
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and 2 is relatively compact for the topology of uniform convergence /ﬂ >1 /2) Let
us show that the experiment generated by the observatlon of (5 T VT, V;, ) and
the one generated by the observation of (Ef , VT, V%, U ;, yT, 4) are asymptotlcally total
variation equivalent, which will complete the proof.

From (20), it follows that a regular version of the conditional law of ())T, ZJ;) with
respect to the o-field generated by (ET, V;, V;, U ;, A) is

<f ot pl(f aT)A Vf) ®R<foq,T1’ Uiy (;AIV;ocpTl)). (25)
T

Using (22) and the well-known upper bound

IRCf1, 0) — RO/, )y = 2V2 1 ( . exp< I 2>2>> ,
together with (23), it is easily seen that the total variation distance between (25) and
R(f pl(f D) A1 Vf> ®R(f Uf>
converges to 0 in probability, unlformly in f € 2r. Integrating with respect to A, we deduce

that the conditional law of (yi, T) with respect to the o-field generated by (Ef , VJ;, V;,
U/;) is close to

Q(j, p(f, T)Vf) ®R(f Uf)

for the total variational norm, in probability. In view of the definition of O( f, v), we clearly
have

10Cf, pO) = O(Sf, Dlrv < [IL(pA™Y) = LA D)]rv
= [INV(0, 1/p*) =N, D]ty =0 as p — 1.
Since, furthermore, p(f, T)/(1 — ar) — 1 in probability uniformly in f* € Zr by (i), (iii) and
(24), we deduce that
L&, V], 71, UL, 97 2D — L& V74, UL V4, 2Dl — 0
uniformly in f € 7. O

5.2. Proof of Theorem 2

Recall that experiment Exo-T is defined by (15). We choose T’ = T7 with ¢ = 3/4 satisfying
the assumption of Proposition 3, in virtue of which it suffices to show that X7 and G are
asymptotically equivalent.

Consider B, B, A, Y é, Z{ and 7y r as in Section 2.3. Assume, moreover, that the
diffusion X/~ given by (1) is defined on the same probability space and that B, B, A and
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X/ are independent. Let Y7 ¥/ be defined by (15). Then G’ corresponds with the ob-
servation of (Y7, A 7) and Exo- T corresponds with the observation of ((X7 15 S P Y;)

First we prove that E¥o-7 is asymptotlcally more informative than GT. Applying Lemma
2 with Sp=3 & =X")ep, Vj=Vi=T-T)"m;' . and Uj=ui
(assumption (ii) holds since T'/*u; — o0), ylelds that Exo-T s asymptotlcally equivalent
to the experiment generated by ((X3 1 ) <, A T zL 7)-

Next, we apply Lemma 2 with Zp =32, ET —((Xfxo),<T, Z;) V’; =(T —
7Y\ 2m ! s and V1(x) = iy r(x)"". Conditions (i)—(iv) are easily verified thanks to
Propos1t10n 2 and the fact that u; — 0 It follows that the experiment generated by
((X / ") =17, Y/ T, VA T) is asymptotically equivalent to the one generated by
((X ""Y<1, Y7, Z7) and consequently asymptotically more informative than GT

It remains to show that G’ is _asymptotically more mformatlve than E*7. Let

|J\/ (0, 1)| independent of (A, B, B) (and consequently of (Y T) as well). Clearly,
GT is of the same type as the experiment generated by (A, YT, z7 ) Lemma 2 applied to
EL=(A, Z)), Vi =V = T"V2(isr)™" and Up = A-N(T' )—1/2(m, ! ylelds that GT i
asymptotically equivalent to the experiment given by the observation of (A, z7L e ;, T)
where

Z!/(dx) = fx)dx + (") 4A 2Ly 77"/ B(dx)

and B is Gaussian independent of (B, B, A, /~\).

At this stage, we need a preliminary estimator of f constructed from Y ; Using the
notation of Section 4.1, for all 7 > 0 there exists a continuous process (gr(x), x € [—r, 7])
defined on (G, G) such that, for all continuous functions fand v =0 on [—r, 7], (g7) is a
O(f, v)-modification of

<J Ky (y —x)Y(dy), x € [-r, r])

where Y denotes the canomcal process on G. Moreover, along the same lines as the proof
of Proposmon 2, gro Y/ 7 satlsﬁes /propernes (12) and (14) of Proposmon 2. We can apply
Lemma2t0 = (A Z0, YD), v (x)—(T)—l/Z[m, )], V) = (T') ' 2m groyf(x)
and yT = Z It follows that GT is asymptotically equlvalent to the observation of
(A Z , Y- 1, ) where

Z4(d) = fG)dx +(T) A my () B(d).

To finish the proof, it suffices to show that the experiment generated by (Z Y J}, T) is
asymptotically equivalent to the one generated by the observation of (Z Y f}, (X /- )=17)
since we have already seen that this last experiment is asymptotically equivalent to Exo-T,
We will apply Lemma 1 with @ = X,

(4, A) = (G X G, G® G), P/ =P} = L(Z}, Y})
(A1, A) = (CR., R), F3.),  N{(z y, doy) = P/ ,.(doy),
(42, Ay) = (G, 9), Nj(z, y, dy) = O(f. (T")"2m5) ) (dwy).

Let 1/8 < p < f/2(2B + 1) and set
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J f - gr(y))‘ }

Due to the result for (12) in Proposition 2 applied to g7(y) under PL, we have
P‘;( f¢V)—0 as T — oo, uniformly with respect to f € Z. Moreover, since p/q
>1/2—-2p/q (9 =3/4), we can apply Corollary 2 (with p + K in place of p and T’ in
place of T) and deduce that sup(.yep, A(Fi(z, »), Fa(z, y)) =0 as T — oo, where
Bx = {(z, y) € G X G|[[{gr(»)||p22 =< K}. Since K is arbitrarily large, upper bound (16)
yields the result.

V(z, y) = {f ISP J_ lf — gr(y)|2 < 7%, sup

x€[—r,r]

5.3. Proof of Theorem 1

By Lemma 2 applied to V’; = VT— mfl, FZT{ o) is asymptotically equlvalent to the

experiment with parameter space 27(fo) generated by the observation of (Y Fo T T) Lemma
2, again with ET = ZT, VT = mfl, V5 =iy, gives the result.

6. Proof of Proposition 1

6.1. Notation and structure of the proof

Recall that the likelihood ratio Z-;‘”f is given by (8), where X denotes the canonical process.
First, we introduce additional notation in order to write the likelihood ratio in a proper way.
We define the right-continuous filtration (F ;)= by F; = () s> F 2. For f € 2, we have

2 exp[2 Hy ()]

my(x) = exp[2 Hy(—r)] + exp[2 Hy(r)]’

(26)
where Hy(x) = [} f(y)dy. Define
Ds(x) = JO exp(—2Hy(y))dy, Dy (x) = Pr(x) — P s(xp).
One can easily verify that @ ;(X,) = @ ;(Xo) + [§ P/(X, )de thus if
t
Al = J OU(X)ds, Bl =Dy (X,0),
where (r )=0 is the inverse of (A )i=0, then B/ is a (Pf (F, ;) ()-standard Brownian motion

according to the Dambis—Dubins—Schwarz theorem (see, for example Revuz and Yor 1991).
Hence, for each T > 0, the process (ﬂu u=0 defined by

g =1,

is a (P){O, (fT;u)u)-standard Brownian motion as well.
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If v is a Borel function on R, set

Tu u
VN = s | BDs = T2 pr e, @7
1 Tu
M) = i | B! = T Bl e8)

Remark that the stochastic integral (28) is also meaningful if 1 is a random function which is
Fo ® B(R)-measurable. Using this notation, we can write

T1/2
IOg Z.;O»f — T1/4M';‘O[Wf,fq](a{o,r) _T Vfo['l/)f f0]< fos )’ (29)
where
f =/ A%,
Yrpy) = —f cI)ﬁ]Xo(y) and o/’ = T
Jo

Finally, we introduce y-g(l/}), the Dambis—Dubins—Schwarz Brownian motion of the P)/:U-
martingale M?[w]. In particular, we have

ML) = Y (MEL])).
To conclude this section, let us briefly sketch our proof strategy. In (29), we have
MET @) = R (FPIE J@T)).

We ‘wish’ to construct an approximation of Vf”[z/) ho ](afO Ty that is independent of
’(wf #)- We proceed as follows. First, we have

VPl e = JRL(ﬁf Py (0 d,

~ LT J Y0P dy.

Next, introducing the P)/:?]—martingale
Jo.T ! Jo,T
Mt = Jo (SPCHAD sgor o~ PRI g7y oy )45
(30)
and
@/ = inf{v = O|(N/T), > u}, 31)

with the usual convention inf & = +o00, we obtain the following:
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(1) d fooT js ‘close’ to aﬂ’T
(ii) Nf°

ah.T is independent of y (1/) £.f,) by Knight’s theorem.

(iii) We can approximate L(B/" )0 ot by a random variable measurable with respect to
the o-filed generated by (N-~ ,0_,),,20 (by an application of Skorokhod’s lemma) and
thus independent of y W)

6.2. Some approximations

This subsection is devoted to a key lemma (Lemma 6) which is the essentlal 1ngredient in
obtaining (9). Define the probability measure P{(’)-fo’T = Zf" P;O, where Z7 fo-l s given by
®).

First we study the modulus of continuity of the local time of 3/T under P){(;fo’T .

Lemma 3. There exist constants C,, p =0, such that, for all T >0, xo€R, and

(fo, ) eI X2

(i) if U, and U, are two P{‘(’)-a.s. finite stopping times with respect to the filtration
(F5)u=0 then, for all y € R,
Tu

Jo,T : ,T T 21.
L TILB )y, = LB DI < GELTIU = U2,
@i1) for all (x, y) € [CI)fO,xO(—r), Qs ()] for all u=0

B/ Tsup [L(B"T); = LB 3171 < € (u"/ﬂx =P+ u sup

v=<u z€[—r,r]

J0<f o

p)
Proof. Elementary computations yield that

120 0@l (T2 ) ((I)fo

LBITY = LB, o T) o @)

where /07 .= T~ 117;‘; is the inverse of a/0-7.
Since aj” “T is an (]—'JO),PO -stopping time, we can (and will) assume that U; < a(" r
i=1,2, or U; >af° , i =1, 2. First,

a0 0T —al T o 0l2"| < C|U; — Us).
Second, for fy, f € Z, we have

El

(D/
X< ®/(x) < Cx and {0 —1|=<C sup
C (I)f xe[—r,r]

L(.f Oy

therefore, it suffices to show (i) and (ii) with (L(5/ T)y rogl )y in place of (L(BT))), .
The proof is easily completed using well-known propertles ‘of the local time of a Brownian
motion, and the following facts:
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e alTo HfO’T is a stopping time with respect to (Fz/, ),=0, since TfTT 400 as t 17 oo;

e under Pf fo.T the process (ﬁu/\afr)u>() is a standard Brownian motion with respect to
(F, / )u;(], stopped at time a/7; T

o for all (F, /0)u>o stopping times U such that U = T,

L
LBy = LB™TY, 0 + LB™D) | s
1 1
where
BT . gheT gl
BT =B~ Bl
. f"‘f' ,T . .
is a (P77, (]-"T {°'T+Tu)“))_5tandard Brownian motion. O

Jfo.T ~ fo,T

Our second result states that o is close to a

venient to work with.

, which is technically more con-

Lemma 4. We have
ELAT(af" — a7y < €, TP
Jorall 0 < p<oo, T>0 xR (fo,f)eZXZ.

Proof. We first need an auxiliary result (see the appendix for a proof).

Lemma 5. Let a and b be two real-valued functions on R, satisfying the following
conditions:

(i) a and b are non-decreasing, continuous and vanish at time 0, and a, = by, = +0.
(i) The function a is of class C', and there exists € > 0 such that a), = ¢ for all u = 0.

Then

la,' = b,'| < e 'pp}) < pf, — /e,
where

py=inf{u=0:v+ o) <eu} and @u)=supl|ay — by

Usu

On the one hand, the occupation time formula yields
T . pfoT T
§hT .= gloT (NI T,
D s
T_I/ZJ fo-Xo(r) L(ﬂf‘” 12, 1 :
D 0 xXo(=n (‘I)}»O Oq);b,xo(y)z

thus, in view of Lemma 3(i), E//o7(|S/""|7) < C,u%?T~9/% for all 0 < g < occ. On the
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other hand, since (9/ 8u)0{f”T = ¢ > 0, we may apply Lemma 5 to the functions a, = 0{:"’T
and b, = (N/oT), to obtain

|&I]OJT - a{o’T| < p(f()s T) - 1/8

with p(fo, T) = inf{u: 1 + 8" <eu}. Since {p(fo, T) > 1/e+u} C{Sf}], = eu},
Chebyshev’s inequality yields

ELOT (T — alT|Py < BELAT(o( fo, T) — 1/e)P),

o0
<772 +J pu?~ (eu) PELST(STVE PP)du,
T-1/2

<C, 777"

O

Next, we have an approximation result for V‘;" at time alb’T. Define the random variables

exp(ZHf(r))L(ﬁf,T);;lT/zqa/-,xo(r) T exp(ZHf(—V))L(ﬁf’T)(:{i;mp"?x‘)(ﬂ)
M= exp(2H /() + exp(2H (— 1)) (32)

(see (26) for the definition of H ).

Lemma 6. There exist constants C,, p =0, such that, for all x € R, T >0, fo, f € Z for
all random function v Fo @ B(R)-measurable and supported by [P x,(—71), @ x,(r)] we
have P{:O’f"’T-a.s.:

p)

P P
<C, (J |1/)(x)|dx) (Tp/4 + sup )
R x€[—r,r]

Proof. Let u(f, T) be the random variable defined by (32) with /" in place of @]
Lemma 3(i) applied to U; = a{"’T and U, = &{"’T, together with Lemma 4, yields
ELAT(A(fo, T) — u(fo, T)|P) < C,T~P/* for all p = 0. Therefore it suffices to prove
Lemma 6 with u( fy, T) in place of A(fo, T)

From the occupation time formula it follows that

L(f )y

fo fury _ [P0 o
S B I O U
D xo(=1) !
Furthermore, since a']‘”T =< C, the conclusion easily follows using Lemma 3(ii) and the
definition of u( fy, T'). U
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6.3. Construction of the Gaussian measure

We define here the random variable A( fy, T) and the Gaussian random measure Y /}b, and we
prove properties (i) and (ii) of Proposition 1. Set

Af, T)= (figf1 NI — T 2 expQHp(r) @y, (1) — T2 exp(ZHf(fr))(I)?’Xo(fr))+.
(33)

Lemma 7. We have

exp(2H p(r)) + exp(2H s(—7))
2

AL, T)= AL, T).

Proof. From Tanaka’s formula it follows that
expQH (M) — T71P® 1y, (m) " +expQH(—=n) LT — T72® /(=)
= NI+ T2 expQH (1)@ (1) + T/ expQ H (=) Py (—7)

TV D (1) TR (=)
" .

+3expH () L(B"T +3expH (=) L(’ Ty
Skorokhod’s lemma (Revuz and Yor, 1991, p. 222) implies that

TYV®  x, (1) T=12®f y (- 1)
3eXpRH(MLBT) or ™ 4 3expQH (=)L)
1 1

is equal to

sup {OvV[-N/T T*‘/zexp(zH,-(r))cb;,Xo(r) — T PexpH (=)D (=11}

usa,

which is the desired result. O

At this stage, the preceding results give the construction of an approximation of log Z’;"’f
sufficiently accurate for our purpose, and which has the law of log Z;"’f — recall (10).
However, this equality in law is valid for fixed f only, and we need it as a random process
indexed by f. Therefore, we introduce the following discretization technique: let » =1 be a
positive integer. For k=1, ..., n, define

a(f(), T)i = cI)fo,Xo(_r + iZI"/I’l),

ol (y) = (a(fo, T)i = alfor T)i) " Vatfo. s o7 (D)-

The functions (p-l-f ol enjoy the following properties:



Asymptotic equivalence for a null recurrent diffusion 161

JRwif"’T(y)zdy =1

supp(]”7) C [®@ , xy (= 1), @ sy 10 (P)];
supp(¢/"") N supp(p)") = @ if i ).

Let B(dx) be a centred Gaussian random measure on R with intensity dx and independent of
X. For a Borel function y on R, we set

(., o7 = JRwl-f “Towdy,  projfy = <w, o] “’T><pl-f“’T,
i=1

2R @) = Afo. T)” 1/22 v, " V(0! i sy + By — Pp),

and

fo _ 2 12 fo i -1 201
YT(h)_(exp(szo(r»+exp(2Hf0(—r))) 2 <<I>ff0°q’f0’x°)’ heL{=rrD.

Lemma 8. Under Pfo Y j}" is a centred Gaussian random meagure on [—r, ¥] with intensity
my,, independent of A(fo, T). Moreover, L(A(fo, T)|P )—> IN (O, 1] as T ?xyg — 0
uniformly in fy € Z.

Proof. Since (N7, MP[p/*"1) = 0 and (M[p]*"], M&T[p/*"]) =0 for i # j, Knight’s
theorem (Revuz and Yor 1991, p. 172) implies that the (n + 1)-dimensional process

<Nf0/oT7 (V '@l ))1<i<n>

is a Brownian motion independent of .7-"0, under P/". Moreover, Lemma 7 shows that
(A(fo, T), A(fo, T)) is a function of ((N a T)u, Xo). Thus under PXO, XT ’(dy) is a Gaussian
centred random measure on R with 1nten51ty dy, independent of A( fy, T'). The first claim
follows because of @ (x) = m(0)/my(x).

The second assertion follows from the fact that £(— 1nf,,<1N foT |Pf°) = |N(0, 1)| and
exp(2H 7, (r)®@ 7, . (r) + exp(2H s, (— r))<I>f0 W (=7 = C(1 + |xo). &’ O

u=0

6.4. Conclusion of the proof

We are now ready to prove (9), from which Proposition 1 will follow. For simplicity, we will
assume without loss of generality that Assumption A holds with p; < 1/4 and p, < 1/4.

Lemma 9 (Scheffé, uniform version). For n = 1, let X, be a non-negative random variable
defined on a measurable space equipped with a probability measure P,. If X, — 1 in P,-
probability and [X,dP, — 1, then [|X, —1|dP, — 0.
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Proof. We write | X, — 1| =(1 —X,)lx,<1 + (X, — D1y, ;. The sequence (1 — X,)lx, <
converges to 0 in P,-probability and is dominated by 1, so [(1 — X,)1x,<1dP, — 0. Then

J(Xn — 1)1X,1>1dP,, = J(Xn — l)dP,, + J(l — Xn)l)("gldpn
and the first term tends to 0 by assumption. The conclusion follows. O

Recall that Pé)f" Zf 0/ Pf° Applying Scheffé’s lemma to the famlly of random
variables (Zf0 o / Zf0 4 )r=0 and the family of probability measures (Pm T)T>0, (9) will
follow if

Z; 0./

f——1 in Pl2-probability as T — oo, (34)
Z,T()a >

uniformly in xp € R, fo € Z and f € Vr(fy). In view of decomposition (29), Lemma 7 and
the definition of my (see (26)), expression (34) can be deduced from

Tl/z{ V)@ = Ak T)JRw?,fo@)dy} =0 33

TV ME T )T = Ao, D PYRCE ~ f)} =0 (36)

in P{O’fO’T -probability uniformly in xp € R, fo € 2 and f € Vr(fo).
Further, according to Lemma 6, the random variables

77}18T {Vﬁ) |:1/)f f(’}(a ) - j~(f0a T)J W_zf,_fo(J’)dy},

are tight under Pf T for T=1 and fy € Z, uniformly in (xo, T, fo, f) with £ € Vr(fo).
Since n7e3T 12 0 by Assumption A, we have (35). It remains to prove (36).
By Girsanov’s theorem,

MPWIw = TV [y 0] (aff A ) + 55 [y, (37)
with M;f 0 [v] being a continuous P«)’: /o-T _martingale. Thus we have

PE@) = TV [y ] (o A (P, ) + 75 @ (38)

where (MZP[y])~' is the rlght continuous  generalized inverse of (M%7 [1/)]) and
~f "(Y)(u) = MfO[I/J](<MJO[1/J]>u ). In this subsection we write ¢; in place of q)l . On
the one hand, from the definition of Y7’, we have

n

Afor TYPYRC = fo) = S 0 ssoe 007 F @iy + 2 for TP By gy — proifv s.)-

i=1

From (38), we readily derive
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A(fo. TYPYR(f = f0) =TS (s @) VLo r. Xl ANMP (035 1)
i=1

+Z W10 @TF @iy + A S0, T2 By g, — Projif v s g
(39)

On the other hand, we have

MPW X)) = TVVRWT (W™D + Y s 07700 i

i=1

+ MP [ — proify e,

In view of these two decompositions and (35), in order to prove (36) it suffices to show that
the following convergences hold in P;{O’/U’T—probability, uniformly:

T‘”(wa,fo, WV Plowr ) (T A ME @) r) = M o T)jwiv,ﬁ](x)dx)ao,
i=1

(40)

TS W 00 (772000 o, T = 7700 ((MPToi)0r) ) — 0. (41)
i=1

T'/*B (Wf,fo - pr0j‘§°¢f,fo> — 0, (42)

asVERL [w,r fy = Proj Y, fo} ( i ) — 0. (43)

Since the choice of n is free, we now let n = ny. Using the fact that ||y 1 [lg22 < C,
we readily derive the bounds

< Cn?

‘Wffn(x) projz Wf/o(X)

Choose nr of polynomial growth such that
Tl/zern_ﬂ — 0 and Tl/zn_zﬂ — 0.

We readil derlve (42). Applymg Lemma 6 to v =9y s — pI"OJTl/) f.fo» we deduce that
Tl/2 Mf prOJT Yy fo])(alﬂ ) — 0 Wthh implies (43). It remains to prove (40) and (41).
Let us first focus on (40). Since VT [@ip;] =0 if i # j, we have

VR 1.1 = (00 s )V IO + VL@ £ s — PIOil ey 1 1)]-

Moreover, V4°[@2] = (M{'(¢;)) is increasing; therefore
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VR (aftT) A 2o T = V(03 (afT A ME@)i)

< A(fo, T).
It follows that

VRlow (T A MPloN Gy ) = (@i )M fo, T)

= O{ vy l(ﬂi

Thus

n

Z(’/)f,fo» ®i) V?[(Piwf»fo](<M{'b((9i)>/1_(lfb,T))

i=1

Vg — POOIRY ,

] (") + @i v |V [03) () = 200, T)\}.

= Ao, T)jR|proj‘§°wf,fo<x>|2dx + 0{ i proif .l s — proif vl @

+> (i ’Pﬁ]b)z‘ s (a'lfo’T) — A(fo, T)‘}-
By the Cauchy—Schwarz inequality, we have
URPTOJ"?W,/O(X)V dx — Jwa,fo(x)z dx‘ < Cniler = o(T7'%).

Using the occupation time formula and Lemma 3(ii) (with U; = a{b’T and U, = 0), together
with the fact that a{o’T < C, we derive

ES T (V/;O [proj/;“lw ol (W5, = PTOITY 1.1
< CJRprOj’}(’lW,M

Vifo— projj;"zpf’ﬁ) = Cern}ﬁ.

Hence (40) will follow from
'y (o, 1/)f,ﬁ]>2‘V§) (7] (a‘lfO’T> — A(fo, T)‘ — 0.

Lemma 6 applied to 1 = @? entails that the expectation of the above sum is less than
CT'2e2(T~V* 4 yr) — 0 since 2p; + p» > 1/2.

We now prove (41). Let g € (0, po) such that 2p; + ¢ > 1/2. Lemma 6 applied to
Y = ¢? yields that, for all p =0,

PLAT (I fo, T) = (M@0 yor| > T71) < €770,
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Thus
P){(;’fb’T(sup 2o, T) = (M7 () 0] > Tq) < CpnpT 7779,

Define the random variables
Mg, fo, T)=T [T fo, T)],

where |-| denotes the integer part,
SG, fo, T) = (g, fo, T) =274V (MP(@))ior AWM, fo, T)+2T79).

For p large enough we have nyT~7(72=9 — (), hence
n(T)
Z;)wf,fo, ®i) (77f"f°((ﬂi)S(i,fo,T) - ?‘f’fo(q)i)<MfT‘o((pi)>Oalfo.r) — 0.
Consequently, to prove (41), it is enough to show that T'/*D(fy, f)r — 0 and
TY4D'(fo, f)r — 0, where
n(T)
D( fo, /)r = ZW’f,fo, @) (70 s. o) — 7@ )aafo1) ) s
i—1
n(T)
D'(fo, Nr = ZW’]:fo’ 01) (7 (@0 — 7P -
i=1

On the one hand, since N/*7 is also a P»)é)’f oT_martingale, in the same way as in Lemma
8, one shows that (y/-/0(¢p,)); is an nr-dimensional Brownian motion independent of
A(fo, T) under P//>T. Therefore, we have

ELRT(D'(fo, NFASo, T)) =D (W10 @) Ao, T) = Mg, fo, T,

1
< CelT™1
< Ce7T71.

Since 2p; + ¢ > 1/2, we deduce that T'/*D'( fy, f)r — 0.
On the other hand, for /€N, on the set {A(g, fo, T)=1IT"9} we have
D(fo, f)r = Di(fo, f)r with
n(T)
Di(fo, fr == Z<wf,fo5 @) (7" (@) s oy — V(@) ir—1). s
i=1

S, i, fo, T) = (T = 21"V (M7 o)) yior AT~ +2T79).

Holder’s inequality yields that, for all p = 1,

ELT(DCfo, NP7y < D PTG, fo. T) = 1T~ PELAT (1D fo, N1 )V7
1=0
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Furthermore,

ELT (1D fo, Nrl) < CerT7o. (44)
Indeed, the random variables

7@ swi gy — 7 (@i, Il <i=<n(T),
are uncorrelated since: first,
7 @Dsi ) = 7P @01 = ME o0 (U, 4, fo, TY) = M5 o) ((MPTo) 7 )
where
a(l, i, fo, T) = (MPToD) Loy o V ™" AMPT0D) (L oyr o3

second, (M ‘;U[@i]ﬁrl—q and o (1, i, fy, T) are both stopping times with respect to the filtration
(F i )u=0; and finally,
Tu

(Mo, MPL@1) =0 if i # ).

Recall that A(fo, T) = my(0)A(fo, T) by Lemma 7. In view of (33), on the set
{A(fo, T) > 0} we have A(fo, T)= A(fo, T)— a(T, fo, Xo), where

A(fo, T) = ~inf NIIT.
a(T, fo, Xo) := T~ expQH 7, (1@, x, (1) + T~/ exp H (=)@, v, (=7) = 0.

For [ = 1, we have

PTG, fo, T) = 1T < PLT

X0

T _ - _ (4 DT
{m < A(fo, T) — a(T, fo, x0) < )

12 T—2q
< CT %exp| ———
( 2mf0(0)2>
because A(fo, T) = [N(0, 1)| in law under P//»T. Thus

00
ZP;{;fn’T[/l(q’ fo, TYy=1T"91""Yr < C, TP,
=0

~

In view of (44), to deduce (43), it suffices to pick p large enough so that p; +
(1/2 = 1/p)q > 1/4. The proof of Proposition 1 is complete.
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Appendix

A.l. Proof of Lemma 5.

First, assume that a, =u for all u=0. For v=0, we have bob, ' = v, hence
|b,' —v| = |b,' —bob,'| < @(b,"). Moreover, if u =0 is such that v+ q)(u) < u, then,
for all ¢t € (v+ @(u), u), we have b, = t — @(f) = t — ¢p(u) > v, thus b;l =< t; consequently,
b;‘ < v+ ¢@(u). We deduce that, for real such u, we have |b;l — U] < ¢(u). Therefore, if
{u:v+ o) <u}#3, by continuity of ¢, we have |b,' —v|<aq(pl); if {u:v
+ @(u) < u} = @, then @(c0) = oo and pl = co. The result follows.

General case: Let v = 0. Since a is continuous and increasing, we can write

b5' =@, =|(a " o)l — a,].
But |a~'ob, — u| < e 'p(u) for all u, because
o(u) = |b, — a,| = |a(a ' ob,) — a,| = e|a' o b, — ul.
We derive |b,' —a,'| < e '¢(p,1) with
ps = inf{u:s+e ou) <u}.

It remains to note that a,' < e 'v and that g1, = pf.

A.2. Proof of Proposition 2.

We will use the notation and results of Section 6. In particular, recall that the random
variables A(f, T) are given by (33) and satisfy A(f, T) — |N(0, 1)| in law under
Pf uniformly in f€X by Lemma 8 Moreover, we have that A(f, 7)<
_lnfuglN fT NV, )| in law under Pf For a test function ¢, we write Ur[@]
= T2 [Tp(Xy)ds and Vr[p] = T V4 [T (X ydW/. In what follows, the constants depend
only on 3, p, r and the function K.

Lemma 10. (i) For all p=0, xo € R, f€Z and for all functions ¢ with support in

[—2r, 27], we have
2p 2r 2p
=c, 2| lomiy)

E/ (
X0
(i) We have
lim sup sup P];)( inf  Ur(Kyr(- — x)) < e) -0 Y
T (fx0)ESX[—Rr,Rr] xe[—r,r]

2r
Urlo] - A(/, T)J_z o) (3)dy

Proof. One can easily verify that
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Urlel = Vilyla") with v, = ((q,q;)z) 0@,

Since v s is supported by [P ; y,(—27), @/ x,(27)], (i) follows from Lemmas 6 (with f = fy
and 2r in place of ») and 7.
Next, the occupation time formula yields

Vit el = | 1Ty 0.

> d inf LB TV,
ijf(y) o BT,

because a{ ‘T = ¢ for some constant ¢ > 0. Taking ¢ = Kpr)(- — x), we deduce that there

exists a constant C > 0 such that, for 7 large enough,

inf Ur(Kiry(-—x) = C ]L(ﬂf’T)g/ﬁ.
x€[—r,r

inf
YE[DP 1,5y (=27),P 1, x, (27)
Moreover, since 3/-" is a standard Brownian motion under P/, we have

]L<ﬂf’T>z/ﬁ — [N, &)

inf
YVEID 7x( (—27), P 7,x, (27)

in law under P)f;), uniformly in /€ Z. The proof of (ii) is easily completed. O

A.2.1. Proof of (12)
First, note that by Lemma 10(ii), it suffices to show the tightness of the family

(ﬁ)zﬁ/aﬂmjr UrlKiry(- — OP (o) — fo) dv, T >0,
Moreover,
UrlKury (- — 01(fr(x) — f(x))

= UrlKury( = 0f1 = UrlKyr (- =01/ ) + T4V [ Kiry (- = 0l
We further decompose the bias term Ur[K (- — x)f] — Ur[Kur)(- — )] f(x) as

AL, T )JRKh(T)(y = x)(f(y) — f()ms(y)dy + Rr(x),
where

Rr(x) = Ur[Knr)(- = )f1 = A(S, T)JRKh(T)(y =) f(y)ms(y)dy

+ Ur[Kur)(- — x)] — A(S, T)JRKh(T)(y —x)my(y)dy.

We first bound the remainder term R;. Applying Lemma 10(i), we obtain that
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2 2
B/ (RA() < cr—l/z{ ( J Ky — x)lf(y)ldy) + (JKhm(y - x)dy) }

< CTI/Z{JKh(T)(y —0f(y)’dy + 1}
by Jensen’s inequality. Integrating with respect to x over [—r, ] yields

E/ (J RZT(x)dx) <cr'? (sz + 1).

The above term is thus asymptotically negligible. Using the bound

2
jR (jRKh(T)(y — () — fe)m f(y)dy> dx = CH(T ),

together with the fact that A(f, T) has a second-order moment uniformly bounded, we derive
from the specification of A(7') that the bias term has the right order.
Let us turn to the variance term. By definition of A(T'), it suffices to show that

WD)| VK~ 0l 45)
is P){(;—tight, uniformly in f. Since
E[ (V7 (Kir)(- = x)) = Ef (Ur[Kury(- = )],
Lemma 10(i) applied to ¢ = Kyry(- — x)? for x € [—r, r], together with the fact that

JRKh(T)(y —xPdy < C/I(T),

implies that the expectation of (45) is bounded, which completes the proof of (12).

A.2.2. Proof of (13)

Using Lemma 10, it is easily seen that the random variables

thm(y — 0 f()m(y)dy
dx

T1/4Jr Ur[Knr)(x —)f1

—r| UrlKnryx =)} JKh(T)(y —x)my(y)

are tight under Pﬁ;, uniformly in f € Z. Furthermore, since

' 2
J dx(deKh(T)(y - X)(mf(y) — mf(x))) = Ch(T)z(ﬁ“) _ O(T*I/z)’

it suffices to show the tightness of
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Kz = y)f(2)ms(2)dz

my(y)

* J
T4 sup J
11J—r

x€[—r,r

- f() |dy

and

X
sup J VK[ Kner)( — y)]dy|.

x€[—r,r]

X

Set Gr(x) = J, f()ms(y)dy. We have

. JKMT)(z @m0z
| @

my(y)

- (K (z—x) Kyr(z+r) [* N2 0)
= sz Gy (z)( e pr + J,,dy Kury(z—) mf(y)2>

and

sup < CW(T Y,

x€[—r,r]

JKW)(Z ~ (G (2) — Gz

hence

my(y)

B+1
() + O(WTY™),

Jx JKh(T)(Z = nf(@m(z)dz Gr(x) Gp(—7)

= e
my(y) m (x) mf(_r)+Jr yGr(y)

- J SOy + (T4

from the choice of A(T').
Let us now treat the variance term. We have, by Fubini’s theorem for stochastic integrals,

X1 Xy T X1
J VrlK i — »)dy — j VK — y)dy = T-‘/“j (J Kiry(X, - y)dy)dW( -
—r r 0

X2

Therefore, for all p = 0, the Burkholder—Davis—Gundy inequality yields
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p
X0

T " 2 p/2
) 1
< CPT*P/‘*E){O Jo (J Knr)(Xs — y)dy> ds

X2

X2

[lr Vr[Knry(- — »)]dy — J

VrlKnry(- — y)]dy

r/2

2
X1
=C, JR <J Kz — y)dy) dz by Lemma 10(i),

= CP|X1 _x2‘p/2.

The Kolmogorov criterion gives the result.

A.2.3. Proof of (14)

We will use the definition of || - ||g2> in terms of the modulus of continuity given in Section
2.1. Let us first show the tightness of the family

[[x = 11— A Ur[Knr) (- = 0)]llp2.2, T >0. (46)

Clearly, a family of random functions x — gr(x) for 7 > 0, such that (|" , | gr(x)?dx, T > 0)
is tight, is such that (|[1j_, g7|[g22, T > 0) is also tight. By Lebesgue’s theorem, the
functions x — Uz[Kpr)(- — x)] and x — [ Kury(y — x)ms(y)dy are differentiable, with
derivatives

T
W) T*“ZJO (K'Y (Xs — )£ (X ,)ds,

h(T)”jR(K')my O )m ().

Applying Lemma 10(i) and the specification of i(T), we see that the family

p
| e
—r

T >0, is tight uniformly in f € 2. Moreover, we clearly have that the Besov norm of

x = 1= 9(x) Jg Kncry(y — x)mg(y)dy is uniformly bounded, so (46) is proved.
Therefore, by Lemma 10(ii), it suffices to show the tightness of

|x = 1 () Ur[Kncry(- — 2)f1l 22 “47)

2

>

Oy (UT[Kh(T)(° -x0)f1-A(f, T)JRKh(T)(y - x)f(y)mf(y)dy>

and

T4 |x = 1= A V7K ) — Dllp22- (43)
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Repeating the argument developed for (46), with Ur[K)] replaced by Ur[Kyr)f] we

readily obtain the tightness of (47).
Let us turn to the variance term. For this, it is enough to show the boundedness of

2
s 2r dh 2r T p
T Ey el S [Knr)(Xs —x — h) — Kyry(Xs —0)JdW{ | dx

Applying Lemma 10(i), the latter quantity is less than

3 2r dh 27 2r
cr 172 dx| Ay meW)[Knry(y —x — h) — Ky (v — 0T
=2r h1+28 —2r —2r

Pick a € [1, 2] such that 28 < a < 28 + 1. Using the fact that K is of class C', we see that
the above term is of order 7~'/2h(T)~%, which goes to 0 as T — oo.

A.3. Proof of Lemma 1

By symmetry it suffices to show that
oE, b)) = sup O(Fi(w), F2(w)) + sup P({6 ¢ VI U(4\B)) (49)
we S

for all B € A. Since
O(Ey, Ey) = sup{0(E;,e', Ere); ©finite subset of O}

(see Le Cam 1986, Theorem 2.3.2; or Strasser 1985, Corollary 59.4) we can proceed as if ©®
is finite and shall do so below.

Define the probability measure v(dw) on (4, A) and the Markov kernel v;(w, dw;) from
(A, .A) into (Al', A,) by

1 1
= E PP . ) J— E 0 ).
1}(da)) |®| (dw)9 Vl(w’ dwl) |®‘ Nl (CU, dwl)
0cO 0cO

By assumption (ii), there exists a countably generated sub-c-field A; C A; which is
(N?(a), -), 0 € ©)-sufficient v(dw)-a.s. (i =1, 2). Since A} is countably generated, there
exists a sequence of finite 4;-measurable partitions of 4;, say (B xh=n=m.ip» N =1, such
that

Al=\/ Ay and Ay C Abya,
N=1
where Ay is the o-field generated by (B} y)i<n=mv.i- Set
(S NY(w, B,
79 (0. w:) = 1pn () ——2 "7
in(@, @) 2 @) BT

where, by convention, 0/0 = 0. It is well known that for all 8 € ©®, w € 4, the sequence
ZﬁN(w, -) converges v;(w, -)-a.s. and in L'(v;(w, +)) to Zf)(a), +) := limsupy ZEN(a), +), which
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is a version of the Radon—Nikodym derivative of N ?(w, -) with respect to v;(w, *) restricted
to A; and actually on the whole o-field A; by sufﬁciency

Define the Markov kernel N N(a) dw;) = i N(w w;)vi(w, dw;). Let us verify that it
suffices to show, for all N, Lemma 1 with (N in» Ain) in place of (NY, A,). Define the
statistical experiments

Fin(@) = (Ai, Ai, (N (@, )oevi):
Eiv =(4X 45, A® A, (P/(dw)N? (o, dw)geo)

and the random variables
RfN(w) = J |Z0(w, w;) — Z?,N(CU, w;)|vi(w, dw;).
A.

Then we have A(F;(w), F;n(w)) < zmaX9€@Rl y(w), which yields
O(F1x(@), Fan(@) < 0(F1(@), Fa(@) + 3max R (o) + jmax R (o).

Likewise, we have
O(Er, E2) = O(Erx. Ex) + i [ R (@) Po(d) + ama [ RS (@) Pucd)

Using the fact that R(’ — 0 pointwise and in L'(P?) for all 6, together with the fact that ©
is finite, we see that (49) will be deduced from the upper bounds

O(E1 v, Ean) < sup O(F; y(w), Fon(w)) + Zug Py({60 ¢ V} U(4\BY))
weBY, S

where B%, = BN {max;_;» maxgeco R‘Z vy <&} and € >0 is arbitrarily small. Furthermore,
since A ® Ajy is E; y-sufficient and A y is F; y(w)-sufficient for all w € 4, it is enough to
prove (49) when A; is generated by a finite partition.

In that case it is easily seen that for each w € A4 there exists a Markov kernel K, from
(41, Ay) into (A4;, Ay) such that

O(F1(w), Fy(w) = 2max||N9(a) 9Ky — NY(@, )||1v-
Moreover, the family (K, )yc4 can be chosen so that
(CU, (1)]) = Kw((,()], Az)

is A ® Aj-measurable for all 4, € A, (Strasser 1985, Theorem 6.10). Set B={0cV}nB
and define the Markov kernel K from (4 X 4;, A ® A;) into (4 X 45, A® Ay) by

K(w, oy, do’, dw;) = 13(0)e,(do") @ K,(o1, do) + 1 p(@)Or(dw’, dw,),

where (O, is any probability measure on 4 X A4,. Then we have

IPIR = Pl =2 010, Fa@)Pdo) + P/(A\B
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which readily yields (49).

Remark 5. The result of Lemma 1 does not hold in general without condition (i): take
© =R, (Q, A) = ([0, 1], B0, 110)), (1, Ap) = (RO, BRZOD), (Q,, Ay) = (R, BR)),
PY the Lebesgue measure, N{(w, dw;) the Dirac mass at point ¢ — 01{,_., N5(w, dw,) the
Dirac mass at 6, and V(w) = ©. Then F;(w), F2(w) and E, are equivalent to the perfect
experiment but E; is equivalent to the trivial experiment since w;(¢) =0 P?—a.s., for all
t € [0, 1].
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