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Martingale estimating functions determined from a given collection (the base) of conditional

expectations are considered for estimating the parameters of a discretely observed diffusion. Small ˜-

optimality of these functions (i.e. near-efficiency when the observations are close together) is

discussed, and in particular it is shown that this can be achieved provided the base is large enough. It

is also shown that the optimal martingale estimating function with a given base is automatically small

˜-optimal, provided only that the base is sufficiently large. In both cases the critical dimension of the

base is the same and determined by the dimension of the diffusion, and by whether the squared

diffusion matrix is parameter-dependent or not; the critical number does not depend, however, on the

dimension of the parameter.
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1. Introduction

Suppose a d-dimensional, ergodic, time-homogeneous diffusion X is observed at finitely

many equidistant points i˜ in time, and i ¼ 0, . . . , n with ˜ . 0 is the interval between

neighbouring observations. In order to estimate the unknown parameter Ł that determines the

distribution of X , rather than using maximum likelihood, which may well prove unfeasible,

one often resorts to unbiased estimating functions, some of the most successful of which are

based on conditional expectations, resulting in estimating equations of the form

Xn

i¼1

Xr

q¼1

hq(X (i�1)˜)( f q(X i˜)� EŁ( f q(X i˜)jX (i�1)˜)) ¼ 0, (1:1)

where, for the moment, we consider Ł to be one-dimensional (see (2.6) and (2.1) below for

the general set-up). Equation (1.1) is the prime example of an estimating equation obtained

from an unbiased martingale estimating function.

The study of estimating equations of the form (1.1) was initiated by Bibby and Sørensen

(1995) who focused on the case where r ¼ 1 and f (x) ¼ x, for which they showed that

under mild conditions (1.1) has a consistent and
ffiffiffi
n

p
-asymptotically Gaussian solution in Ł

(as n !1 with ˜ . 0 fixed). These asymptotic results readily generalize to other types of

unbiased estimating equations – see, for example, Sørensen (1999).
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In the present paper we consider estimating equations of the form (1.1) for d-

dimensional diffusions X with a p-dimensional parameter Ł. The main issue is the

discussion of the choice of base ( f q)1<q<r, in particular the choice of r, the dimension or

rank of the base, and the choice of weights hq. For this purpose we think of ˜ . 0 as

arbitrary and consider families (for ˜ varying) of estimating equations of the form (1.1)

where hq, but not f q (the base should be the same for all ˜), is allowed to depend on ˜,

and such that, for any fixed ˜ . 0, (1.1) has a consistent and asymptotically Gaussian

solution as described above.

Given the base ( f q), for any given ˜ . 0 there is an optimal choice of weights; see

Proposition 2.1 below. The resulting estimator will typically not be efficient, while an

estimator that is small ˜-optimal will be nearly efficient for small values of ˜ – and, of

course, still consistent and asymptotically Gaussian for all ˜, although not optimal. As we

shall see, while it may be difficult to find the optimal estimator (to obtain and use the

weights one needs the explicit form of the inverse of an r 3 r matrix with all elements

conditional variances), it is quite easy to determine weights that lead to small ˜-optimal

estimators.

The concept of small ˜-optimality was introduced by Jacobsen (2001a), and the main

purpose of the present paper is to discuss conditions for small ˜-optimality for the type of

martingale estimating functions underlying (1.1).

The first main result, Theorem 2.2, shows that given the base, provided only that the

dimension r is large enough, there always exist weights such that small ˜-optimality is

achieved. Furthermore, it is easy to find the weights – it is just a matter of solving, at any

point x in the range for the diffusion, a set of linear equations, and in the statement of the

theorem a concrete solution is exhibited.

The second main result, Theorem 2.3, shows that for any base, again provided r is large

enough, for the optimal choice of weights from Proposition 2.1 below, small ˜-optimality is

automatic.

In both theorems the same critical value r0 for the dimension of the base appears: for

r > r0 small ˜-optimality can be achieved for any base, while for r , r0 this may only be

possible, if at all, for a special choice of base – for an important example of this, see

Remark 2 below. The value of r0 depends on the structure of the model but not on the

dimension of the parameter, with r0 ¼ d, the dimension of the diffusion, if the squared

diffusion matrix does not depend on the parameter, and r0 ¼ d(d þ 3)=2 otherwise. Thus

one natural choice of base is f i(x1, . . . , xd) ¼ xi if r0 ¼ d, and these f i supplemented by

f ij(x1, . . . , xd) ¼ xixj for 1 < i < j < d if r0 ¼ d(d þ 3)=2.

The paper is concluded (Section 3) with two examples, one describing a generalized

Cox–Ingersoll–Ross model, the second the finite-dimensional Ornstein–Uhlenbeck

processes. For the latter it turns out that, using the base of first- and second-order

moments ( f i, f ij) described above, the concrete small ˜-optimal estimating function

exhibited in Theorem 2.2 for any ˜ yields the maximum likelihood estimator.

Although, both here and in Jacobsen (2001a), small ˜-optimality is discussed exclusively

for diffusions, it should be pointed out that the concept makes perfect sense for any model

involving discrete observations from an ergodic, time-homogeneous Markov process in

continuous time.
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2. Optimality and small ˜-optimality

Let X ¼ (X t) t>0 be a d-dimensional ergodic diffusion solving the stochastic differential

equation

dX t ¼ bŁ(X t)dt þ 	Ł(X t)dBt, X 0 ¼ U ,

where bŁ(x) 2 Rd31, 	Ł(x) 2 Rd3d , B is a standard d-dimensional Brownian motion and U

is a d-dimensional random variable, independent of B. Both the drift bŁ and the diffusion

coefficient 	Ł are allowed to depend on the p-dimensional parameter Ł 2 ¨, with the

parameter set ¨ an open subset of R p (typically delimited by the stationarity requirement).

The invariant distribution for X is denoted �Ł, i.e. if U has distribution �Ł, then X is a

strictly stationary Markov process.

We shall assume that X takes its values within some open subset D of Rd , which of

course is not allowed to depend on Ł. We assume that CŁ(x) :¼ 	Ł(x)	 T
Ł(x) + 0 for all Ł

and all x 2 D, i.e. the symmetric positive semidefinite matrix CŁ(x) is assumed to be

strictly positive definite always (T denotes matrix transposition).

We shall also write �Ł for the density of �Ł and assume that, for all Ł, �Ł . 0

everywhere on D. The transition density is denoted pt,Ł(x, y):

PŁ(X sþ t 2 dyjX s ¼ x) ¼ pt,Ł(x, y)dy:

The underlying probability PŁ depends not only on Ł but also on the distribution of X 0. It is

denoted P
�
Ł if X0 has distribution �Ł and Px

Ł if X0 , x. The corresponding expectations are

written E
�
Ł and Ex

Ł.

We shall denote by Qt,Ł the joint distribution of (X s, X sþ t) under P
�
Ł (for any s), and by

qt,Ł the density of Qt,Ł:

qt,Ł(x, y) ¼ �Ł(x) pt,Ł(x, y):

Finally, the transition operators for X are denoted � t,Ł,

� t,Ł f (x) ¼ Ex
Ł f (X t),

provided the integral makes sense (e.g. for f bounded or f 2 L1(�Ł)), and the differential

operator determining the infinitesimal generator is denoted AŁ,

AŁ fŁ(x) ¼
Xd

i¼1

bi
Ł(x)@xi

f (x)þ 1

2

Xd

i, j¼1

C
ij

Ł(x)@2
xi x j

f (x),

for sufficiently smooth functions f .

Suppose now that X is observed at finitely many equidistant time-points, X0,

X˜, . . . , X n˜. We shall discuss asymptotic optimality properties of estimators based on

martingale estimating functions, i.e. the estimator Ł̂Łn of Ł is found by solving the

estimating equation

Gn,˜(Ł) ¼
Xn

i¼1

g˜,Ł(X (i�1)˜, X i˜) ¼ 0, (2:1)
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where (t, Ł, x, y) ! gt,Ł(x, y) is a p-variate function such that each coordinate gk
t,Ł satisfies

the martingale condition

gk�
t,Ł (x) ¼ 0 for all x, gk�

t,Ł (x) :¼ Ex
Ł gk

t,Ł(X 0, X t), (2:2)

ensuring that (Gn,˜(Ł))n>1 is a p-dimensional PŁ-martingale (whatever the initial distribution

of X ).

At this point we wish to emphasize that the only type of asymptotics considered in

this paper is that consisting of fixing ˜ . 0 and letting n, the number of observations,

tend to 1 – in particular, we do not consider schemes where ˜ ¼ ˜n ! 0 and n !1
simultaneously. It is of critical importance, however, that we allow ˜ to be arbitrary, with

an estimating function available for each t ¼ ˜ (as is natural with the estimating functions

(2.6) below, originating from a given base ( f q) that does not depend on ˜), and hence we

obtain an asymptotic covariance matrix (see (2.4)) for each ˜. It is the properties of this

function of covariances that are used to define the concept of small ˜-optimality (see the

detailed discussion following the proof of Proposition 2.1 below).

Following the terminology in Jacobsen (2001a), we shall refer to G ¼ (g t,Ł) t.0,Ł2¨, where

the g t,Ł satisfy (2.2), as a well-behaved flow of martingale estimating functions, G � M (the

space of flows of martingale estimating functions), if each gk
t,Ł 2 L2(Qt,Ł), with

E
�
Ł g t,Ł9(X 0, X t) ¼ 0 if and only if Ł ¼ Ł9; (2:3)

if, furthermore, E
�
Ł (gt,Ł gT

t,Ł)(X0, X t) + 0 for all t, Ł; if @Ł‘ g k
t,Ł 2 L1(Qt,Ł) for all t, Ł, k, ‘;

and finally, if, for every Ł and every fixed t ¼ ˜ . 0, there is with P
�
Ł-probability tending to

1 a consistent solution Ł̂Łn ¼ Ł̂Łn(˜) (henceforth, ˜ is suppressed from the notation) to (2.1)

such that
ffiffiffi
n

p
(Ł̂Łn � Ł) converges in distribution for n !1 to the p-dimensional Gaussian

distribution with mean vector 0 and covariance matrix var˜,Ł0
(g, Ł̂Ł) (with Ł̂Ł denoting the

sequence (Ł̂Łn) of estimators) given by

var˜,Ł0
(g, Ł̂Ł) ¼ ¸�1

˜,Ł0
(g)E

�
Ł0

g˜,Ł0
gT
˜,Ł0

� �
(X 0, X˜) ¸�1

˜,Ł0
(g)

� �
T: (2:4)

Here

¸ t,Ł :¼ E
�
Ł _gg t,Ł(X 0, X t), (2:5)

the dot signifying differentiation with respect to Ł so that _gg t,Ł(x, y) 2 R p3 p is given by

( _gg t,Ł(x, y))k‘ ¼ @Ł‘ g k
t,Ł(x, y):

Condition (2.3) specifies that the estimation function is unbiased, as follows from (2.2),

and that it identifies the parameters. In Section 3.2 an example is given where (2.3) does

not hold.

The reader is reminded that asymptotic normality of Ł̂Ł, as specified above, holds under

quite weak assumptions (see Sørensen 1999) and that certainly (2.4) is the natural

expression for the asymptotic covariance. The most critical among the assumptions needed

is that ¸ t,Ł 2 R p3 p must be non-singular for all t, Ł.

Throughout the paper, derivatives are understood as matrices by analogy with (2.5): if �
is a r-variate function of a v-dimensional variable z ¼ (z1, . . . , zv) 2 Rv, @ z� denotes the
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r3 v matrix of partial derivatives with mth row (@ z1
�m, . . . , @ zv

�m). The dot notation is

used exclusively for differentiation with respect to Ł, _�� ¼ @Ł�.

In the remainder of the paper we shall focus on martingale estimating functions derived

from conditional expectations of given functionals, i.e. we assume that

gk
t,Ł(x, y) ¼

Xr

q¼1

h
qk

t,Ł(x)( f
q

Ł(y)� (� t,Ł f
q

Ł)(x)), (2:6)

or, in matrix notation,

g t,Ł(x, y) ¼ hT
t,Ł(x)( fŁ(y)� (� t,Ł fŁ)(x)),

with ht,Ł(x) 2 Rr3 p, fŁ(x) 2 Rr31. (The integrability assumptions imposed on general g

above make it natural to assume here that f
q
Ł and h

qk
t,Ł 2 L4(�Ł), while Ł-derivatives of f

q
Ł

and h
qk
t,Ł must belong to L2(�Ł). We shall not be too concerned about these conditions – it is

tacitly assumed everywhere that the flow G given by (2.6) is well behaved.)

Estimating functions of the form (2.6) were first used by Bibby and Sørensen (1995); see

also Jacobsen (2001a, Section 3) for an overview.

We shall refer to the functions ( f 1
Ł, . . . , f r

Ł) as the base for the flow of estimating

functions given by (2.6). The problem studied in this paper is that of finding good choices

for the dimension of the base and for the weights ht,Ł given the base.

Assumption A. The functions f
q
Ł(x) are supposed to be differentiable in Ł and twice

differentiable in x. Also, the base ( f 1
Ł, . . . , f r

Ł) is supposed to have full affine rank r on the

domain D for all Ł, i.e. for an arbitrary Ł the identity

Xr

q¼1

a
q

Ł f
q

Ł(x)þ ÆŁ ¼ 0, x 2 D,

for constants a
q

Ł, ÆŁ, implies a1
Ł ¼ . . . ¼ ar

Ł ¼ ÆŁ ¼ 0.

The functions h
qk

t,Ł are supposed to be such that, for any t, Ł, the p r-variate functions

x ! (h1k
t,Ł(x), . . . , hrk

t,Ł(x)) forming the columns of ht,Ł are linearly independent on D.

Note that if the base ( f 1
Ł, . . . , f r

Ł) does not have full affine rank, then there is a

representation (2.6) of the gk
t,Ł with r replaced by r � 1. The condition that the base has

full rank is equivalent to assuming that the r d-variate functions @x f
q

Ł, for 1 < q < r, are

linearly independent. In the main results, Theorems 2.2 and 2.3 below, Assumption A is

supplemented by conditions on the pointwise behaviour of @x fŁ and @2
xx fŁ.

If, for some t, the columns of ht,Ł are not linearly independent for all Ł, i.e. there exists

� t,Ł 2 R p31n0 such that ht,Ł(x)� t,Ł ¼ 0 for all x, then �T
t,Ł g t,Ł(x, y) ¼ 0 for all x, y, so that

one of the p estimating equations in (2.1) can be obtained from the others and it is

impossible to estimate all p parameters Ł‘ – formally, both matrices ¸ t,Ł(g) and

E
�
Ł (gt,Ł gT

t,Ł)(X 0, X t) become singular and (2.4) does not make sense.

Note that we allow the base ( f 1
Ł, . . . , f r

Ł) to depend on Ł, but not on t, i.e. the same

base is used for all t.
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For a given base, it is easy to determine the optimal choices for the h
qk

t,Ł, i.e. the choices

minimizing var t,Ł(g, Ł̂Ł) given by (2.4). We use the notation AfB between symmetric,

positive semidefinite matrices to signify that A� B is also positive semidefinite.

Proposition 2.1. Assume that, for all x, t and Ł, the symmetric r 3 r matrix

— t,Ł fŁ(x) :¼ � t,Ł fŁ f T
Ł

2 3
(x)� (� t,Ł fŁ)(x) � t,Ł f T

Ł

2 3
(x)

is non-singular, and define

h
opt
t,Ł ¼ (— t,Ł fŁ)�1 @Ł(� t,Ł fŁ)� � t,Ł

_ffŁ
2 32 3

: (2:7)

Provided that differentiation and integration can be interchanged in

@Ł

ð
pt,Ł(x, y) fŁ(y)dy ¼

ð
@Ł( pt,Ł(x, y) fŁ(y))dy

and the flow Gopt given by

g
opt
t,Ł(x, y) ¼ h

opt
t,Ł

� �
T(x)( fŁ(y)� � t,Ł fŁ(x)) (2:8)

is well behaved, then

var t,Ł(gopt, Ł̂Ł)dvar t,Ł(g, Ł̂Ł)

for any well-behaved flow G ¼ (gt,Ł) of the form (2.6) with base ( f 1
Ł, . . . , f r

Ł).

Proof. Since f is allowed to depend on Ł, this extends (2.10) in Bibby and Sørensen (1995)

and Example 4 in Jacobsen (2001a), so we merely indicate the proof. By the projection

theorem (Kessler 2000, Proposition 1; Jacobsen 2001a, Proposition 3), g
k,opt
t,Ł is found by

projecting the kth coordinate of the score function, @Łk
pt,Ł(x, y)=pt,Ł(x, y), onto the subspace

of L2(Qt,Ł) spanned by functions of the form (2.6) with the f
q
Ł fixed and arbitrary

h
qk

t,Ł 2 L2(�Ł). Thus h
qk,opt
t,Ł satisfies, for all 1 < q0 < r, 1 < k < p and all h 2 L2(�Ł), the

equality

0 ¼ E
�
Ł

@Łk pt,Ł

pt,Ł
(X0, X t)�

Xr

q¼1

h
qk,opt
t,Ł (X 0)( f

q

Ł(X t)� � t,Ł f
q

Ł(X0))

" #

3 h(X0)( f
q0

Ł (X t)� � t,Ł f
q0

Ł (X 0)): (2:9)

Using the fact that _ppt,Ł=pt,Ł is a martingale estimating function and that

Ex
Ł

@Łk pt,Ł

pt,Ł
(X 0, X t) f

q0

Ł (X t) ¼
ð
@Łk

pt,Ł(x, y) f
q0

Ł (y)dy

¼ @Łk

ð
pt,Ł(x, y) f

q0

Ł (y)dy�
ð

pt,Ł(x, y)@Łk
f

q0

Ł (y)dy,
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(2.9) may be written

0 ¼ E
�
Ł h(X0) @Łk

(� t,Ł f
q0

Ł )(X 0)� � t,Ł(@Łk
f

q0

Ł )(X0)

(

�
Xr

q¼1

h
qk,opt
t,Ł (X 0)(� t,Ł( f

q

Ł f
q0

Ł )(X 0)� � t,Ł f
q

Ł(X0)� t,Ł f
q0

Ł (X 0))

)

for all h 2 L2(�Ł), i.e. the expression in braces must vanish P
�
Ł-almost surely and the result

follows. h

Proposition 2.1 is a result on local optimality, i.e. it exhibits, for any given t ¼ ˜ . 0,

the best member of a given, restricted class of estimating functions – best from the point of

view of minimizing the asymptotic covariance of the resulting estimator when n !1; cf.

the concept of A-optimality (Heyde 1988). But only in exceptional cases will this choice be

globally optimal, i.e. the (locally) optimal estimator will be efficient with respect to the

maximum likelihood estimator.

By contrast, the concept of small ˜-optimality introduced by Jacobsen (2001a, Section 6)

gives conditions for global optimality not for any given ˜ . 0 but only for ˜! 0 in the

following sense: for any given ˜ . 0, when n !1 we still have the asymptotic covariance

var˜,Ł0
(g, Ł̂Ł) from (2.4), but now consider it as a function of ˜ and, rather than minimizing

for ˜ . 0 fixed, use the fact that there is an expansion of the covariance in powers of ˜
(see (2.10) below) and that there are universal (not depending on G ¼ (gt,Ł)) lower bounds

on one or more of the leading coefficient matrices in this expansion; see Jacobsen (2001a,

Section 6). Small ˜-optimality holds if these lower bounds are achieved by the flow G, and

sufficient conditions for this are contained in the main result, Theorem 1, in Jacobsen

(2001a), that we now recapitulate.

With G �M a well-behaved flow of estimating functions, it is first of all essential to

assume that there is a smooth extension of gt,Ł(x, y) (which is defined only for t . 0) to

allow t ¼ 0, i.e. after a possible renormalization of g t,Ł by a factor (non-zero scalar or non-

singular p 3 p matrix) depending on t, Ł but not on x, y (so the solution of (2.1) is not

affected), the limit

g0,Ł(x, y) ¼ lim
t!0

gt,Ł(x, y)

must exist with (x, y) ! g0,Ł(x, y) not identically 0, of full rank p in a suitable sense (see

Jacobsen 2001a, Theorem 1) and sufficiently smooth as required by the conditions below.

With this smooth extension of g t,Ł available, using Itô–Taylor expansions of the random

variables appearing in (2.4), it is shown in Jacobsen (2001a) that, subject to important

integrability conditions (see below), the asymptotic covariance for Ł̂Ł is given, as ˜! 0, by

var˜,Ł(g, Ł̂Ł) ¼ 1

˜
v�1,Ł(g, Ł̂Ł)þ v0,Ł(g, Ł̂Ł)þ o(1) (2:10)

with (complicated) coefficient matrices, for instance for case (i) below; see Jacobsen (2001a,

Corollary 1). For the discussion of small ˜-optimality, three cases for the structure of the
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diffusion model now arise (to achieve the structure in (iii) it may be necessary first to

reparametrize the model):

(i) CŁ ¼ C does not depend on Ł. Then the main term in (2.10) is always present and

small ˜-optimality is achieved by globally (over all g) minimizing v�1,Ł(g, Ł̂Ł). A

sufficient condition for a given flow (gt,Ł) to be small ˜-optimal is that

@ y g0,Ł(x, x) ¼ KŁ
_bbT
Ł(x)C�1(x) (2:11)

for some non-singular KŁ 2 R p3 p. (@ y g0,Ł(x, x) evaluates @ y g0,Ł(x, y) along the

diagonal y ¼ x.)

(ii) CŁ depends on all parameters Ł1, . . . , Ł p. Then the main term in (2.10) vanishes

provided @ y g0,Ł(x, x) , 0 and small ˜-optimality is achieved by minimizing

v0,Ł(g, Ł̂Ł). A sufficient condition for (g t,Ł) to be small ˜-optimal is that

@ y g0,Ł(x, x) ¼ 0, @2
yy g0,Ł(x, x) ¼ KŁ

_CCT
Ł(x) C.2

Ł (x)
2 3�1 (2:12)

for some non-singular KŁ 2 R p3 p. (Here _CCŁ(x) 2 Rd23 p with ( _CCŁ(x))ij,k ¼
@Łk

C
ij

Ł(x).)

(iii) CŁ depends on the parameters Ł1, . . . , Ł p9, but not on Ł p9þ1, . . . , Ł p, for some p9

with 1 < p9 , p. Then parts of the main term in (2.10) can be made to disappear so

that

v�1,Ł(g, Ł̂Ł) ¼ 0 p93 p9 0 p93( p� p9)

0( p� p9)3 p9 v22,�1,Ł(g, Ł̂Ł)

� �
:

Furthermore, the matrix v22,�1,Ł(g, Ł̂Ł) 2 R( p� p9)3( p� p9) can be minimized and small

˜-optimality is achieved by, in addition, minimizing the upper left block v11,0,Ł(g, Ł̂Ł)

of v0,Ł(g, Ł̂Ł). A sufficient condition for small ˜-optimality is that

@ y g0,Ł(x, x) ¼ cŁ

0 p93d

_bbT
2,Ł(x)C�1

Ł (x)

0
@

1
A,

@2
yy g1,0,Ł(x, x) ¼ K9Ł _CCT

1,Ł(x) C.2
Ł (x)

2 3�1 (2:13)

for some constant cŁ 6¼ 0 and some non-singular K9Ł 2 R p93 p9. ( _bb2,Ł 2 Rd3( p� p9)

comprises the last p� p9 columns of _bbŁ, g1,0,Ł the first p9 coordinates of g0,Ł, and
_CC1,Ł 2 Rd23 p9 the first p9 columns of _CCŁ.)

As mentioned above, to check for small ˜-optimality more is required than just checking

(2.11), (2.12) or (2.13): it must be verified that various matrices involving expectations of

quantities related to _bb, _CC, @ y g0,Ł and @2
yy g0,Ł must be non-singular; see Theorem 1 in

Jacobsen (2001a) and also (2.14) and (2.15) below.

The same theorem also gives the lower bounds for v�1 and v0. In case (i), the leading

coefficient matrix v�1 is present with lower bound

E
�
Ł
_bbT
Ł(X 0)C�1(X 0) _bbŁ(X0)

2 3�1, (2:14)
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while in case (ii) under small ˜-optimality v�1 ¼ 0 and the lower bound for v0 is

2 E
�
Ł
_CCT
Ł(X0) C.2

Ł (X 0)
2 3�1 _CCŁ(X 0)

2 3�1, (2:15)

with the lower bounds for case (iii) a suitable mixture of those for cases (i) and (ii) (Jacobsen

(2001a, Theorem 1 (iii)).

Thus, for ˜! 0, in case (i) var˜,Ł(g, Ł̂Ł) ¼ O(˜�1), while in case (ii) and partly in case

(iii) it is possible to obtain var˜,Ł(g, Ł̂Ł) ¼ O(1), i.e. for high-frequency data the parameters

appearing in CŁ can be estimated much more precisely than those that appear only in the

drift. An explanation for this is provided by observing that for ˜ . 0 small we are close to

continuous-time observation of X , and that if PŁ, t is the distribution of (X s)0<s< t under P
�
Ł,

in (i) it is typically the case that PŁ9, t / PŁ, t for Ł9 6¼ Ł with the information about Ł
proportional to t, while in case (ii) it may well happen that PŁ9, t ? PŁ, t, i.e. the true value

of Ł can be read off from the observations (X s)0<s< t. Of course, in case (ii), if one is not

using a small ˜-optimal estimating flow or at least one satisfying @ y g0,Ł(x, x) , 0, the

leading O(˜�1) term in (2.10) is present and the resulting estimator will have efficiency

close to 0 against one that is small ˜-optimal. An example of this phenomenon is given in

the simulation study by Jacobsen (2001b, Section 2.2) where, for a one-parameter model

belonging to case (ii), the optimal martingale estimating flow using a base of dimension 1

yields an estimator that for small ˜ is much worse than that derived from a small ˜-

optimal flow with a base of dimension 2.

We shall now show that small ˜-optimality of martingale estimating functions is easy to

achieve. The three cases refer to (i), (ii) and (iii) above.

Let J :¼ f(i9, j9) : 1 < i9 < j9 < dg. Thus J has jJ j ¼ d þ d(d � 1)=2 elements and can

be used as an index set for characterizing the elements of a symmetric d 3 d matrix. We

write R 2 Rd23J for the reduction matrix with elements

Rij,i9 j9 ¼ �ii9� jj9 (1 < i, j < d, (i9, j9) 2 J ):

Thus, if M 2 RA3d2

, then MR 2 RA3J with (MR)a,i9 j9 ¼ M a,i9 j9, as is used frequently below.

As a counterpart to R, the expansion matrix ~RR 2 RJ3d2

is defined by

~RRi9 j9,ij ¼
�i9i� j9 j if i < j,

�i9 j� j9i if i . j:

�

Then

~RRR ¼ I J3J (2:16)

and, for any matrix N 2 RS3d2

, symmetric in the sense that Ns,ij ¼ Ns, ji for all s, i, j,

N (R ~RR) ¼ N : (2:17)

Define

r0(d) :¼ d þ jJ j ¼ d(d þ 3)

2
,

a number that plays a critical role below. We will usually write r0 rather than r0(d).
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Theorem 2.2. Let ( f 1
Ł, . . . , f r

Ł) be a base for a martingale estimating function, of full affine

rank r.

(i) Suppose that r > d, that for �Ł-almost all x the matrix @x fŁ(x) 2 Rr3d is of full

rank d, and that the p d-variate functions forming the columns of _bbŁ are linearly

independent. Then there exists ht,Ł(x) ¼ hŁ(x) 2 Rr3 p, not depending on t, such that

g t,Ł(x, y) :¼ hT
Ł(x)( fŁ(y)� � t,Ł f (x)) satisfies the small ˜-optimality condition

(2.11). In particular, for r ¼ d, one may choose

hT
Ł(x) ¼ _bbT

Ł(x)C�1(x)(@x fŁ(x))�1, (2:18)

and this hŁ has linearly independent columns as required in Assumption A.

(ii) Suppose that r > r0, that for �Ł-almost all x, the matrix

@x fŁ(x) @2
xx fŁ(x)

2 3
2 Rr3(dþd2)

is of full rank r0 and that the p d2-variate functions forming the columns of _CCŁ are

linearly independent. Then there exists ht,Ł ¼ hŁ 2 Rr3 p, not depending on t, such

that g t,Ł(x, y) :¼ hT
Ł(x)( fŁ(y)� � t,Ł f (x)) satisfies the small ˜-optimality condition

(2.12). In particular, for r ¼ r0, one may choose

hT
Ł(x) ¼ 0 p3d

_CCT
Ł(x)(C.2

Ł (x))�1 R
2 3

(D1,2 fŁ(x))�1, (2:19)

where

D1,2 fŁ(x) ¼ @x fŁ(x) @2
xx fŁ(x)R

2 3
, (2:20)

and this hŁ has linearly independent columns as required in Assumption A.

(iii) Suppose that r > r0, that for �Ł-almost all x, the matrix

@x fŁ(x) @2
xx fŁ(x)

2 3
2 Rr3(dþd2)

is of full rank r0, that the p� p9 d-variate functions forming the columns of _bb2,Ł are

linearly independent, and that the p9 d2-variate functions forming the columns of
_CC1,Ł are linearly independent. Then there exists ht,Ł ¼ hŁ 2 Rr3 p, not depending on

t, such that g t,Ł(x, y) :¼ hT
Ł(x)( fŁ(y)� � t,Ł f (x)) satisfies the small ˜-optimality

condition (2.13). In particular, for r ¼ r0 one may choose, with D1,2 fŁ as in (2.20),

hT
Ł(x) ¼ 0 p93d

_CCT
1,Ł(x) C.2

Ł (x)
2 3�1 R

_bbT
2,Ł(x)C�1

Ł (x) �

 !
(D1,2 fŁ(x))�1: (2:21)

with � a ( p� p9) 3 J matrix depending arbitrarily on Ł and x. If � is chosen equal

to 0, then this hŁ has linearly independent columns as required in Assumption A.

Proof. Since hŁ does not depend on t,

g0,Ł(x, y) ¼ hT
Ł(x)( fŁ(y)� fŁ(x)),

whence

@ y g0,Ł(x, x) ¼ hT
Ł(x)@x fŁ(x), @2

yy g0,Ł(x, x) ¼ hT
Ł(x)@2

xx fŁ(x):

652 M. Jacobsen



Thus, for each x, (2.11), (2.12) or (2.13) gives a system of linear equations for determining

the elements of hŁ(x). The conditions of the theorem ensure that these equations have at least

one solution, and exactly one in case (i) if r ¼ d and in case (ii) if r ¼ r0. (For case (ii), note

that since @2
xi x j

¼ @2
x j xi

, the rank of @2
xx fŁ is at most jJ j. With hŁ given by (2.19), one now

finds

@2
yy g0,Ł(x, x)R ¼ _CCT

Ł(x) C.2
Ł (x)

2 3�1 R,

and, using (2.17), this implies the second identity in (2.12).)

The assertions about hŁ having linearly independent columns follow readily from the

assumptions made on the columns of _bbŁ (case (i)), _CCŁ (case (ii)) and _bb2,Ł and _CC1,Ł (case

(iii)). h

Theorem 2.2 only gives a solution for hŁ such that (2.11), (2.12) or (2.13) is satisfied. To

check small ˜-optimality one further has to check the required integrability conditions (e.g.

that all h
qk

Ł 2 L4(�Ł)) as well as the conditions for the estimators to be well behaved

asymptotically.

In Theorem 2.2 we have exhibited a concrete choice of small ˜-optimal estimating

functions from a given base ( f
q
Ł). But it is then easy to define a host of others that are also

small ˜-optimal, but may behave better for a given ˜, namely, flows (gt,Ł) of the form

gk
t,Ł(x, y) ¼

Xr

q¼1

a
qk

Ł (t)h
qk

Ł (x)( f
q

Ł(y)� � t,Ł f
q

Ł(x)), (2:22)

with hT
Ł given by (2.18), (2.19) or (2.21) and each a

qk
Ł (t) a non-random function of t,

continuous with a
qk

Ł (0) ¼ 1: for this flow, g0,Ł is the same as for the original flow, so small

˜-optimality still holds. However, there is no obvious optimal choice for the a
qk

Ł (t), in

particular the projection technique from the proof of Proposition 2.1 does not apply.

Remark 1. In Theorem 2.2, case (iii), the expression (2.21) for hT
Ł(x) depends on the choice

of �. This choice can be avoided by using a different procedure that is perhaps better suited

to practical applications. By inspection of (2.13) it is seen that small ˜-optimality in case (iii)

can be obtained as follows. First, fix (Ł p9þ1, . . . , Ł p) and find a small ˜-optimal estimating

flow for estimating (Ł1, . . . , Ł p9) as in case (ii); see (2.12). Then, for (Ł1, . . . , Ł p9) fixed, find

a small ˜-optimal estimating flow for estimating (Ł p9þ1, . . . , Ł p) as in case (i); see (2.11).

Formally, this is done by combining the small ˜-optimal weights from Theorem 2.2, (i) and

(ii), and for this purpose considering an r0-dimensional base f T
Ł ¼ ( f 0T

Ł
~ff T
Ł) satisfying

Assumption A whose two components have dimension d and jJ j respectively – typically one

would use ~ff i9 j9
Ł ¼ f 0i9

Ł f
0 j9
Ł for (i9, j9) 2 J so that f 0Ł determines the entire base, with of course

f 0i(x) ¼ xi the most natural example. The matrix hT
Ł of small ˜-optimal weights now takes

the form

hT
Ł ¼

hT
1,Ł

hT
2,Ł 0( p� p9)3J

 !
, (2:23)
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with hT
1,Ł 2 R p93r0 and hT

2,Ł 2 R( p� p9)3d given by

hT
1,Ł(x) ¼ 0 p3d

_CCT
1,Ł(x) C.2

Ł (x)
2 3�1 R

� �
(D1,2 fŁ(x))�1, (2:24)

hT
2,Ł(x) ¼ _bbT

2,Ł(x)C�1
Ł (x)(@x f 0Ł(x))�1

and, in block matrix notation,

D1,2 fŁ(x) ¼ @x f 0Ł @2
xx f 0ŁR

@x
~ffŁ @2

xx
~ffŁR

� �
:

With hŁ determined by (2.23) and (2.24), it is readily verified that the columns of hŁ are

linearly independent as required by Assumption A, and also that hŁ is the same as was given

by (2.21) when

� ¼ _bbT
2,ŁC�1

Ł (@x f 0Ł)�1@2
xx f 0ŁR: (2:25)

In particular, if f 0i
Ł (x) ¼ xi the two expressions agree for � ¼ 0.

Remark 2. We mention one important special structure for the diffusion model that in cases

(ii) and (iii) permits small ˜-optimal weights using a base of dimension r , r0. Suppose that

there is a decomposition f1, . . . , dg ¼
Sk

�¼1 I (�) of the coordinates into disjoint non-empty

sets I (�) with k > 2, jI (�)j ¼ d� and
P

d� ¼ d such that (assuming for convenience that I (1)

comprises the first d1 coordinates, I (2) the next d2, etc.), for all Ł and x, CŁ(x) can be written

in block-diagonal form

CŁ(x) ¼
C

(1)
Ł (x) 1 1 1 0

..

. . .
. ..

.

0 1 1 1 C
(k)
Ł (x)

0
B@

1
CA, (2:26)

with each C
(�)
Ł (x) 2 Rd(�)3d(�)

.

The most important special case of this is of course when the components

X (�) ¼ (X i)i2 I (�) , 1 < � < k, are stochastically independent (assuming the initial values

X
(�)
0 to be independent) so that in addition C

(�)
Ł (x) and (bi

Ł(x))i2 I (�) depend on x through

x(�) ¼ (xi)i2 I (�) only. However, independence is not required for the following discussion.

It is intuitively clear, at least under independence, that for case (ii) or (iii) models small

˜-optimal weights hŁ can be found from a base of dimension r1 ¼
P

� r0(d�) , r0 (with a

further reduction possible if one of the blocks C
(�)
Ł does not depend on Ł, or of course if a

finer block structure than (2.26) is possible), and this we now verify.

Suppose the model belongs to case (ii) and that (2.26) holds. For each �, determine a

base f
(�)
Ł of dimension r0(d�) such that f

(�)
Ł (x) as a function of x depends on x(�) only. If

each f (�)
Ł

satisfies Assumption A (as a function on R I (�)

), then so does the combined base

fŁ given by f T
Ł ¼ ( f

(1)T
Ł 1 1 1 f

(k)T
Ł ) of dimension r1 (as a function on Rd). Now define, by

analogy with (2.19) (with R(�) the obvious reduction matrix for I (�)),

h
(�T
Ł (x) ¼ 0 p3d�

_CC(�)T
Ł (x) C

(�).2
Ł (x)

� �
�1 R(�)

� �
D1,2 f

(�)
Ł x(�)
2 3� �

�1, (2:27)
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where (cf. (2.20))

D1,2 f
(�)
Ł (x(�)) ¼ @x(�) f

(�)
Ł (x(�)) @2

x(�) x(�) f
(�)
Ł (x(�))R(�)

� �
,

and combine the h
(�)T
Ł into

h
(1)T
Ł ¼ (h

(1)T
Ł 1 1 1 h

(k)T
Ł ) (2:28)

by juxtaposition. Then the weights hŁ are small ˜-optimal,

hT
Ł@x fŁ ¼ 0, hT

Ł@
2
xx fŁ ¼ _CCT

Ł C.2
Ł

2 3�1,

as is easily verified using the special structure of fŁ and of course (2.26), which implies that

_CCT
Ł C.2

Ł

2 3�1
2 3

k,ij ¼ _CC(�)T
Ł C

(�).2
Ł

� �
�1

� �
k,ij

if i, j 2 I (�), and taking the value 0 if i, j belong to two different I (�).

For case (iii) one may use the construction from Remark 1 and let each f
(�)
Ł consist of

f
0(�)
Ł of dimension d� and ~ff (�)

Ł of dimension r0(d�)� d�. The small ˜-optimal weights hŁ

then take the form (2.28) but with each h
(�)
Ł now with the structure from (2.23),

h
(�)T
Ł ¼ h

(�)T
1,Ł

h
(�)T
2,Ł 0( p� p9)3J (�)

 !
,

where h
(�)T
1,Ł is given by (2.27) when replacing _CC(�)

Ł by _CC(�)
1,Ł and with f

(�)
Ł comprising f

0(�)
Ł and

~ff (�)
Ł as just described, and where

h
(�)T
2,Ł (x) ¼ _bb(�)T

2,Ł (x) C
(�)
Ł (x)

� �
�1 @x(�) f 0(�) x(�)

2 32 3�1,

with b
(�)
Ł of course collecting the coordinates (bi

Ł)i2 I (�) of bŁ and _bb(�)
2,Ł signifying differentiation

of b
(�)
Ł with respect to the parameters Ł p9þ1, . . . , Ł p not appearing in CŁ.

Remark 3. The results and remarks above have shown that there are lots of small ˜-optimal

estimating functions. Yet another way of achieving small ˜-optimality may be by using

generalized method of moments estimators (Hansen 1982). Start with Gn,˜ as in (2.1) with

g˜,Ł of the form (2.6), but allow the dimension to be s > p. Then introduce a random weight

matrix an not depending on Ł, of dimension s9 3 s for some s9 > p, and minimize the scalar

GT
n,˜(Ł)aT

nanGn,˜(Ł) as a function of Ł to obtain the estimator. Here we shall not investigate

under what conditions this estimator is small ˜-optimal.

We return now to the discussion of the optimal martingale estimating function (2.8)

determined by the base ( f 1
Ł, . . . , f r

Ł). Since, for any given t ¼ ˜ . 0, g
opt
˜,Ł is better than a

g˜,Ł where h˜,Ł ¼ hŁ is determined as in Theorem 2.2, the flow Gopt ¼ (g
opt
t,Ł ) should be

small ˜-optimal if r > d in case (i) or r > r0 in cases (ii) or (iii). What, however, does not

follow from Theorem 2.2 is that Gopt satisfies condition (2.11), (2.12) or (2.13). We shall

now verify that this is the case (for r ¼ d and r0, respectively). We also believe that in

general (excepting for cases (ii) and (iii) the block structure from Remark 2 and possibly

other special structures for the model) the lower bounds d and r0 for r cannot be improved

upon. In the statement of the result, the three cases are treated separately as usual.
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Theorem 2.3 For the optimal flow Gopt ¼ (g
opt
t,Ł ) of martingale estimating functions with base

( f 1
Ł, . . . , f r

Ł) the following results hold:

(i) If r ¼ d and the matrix @x fŁ(x) is non-singular for �Ł-almost all x, then

g
opt
0,Ł(x, y) ¼ lim

t!0
g

opt
t,Ł(x, y)

and

@ y g
opt
0,Ł(x, x) ¼ _bbT

Ł(x)C�1(x):

(ii) If r ¼ r0 and the matrix

(@x fŁ(x) @2
xx fŁ(x)) 2 Rr3(dþd2)

is of full rank r0 for �Ł-almost all x, then

g
opt
0,Ł(x, y) ¼ lim

t!0
tg

opt
t,Ł (x, y)

and

@ y g
opt
0,Ł(x, x) ¼ 0, @2

yy g
opt
0,Ł(x, x) ¼ _CCT

Ł(x) C.2
Ł (x)

2 3�1:

(iii) If r ¼ r0 and the matrix

@x fŁ(x) @2
xx fŁ(x)

2 3
2 Rr3(dþd2)

is of full rank r0 for �Ł-almost all x, then

g
opt
0,Ł(x, y) ¼ lim

t!0

tg
opt
1, t,Ł

g
opt
2, t,Ł

 !

and

@ y g
opt
0,Ł(x, x) ¼

0 p93d

_bbT
2,Ł(x)C�1

Ł (x)

� �
, @2

yy g
opt
1,0,Ł(x, x) ¼ _CCT

1,Ł(x) C.2
Ł (x)

2 3�1: (2:29)

Proof. The main difficulty lies in finding g
opt
0,Ł from (2.8) and (2.7). The reader is initially

reminded that if r(x) is twice differentiable in x with r 2 L1(�Ł), then, provided

AŁr 2 L1(�Ł) and (@xr)CŁ(@xr)T 2 L1(�Ł), the expansion

� t,Łr(x) ¼ r(x)þ tAŁr(x)þ o(t, x) (2:30)

holds with o(t, x)=t ! 0 as t ! 0 for each x. Such expansions are used repeatedly below, not

only for some function r, but later in the proof also when r is replaced by AŁr, and it should

be kept in mind that this presupposes that, for example, the sufficient (but far from necessary)

conditions given above for (2.30) to hold are satisfied.
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Note at this point that for sufficiently nice functions �, ł, since

� t,Ł(�ł) ¼ �łþ tAŁ(�ł)þ o(t),

(� t,Ł�)(� t,Łł) ¼ (�þ tAŁ�)(łþ tAŁł)þ o(t)

(with o(t)=t ¼ o(t, x)=t ! 0 for each x) and

AŁ(�ł) ¼ (AŁ�)łþ �(AŁł)þ (@x�)CŁ(@ xł)T, (2:31)

it follows that

� t,Ł(�ł)� (� t,Ł�)(� t,Łł) ¼ t(@x�)CŁ(@xł)T þ o(t): (2:32)

Now use (2.32) with � ¼ f q, ł ¼ f q9, 1 < q, q9 < r (with r arbitrary at the moment), to

obtain

� t,Ł( fŁ f T
Ł)� (� t,Ł fŁ)(� t,Ł fŁ)T ¼ t(@x fŁ)CŁ(@x fŁ)T þ o(t), (2:33)

and it is seen that the main term on the right evaluated at x is a non-singular r 3 r matrix

only if r < d and @x f (x) 2 Rr3d is of full rank r.

To find g
opt
0,Ł we also need to approximate the factor @Ł� t,Ł fŁ � � t,Ł

_ff from (2.7).

Assuming that @Ło(t) ¼ o(t) and that _ffŁ is smooth enough,

@Ł� t,Ł fŁ ¼ @Ł( fŁ þ tAŁ fŁ þ o(t))

¼ _ffŁ þ t AŁ
_ffŁ þ (@x fŁ) _bbŁ þ 1

2
@2

xx fŁ
2 3

_CCŁ

2 3
þ o(t),

� t,Ł
_ffŁ ¼ _ffŁ þ tAŁ

_ffŁ þ o(t)

and thus

@Ł� t,Ł fŁ � � t,Ł
_ffŁ ¼ t (@x fŁ) _bbŁ þ 1

2
@2

xx fŁ
2 3

_CCŁ

2 3
þ o(t): (2:34)

Case (i). Since _CCŁ , 0, (2.34) reduces to

@Ł� t,Ł fŁ � � t,Ł
_ffŁ ¼ t(@ x fŁ) _bbŁ þ o(t),

and therefore, using (2.33), it follows that if r < d, then

g
opt
0,Ł(x, y) ¼ lim

t!0
g

opt
t,Ł (x, y)

¼ _bbT
Ł(x)(@x fŁ)T(x) @x fŁ(x)C(x)(@x fŁ)T(x)

6 7�1( fŁ(y)� fŁ(x))

so that

@ y g
opt
0,Ł(x, x) ¼ _bbT

Ł(x)(@ x fŁ)T(x) @x fŁ(x)C(x)(@x fŁ)T(x)
6 7�1@ x fŁ(x): (2:35)

For r ¼ d this reduces to _bbT
Ł(x)C�1(x) as required. (For r , d the d 3 d matrix appearing as

a factor to the right of _bbT
Ł(x) has rank r, hence can never equal the non-singular d 3 d matrix

C�1(x). However, in some special cases it may still be possible to obtain @ y g
opt
0,Ł(x, x) ¼

_bbT
Ł(x)C�1(x)).
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Case (ii). Assume that r . d. Then the main term on the right of (2.33) becomes

singular and it is therefore necessary to expand further. But from the basic expansion

� t,Łj ¼ jþ tAŁjþ 1
2
t2 A2

Łjþ o(t2),

using (2.31) repeatedly, it eventually follows that

� t,Ł( fŁ f T
Ł)� (� t,Ł fŁ)(� t,Ł fŁ)T ¼ t(@x fŁ)CŁ(@ x fŁ)T þ 1

2
t2Qþ o(t2), (2:36)

with Q of the form

Q ¼ (@2
xx fŁ)C.2

Ł (@2
xx fŁ)T þ (@x fŁ)S þ ST(@x fŁ)T (2:37)

for some S(x) 2 Rd3r. By Lemma A.1 in the Appendix, therefore (with A ¼
(@x fŁ)CŁ(@x fŁ)T, B ¼ 1

2
Q),

lim
t!0

t2 � t,Ł( fŁ f T
Ł)� (� t,Ł fŁ)(� t,Ł fŁ)T

6 7�1 ¼ OT
2 O2

1
2
QOT

2

2 3�1O2, (2:38)

where OT(x) ¼ (OT
1 (x) OT

2 (x)) 2 Rr3r is orthogonal for each x, O1(x) comprising the first d

and O2(x) the last r � d rows of O(x), and satisfies

O(x)(@x fŁ(x))CŁ(x)(@x fŁ)T(x)OT(x) ¼ diag(º1(x), . . . , ºd(x), 0, . . . , 0) (2:39)

with º1(x), . . . , ºd(x) . 0 the non-zero eigenvalues for (@x fŁ)CŁ(@x fŁ)T evaluated at x.

But from (2.39) it follows that

O2(x)(@x fŁ(x))CŁ(x)(@x fŁ)T(x)OT
2 (x) ¼ 0

or, since CŁ(x) + 0, that

O2@ x fŁ ¼ 0: (2:40)

Combining (2.38) with (2.34) and using (2.40), it follows that

g
opt
0,Ł(x, y) ¼ lim

t!0
tg

opt
t,Ł(x, y)

¼ _CCT
Ł(@2

xx fŁ)TOT
2 [O2(@2

xx fŁ)C.2
Ł (@2

xx fŁ)TOT
2 ]�1O2( fŁ(y)� fŁ(x)),

with all factors to the left of fŁ(y) evaluated at x. Using (2.40), it is clear that

@ y g
opt
0,Ł(x, x) ¼ 0 always, and hence, to obtain (2.12), it remains to check whether (omitting

the argument x with @2
xx g

opt
0,Ł short for @2

yy g
opt
0,Ł(x, x))

@2
xx g

opt
0,Ł ¼ _CCT

Ł(@2
xx fŁ)TOT

2 O2(@2
xx fŁ)C.2

Ł (@2
xx fŁ)TOT

2

6 7�1O2@
2
xx fŁ ¼ _CCT

Ł(C.2
Ł )�1: (2:41)

To achieve this we now assume that r ¼ r0, so that r � d ¼ jJ j, and use the assumption

from the theorem that @2
xx fŁ(x) has full rank jJ j for all x. Then ˆ :¼ (@2

xx fŁ)R also has rank

jJ j and O2ˆ 2 RJ3J is non-singular, and, using @2
xx fŁ ¼ @2

xx fŁ(R ~RR) (cf. (2.17)), (2.41)

therefore gives

(@2
xx g

opt
0,Ł)R ¼ _CCT

Ł
~RRTˆTOT

2 O2ˆ ~RRC.2
Ł

~RRTˆTOT
2

6 7�1O2ˆ

¼ _CCT
Ł
~RRT ~RRC.2

Ł
~RRT

2 3�1: (2:42)
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That @2
xx g

opt
0,Ł ¼ _CCT

Ł(C.2
Ł )�1 will follow from (cf. (2.17))

(@2
xx g

opt
0,Ł)R ¼ _CCT

Ł(C.2
Ł )�1 R,

and that the right-hand side here indeed equals that of (2.42) is verified by multiplying by
~RRC.2

Ł
~RRT from the right, again appealing to (2.17).

Case (iii). Here we initially proceed as in case (ii), arriving at (cf. (2.36))

g
opt
t,Ł (x, y) ¼ _bbT

Ł(@x fŁ)T þ 1
2
_CCT
Ł @2

xx fŁ
2 3

T þ o(1)
2 3

(2:43)

3 (@x fŁ)CŁ(@x fŁ)T þ 1
2
tQþ o(t)

2 3�1( fŁ(y)� fŁ(x)þ o(1))

with Q as in (2.37).

Considering first the last p� p9 components of g
opt
t,Ł , since by assumption _CC2,Ł , 0, it

follows from Lemma A.1 that

g
opt
2, t,Ł(x, y) ¼ _bbT

2,Ł(@x fŁ)T 1
t
OT

2 O2
1
2
QOT

2

2 3�1O2 þ N
2 3

( fŁ(y)� fŁ(x))þ o(1),

which, because of (2.40), in the limit reduces to

g
opt
2,0,Ł(x, y) ¼ lim

t!0
g

opt
2, t,Ł(x, y) ¼ _bbT

2,Ł(@x fŁ)T N ( fŁ(y)� fŁ(x))

with N of the form

N ¼ OT
1 (O1(@x fŁ)CŁ(@x fŁ)TOT

1 )�1O1 þOT
2
~SS þ ~SSTO2:

But then, again using (2.40) and since O1(@ x fŁ) 2 Rd3d is non-singular,

@ y g
opt
2,0,Ł(x, x) ¼ _bbT

2,Ł(@x fŁ)TOT
1 (O1(@ x fŁ)CŁ(@x fŁ)TOT

1 )�1O1(@x fŁ)

¼ _bbT
2,ŁC�1

Ł ,

as required in the first part of (2.29).

As for the first p9 components of g
opt
t,Ł , obtain from (2.43) that

tg
opt
1, t,Ł(x, y) ¼ ( _bbT

1,Ł(@x fŁ)T þ 1
2
_CCT

1,Ł(@2
xx fŁ)T)OT

2 (O2
1
2
QOT

2 )�1O2( fŁ(y)� fŁ(x))þ o(1),

whence

g
opt
1,0,Ł(x, y) ¼ lim

t!0
tg

opt
1, t,Ł(x, y)

¼ 1
2
_CCT

1,Ł(@2
xx fŁ)TOT

2 O2
1
2
@2

xx fŁ
2 3

C.2 @2
xx fŁ

2 3
TOT

2

2 3�1O2( fŁ(y)� fŁ(x)),

once again using (2.40). But then (2.40) also gives

@ y g
opt
1,0,Ł(x, x) ¼ 0,

and arguing exactly as in the last part of case (ii), one finally finds that

@2
yy g

opt
1,0,Ł(x, x) ¼ _CCT

1,Ł C.2
Ł

2 3�1,

and we have completed the proof of (2.29). h
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We have not shown that (2.11) (or (2.12) or (2.13)) is satisfied for the optimal martingale

estimating function when r . d (or r . r0). For case (i) with r . d one may copy the

argument involving g
opt
2,Ł given in case (iii) above. For cases (ii) and (iii), if r . r0 a further

expansion of (2.36) together with a refinement of Lemma A.1 is required, since, for

example, the columns of A ¼ (@ x fŁ)CŁ(@x fŁ)T and B ¼ 1
2
Q cannot span a subspace of

dimension r. We believe, however, that (2.12) (case (ii)) or (2.13) (case (iii)) is still valid

for the optimal martingale estimating function, even if r . r0.

Remark 4. For d ¼ 1, Bibby and Sørensen (1995) studied martingale estimating functions

with the one-dimensional (r ¼ 1) base f (x) ¼ x, and, apart from deriving the optimal

estimating function G�n (their (2.15)), also suggested the use of an approximately optimal ~GGn

(their (2.14)). In general, the weights for ~GGn are arrived at by replacing the true transition

probabilities as they appear in our (2.7) by the Gaussian approximations corresponding to the

Euler scheme, i.e. the conditional distribution of X t given X 0 ¼ x is approximated by the

normal distribution nt,Ł(x, 1) with mean xþ tbŁ(x) and variance tCŁ(x). It may be shown, at

least for d ¼ 1 and r ¼ r0, that the estimator resulting from ~GGn is small ˜-optimal.

3. Examples

We shall illustrate the foregoing results with two examples.

3.1. A generalized Cox–Ingersoll–Ross process

Consider the one-dimensional (d ¼ 1) equation

dX t ¼ aX
2ª�1
t þ bX t

� �
dt þ 	 X

ª
t dBt, (3:1)

where a, b 2 R, ª 6¼ 1 and 	 . 0. For ª ¼ 1
2

this is the stochastic differential equation for the

Cox–Ingersoll–Ross (CIR) process (see (3.2) below). The generalization (3.1) is arrived at by

considering all powers ~XX r of a CIR process with r 6¼ 0; more precisely, if X solves (3.1),

then the associated CIR process is ~XX ¼ X 2�2ª solving

d ~XX t ¼ ~aaþ ~bb ~XX t

2 3
dt þ ~		

ffiffiffiffiffiffi
~XX t

q
dBt, (3:2)

where

~bb ¼ (2� 2ª)b, ~		 2 ¼ (2� 2ª)2	 2, ~aa� 1
2
~		 2 ¼ (2� 2ª) a� 1

2
	 2

2 3
(3:3)

(which also explains why ª ¼ 1 is not allowed in (3.1)).

Because of the connection to the CIR process, the model described by (3.1) is much

simpler to handle than the more standard Chan–Karolyi–Longstaff–Sanders model,

dX t ¼ (aþ bX t)dt þ 	 X
ª
t dBt;

in particular, for (3.1) it is easy to find martingale estimating functions of the type considered

in the preceding sections.
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In (3.1) the parameter space has dimension p ¼ 4. We shall want X to be strictly positive

and ergodic, which happens if and only if the associated CIR process ~XX is strictly positive

and ergodic, i.e. ~bb , 0 and 2~aa > ~		 2, or equivalently, either ª , 1, b , 0, 2a > 	 2 or

ª . 1, b . 0, 2a < 	 2. As our open parameter set we shall therefore use

¨ ¼ (a, b, ª, 	 2) : 	 2 . 0 and either ª , 1, b , 0, 2a . 	 2 or ª . 1, b . 0, 2a , 	 2
1 8

:

Note that if Ł ¼ (a, b, ª, 	 2) 2 ¨ and r 6¼ 0, then X r solves (3.1) with parameters

Ł� ¼ (a�, b�, ª�, 	�2) given by

b� ¼ rb, 	�2 ¼ r2	 2, 2� 2ª� ¼ 1

r
(2� 2ª), a� � 1

2
	�2 ¼ r a� 1

2
	 2

2 3
:

In particular, taking r , 0 corresponds to a switch from ª , 1 to ª� . 1 (or from ª . 1 to

ª� , 1).

Since the invariant distribution for ~XX is a gamma distribution, the invariant distribution

for X is that of a gamma-distributed random variable raised to the power (2� 2ª)�1. The

density is

�Ł(x) ¼ j2� 2ªj
ˆ(2~aa=~		 2)((2ª� 2)	 2=2b)2~aa= ~		 2 x2a=	 2�2ª exp � 2b

(2ª� 2)	 2
x2�2ª

� �
(3:4)

for x . 0, where (cf. (3.3))

2~aa

~		 2
¼ 2a

(2� 2ª)	 2
þ 1� 2ª

2� 2ª
:

(For ª ¼ 1
2

the familiar invariant gamma density for the CIR process is obtained.)

Because a gamma distribution has finite moments of all orders m 2 N, we have

E
�
Ł X

(2�2ª)m
0 ,1 for all m 2 N, and, since

E
�
Ł X

(2�2ª)m
t ¼

ð1
0

dx�Ł(x)� t,Łx(2�2ª)m

(where � t,Łx� is short for � t,Ł f (x) for f (y) ¼ y�), also

� t,Łx(2�2ª)m ,1

for all t . 0, m 2 N and (Lebesgue almost all) x . 0.

The conditional moments for a CIR process are known and in any case easy to find using

polynomial martingales: for m 2 N, let ~��m be the mth moment in the invariant distribution

for ~XX ,

~��m ¼ �
~		 2

2~bb

� �m
ˆ(2~aa=~		 2 þ m)

ˆ(2~aa=~		 2)
,

Small ˜-optimality of martingale estimating functions 661



and verify, for instance using induction on m and Itô’s formula, that M (m) is a mean-zero

martingale (see the note below) under each Px
Ł, where

M
(m)
t ¼ e�

~bbmt
Xm

i¼1

�(m)
i X

(2�2ª)i
t � ~��i

� �
(3:5)

with

�(m)
i ¼ 1

~��i

(�1)i�1 m

i

� �
:

(Equivalently, for each m, the polynomial
P

i�
(m)
i (xi � ~��i) of degree m is an eigenfunction

for the generator for the CIR process (3.2) corresponding to the eigenvalue ~bbm; see Kessler

and Sørensen (1999) for estimating functions built from eigenfunctions, and their Example

2.1 for the CIR process).

Note that, because all conditional moments for the ergodic CIR process are finite, one

verifies directly that the local martingale M (m) satisfies Ex
Ł[M (m)] t ,1 for all x and t, in

particular M (m) is therefore a true martingale under Px
Ł (L2-bounded on [0, t] for all t).

Turning now to the problem of estimating Ł from discrete observations of X , it is clear

that (3.1) belongs to case (iii) with p ¼ 4, p9 ¼ 2, so we shall apply Theorems 2.2 and 2.3

for that case with r ¼ r0(1) ¼ 2. In view of the above, a natural candidate for the base

( f 1, f 2) is

f 1(x) ¼ x2�2ª, f 2(x) ¼ x4�4ª, (3:6)

which trivially satisfies Assumption A. Note that f 1, f 2 both depend on Ł; cf. the comment

immediately preceding Proposition 2.1.

In order to find an example of small ˜-optimal weights we use the recipe from Remark 1

(corresponding to the special choice (2.25) of � in Theorem 2.2, case (iii)) and, listing the

parameters in the order ª, 	 2, a, b, we find that

_bbT
2,Ł(x) ¼ x2ª�1

x

� �
, _CCT

1,Ł(x) ¼ 2	 2x2ª log x

x2ª

� �

and eventually arrive at the estimating function

gt,Ł(x, y) ¼
�2 log x x2ª�2 log x

�2 x2ª�2

x2ª�2 0

1 0

0
BB@

1
CCA y2�2ª � � t,Łx2�2ª

y4�4ª � � t,Łx4�4ª

� �
, (3:7)

which requires the use of (3.5) for m ¼ 1, 2 in order to find the conditional expectations.

That gt,Ł given by (3.7) indeed satisfies the conditions (2.13) for small ˜-optimality is

most easily verified directly. Note that the linear independence asserted in Theorem 2.2

between the columns in hŁ, i.e. the functions comprising the rows in the 4 3 2 matrix in

(3.7), holds precisely because ª 6¼ 1.

For the flow (gt,Ł) given by (3.7) one still needs to check the integrability assumptions

from Jacobsen (2001a, Theorem 1) and the conditions on estimating flows made prior to
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that theorem. In the case at hand the conditions in particular amount to requiring that

E
�
Ł jgk

t,Ł(X0, X t)jK ,1 for all components k and moderate values of K 2 N. The problem

is the appearance of the power x2ª�2 in the expression for gt,Ł, which translates into

negative powers ~XX�1
0 and ~XX�2

0 of the CIR process ~XX , and of course, for example,

E
�
Ł
~XX�K

0 ¼ E
�
Ł X

(2ª�2)K
0 ,1 if and only if 2~aa=~		 2 . K. Thus some care should be taken

before applying (3.7): it must at least be assumed that 2~aa=~		 2 is suitably large.

The estimation function (3.7) was used in a simulation study in Jacobsen (2001b, Section

2.1) with good results not only for small values of ˜.

To find the optimal martingale estimating function with base ( f 1, f 2) given by (3.6), one

needs (3.5) also for m ¼ 3, 4 and conditional moments involving logarithms; see (2.7), in

which the term � t,Ł
_ffŁ appears. The latter moments are easy to find in terms of the

conditional expectation EŁ(log ~XX tj ~XX0 ¼ ~xx) for the CIR process starting at an arbitrary level

~xx, but the explicit form for this is unpleasant to work with.

Whether one uses the small ˜-optimal flow (3.7) or the optimal flow, since d ¼ 1 a slight

improvement in efficiency may be gained by symmetrizing, using for example
1
2
(gt,Ł(x, y)þ gt,Ł(y, x)) instead of (3.7); see Jacobsen (2001a, Proposition 4) and the

discussion there about time reversal.

3.2. The finite-dimensional Gaussian diffusions

We consider now the d-dimensional diffusion

dX t ¼ (Aþ BX t)dt þ DdW t, (3:8)

where the unknown parameters are A 2 Rd31, B 2 Rd3d and C :¼ DDT 2 Rd3d, with the

symmetric matrix C assumed strictly positive definite. (In this subsection the symbol B is

used to denote the matrix of linear drift parameters, and the driving d-dimensional Brownian

motion is denoted W instead of B.) Thus

p9 ¼ jJ j, p ¼ jJ j þ d þ d2:

The diffusion (3.8) has Gaussian transitions (for the expectation and second-order

moments, see (3.9) and (3.10) below) and is ergodic if and only if spec(B) �
fº 2 C: Re(º) , 0g.

For this model there is a genuine identification problem when considering equidistant

observations X i˜ for an arbitrary given ˜ . 0: it is possible to find Ł 6¼ Ł9 such that

�˜,Ł(x, 1) ¼ �˜,Ł9(x, 1) for all x 2 Rd . For example, take d ¼ 2 and define Ł and Ł9 by

AŁ ¼ AŁ9 ¼ 0231, CŁ ¼ CŁ9 ¼ I2 and BŁ ¼ bI2,

BŁ9 ¼ bI2 þ
0 2�k=˜

�2�k=˜ 0

� �

for some b , 0 (to obtain ergodicity) and some k 2 Zn0. The Ł9-process is a two-

dimensional rotating Ornstein–Uhlenbeck process, while the Ł-process starting, say, at a

given x 2 R2 is composed of two independent one-dimensional Ornstein–Uhlenbeck

processes. Because, for all W,
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exp
0 W
�W 0

� �
¼ cos W sin W

�sin W cos W

� �

is orthogonal, it follows from (3.9) and (3.10) below that �˜,Ł(x, 1) ¼ �˜,Ł9(x, 1) is the

Gaussian distribution with mean vector eb˜x and covariance matrix (�2b)�1(1� e2b˜)I2.

Thus, for this example, the identification equation (2.3) can never hold for any t . 0.

As our base (of dimension r0) for the martingale estimating functions we shall use ( f q)

for q 2 f1, . . . , dg [ J , where

f i(x) ¼ xi (1 < i < d), f i9 j9(x) ¼ xi9xj9 ((i9, j9) 2 J ),

writing x ¼ (x1, . . . , xd) for a generic point in Rd . Clearly ( f q) satisfies the conditions from

Assumption A and also, as a little work shows, the conditions on @x f , @2
xx f from Theorem

2.2. To proceed we need the conditional moments � t,Ł f q, conveniently collected in the vector

� t,Łx ¼ (� t,Łxi)1<i<d and the matrix � t,ŁxxT and known to be given by the expressions

� t,Łx ¼ (e tB � I d)B�1 Aþ e tBx, (3:9)

� t,ŁxxT ¼ (� t,Łx)(� t,Łx)T þ
ð t

0

esBCe sBT

ds: (3:10)

(As in the previous example, notation like � t,ŁxxT is short for � t,Ł f (x), where f (y) ¼ yyT.)

Invoking Theorem 2.2 with � in (2.21) equal to 0 (which here gives the same result as

the method described in Remark 1), one eventually arrives at the small ˜-optimal

estimating function g t,Ł, with g1, t,Ł ¼ (g
i9 j9
t,Ł )(i9, j9)2J and g2, t,Ł split into the vector-valued

component g A
2, t,Ł ¼ (gi

t,Ł)1<i<d and the matrix-valued component g B
2, t,Ł ¼ (g

ij
t,Ł)1<i, j<d , and

g1, t,Ł, gA
2, t,Ł and gB

2, t,Ł given by

g
i9 j9

1, t,Ł(x, y) ¼ (C�1[�x(y� � t,Łx)T � (y� � t,Łx)xT

þ yyT � � t,Ł(xxT)]C�1)i9 j9,

g A
2, t,Ł(x, y) ¼ C�1(y� � t,Łx),

g B
2, t,Ł(x, y) ¼ C�1(y� � t,Łx)xT:

For the calculations one uses the fact that

_CCT
1,Ł(x) 2 RJ3d2

, _CCT
1,Ł(x)

� �
i9 j9,ij ¼

�i9i� j9 j if i < j,

�i9 j� j9i if i . j,

�

_bbA
2,Ł

� �
T(x) ¼ I d 2 Rd3d ,

_bbB
2,Ł

� �
T(x) ¼ I d . x 2 Rd23d
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with bA
2,Ł(x) :¼ A differentiated with respect to A only and bB

2,Ł(x) :¼ Bx differentiated with

respect to B only. Also note that

(D1,2 f (x))�1 ¼ (@x f (x) @2
xx f (x)R)�1 ¼ I d 0d3J

P(x) D0

� �
,

where D0 ¼ diag(di9 j9) 2 RJ3J with

di9 j9 ¼
1 if i9 , j9,
1
2

if i9 ¼ j9,

�

and P(x) 2 RJ3d with

Pi9 j9, j(x) ¼ �di9 j9(�i9 jxj9 þ � j9 jxi9):

As in the previous example, the simplest way to verify the small ˜-optimality is to verify

directly from these expressions that the conditions (2.13) are satisfied.

The resulting estimating equations are not affected by multiplication from the left and/or

right by C, and it is now an easy task to write down the estimators of the parameter

functions

A :¼ (e˜B � I d)B�1 A, e˜B, C :¼
ð˜

0

esBCesBT

ds

based on the observations X0, X˜, . . . , X n˜: defining

X� :¼ 1

n

Xn

i¼1

X (i�1)˜, X
�
:¼ 1

n

Xn

i¼1

X i˜,

one sees using (3.9) and (3.10) that the estimating equations obtained from g1, g A
2 , g B

2 are

equivalent to the equations

Xn

i¼1

X i˜ �A� e˜B X (i�1)˜

2 3
¼ 0, (3:11)

Xn

i¼1

X i˜ �A� e˜B X (i�1)˜

2 3
X T

(i�1)˜ ¼ 0 (3:12)

Xn

i¼1

X i˜X T
i˜ � Aþ e˜B X (i�1)˜

2 3
Aþ e˜B X (i�1)˜

2 3
T � C

2 3
¼ 0, (3:13)
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and hence

ÂA ¼ X
� � e˜ B̂B X� , (3:14)

e˜ B̂B ¼
Xn

i¼1

(X i˜ � X
�

)X T
(i�1)˜

 ! Xn

i¼1

X (i�1)˜ � X�
� �

X (i�1)˜ � X�
� �

T

 !�1

(3:15)

ĈC ¼ 1

n

Xn

i¼1

(X i˜X T
i˜ � Zi Z

T
i ) (3:16)

where, in the last line,

Zi :¼ ÂA þ e˜ B̂B X (i�1)˜:

Note that (3.16) may be written

ĈC ¼ 1

n

Xn

i¼1

X i˜ � ÂA � e˜ B̂B X (i�1)˜

� �
X i˜ � ÂA � e˜ B̂B X (i�1)˜

� �
T, (3:17)

as is seen using the fact that it follows from (3.11) and (3.12) that

Xn

i¼1

(X i˜ � ÂA � e˜ B̂B X (i�1)˜)ZT
i ¼ 0:

The likelihood function for observing X 0, X˜, . . . , X n˜ conditionally on X0 isYn

i¼1

1

(2�)d=2jCj exp(�1
2

X i˜ � �i)
TC�1(X i˜ � �i)

2 3
,

where

�i ¼ �˜,Ł(X (i�1)˜) ¼ Aþ e˜B X (i�1)˜:

Maximizing this over A, e˜B and C varying freely in Rd31, Rd3d and the space of symmetric

positive definite d 3 d matrices yields the estimators ÂA, e˜ B̂B and ĈC from (3.14), (3.15) and

(3.16). For the model with A ¼ 0, Kessler and Rahbek (2001) study the corresponding

maximum likelihood estimator and also tackle the non-trivial problem of converting their

versions of (3.15) and (3.16) into estimators for B and C: they provide conditions for (3.15)

to be the exponential of a square matrix (which in our model must also satisfy the condition

that all eigenvalues have negative real parts), and also provide conditions for this square

matrix and the estimator for C to be uniquely determined.

Appendix

The following result was used in the proof of Theorem 2.3:

Lemma A.1. Let A, B 2 Rm3m be symmetric and positive semidefinite matrices such that
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1 < rank(A) ¼ m9 , m and such that the columns (or rows) of A and B jointly span all of

Rm. Further, let OT ¼ (OT
1 OT

2 ) be an orthogonal m 3 m matrix with O1 comprising the

first m9 and O2 the last m� m9 rows of O such that

OAOT ¼ diag(º1, . . . , ºm9, 0, . . . , 0),

º1, . . . , ºm9 . 0 denoting the non-zero eigenvalues for A. Then as t ! 0,

(Aþ tB)�1 ¼ 1

t
OT

2 (O2 BOT
2 )�1O2 þ N þ O(t),

where N is of the form

OT
1 (O1AOT

1 )�1O1 þOT
2 S þ STO2

for some (m� m9) 3 m matrix S.

Proof. Assume first that A ¼ diag(º1, . . . , ºm9, 0, . . . , 0) (with all º‘ . 0) and write

B ¼ B11 B12

B21 B22

� �

with, for example, B22 the lower right (m� m9) 3 (m� m9) submatrix of B. Then

jAþ tBj ¼ t m�m9
Ym9

‘¼1

º‘

 !
jB22j þ O t m�m9þ1

2 3
,

as is seen by computing the determinant directly as the sum of signed products

—m
‘¼1(Aþ tB)‘	 (‘) with 	 an arbitrary permutation of 1, . . . , m. Also for the subdeterminants

obtained by deleting the ‘th row and ‘9th column,

jAþ tBj‘‘9 ¼ O(t m�m9�1) if ‘, ‘9 . m9,

O(t m�m9) otherwise:

�

It follows from this that (Aþ tB)�1 is of the form

1

t

0 0

0 M

� �
þ N þ O(t)

and it is then easy to see that, writing

D ¼ diag(º1, . . . , ºm9) 2 Rm93m9,

one has

(Aþ tB)�1 ¼ 1

t

0 0

0 B�1
22

� �
þ D�1 �D�1 B12 B�1

22

�B�1
22 B21 D�1 B�1

22 B21 D�1 B12 B�1
22

� �
þ O(t): (A:1)

For the general case, just use the fact that

(Aþ tB)�1 ¼ OT OAOT þ tOBOT
2 3�1O,

with OAOT þ tOBOTð Þ�1 of the form (A.1) and D ¼ O1 AOT
1 h
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