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Why should you be interested in the propagation of singulari­
ties? The answer is tied up with two other fundamental questions: 
What is a wave and how do waves serve to send signals? To ad­
dress all three, begin by considering the classical wave equation 
utt = c2uxx with /, x e R x R and c e]0, oo[. D'Alembert ob­
served that the general solution is q>(x + ct) + i//(x - ct) with (p 
and i// arbitrary functions of one variable. The function y/(x-ct) 
represents a wave of arbitrary cross-section propagating rigidly at 
speed c. Similarly cp{x + ct) is a wave moving with speed -c. 
Thus the wave equation has two possible modes of propagation, 
leftward and rightward at speed c. 

If one wants to send a message, one could for example represent 
dot by an upward bump of height 1 and width w and dash by a 
two humped camel-shaped bump of height 1 and width w and 
then use the wave equation and Morse code. A similar strategy 
could be achieved with any equation which transmits two distinct 
localized waveforms. This is a sort of digital messaging; it is such 
transmission of information that takes place along axons (the wires 
in the nervous system) and in computers. 

We are miseducated in elementary science courses to believe 
that sine waves of the form sin(k(x ± ct)) are what one should 
think of as waves. Imagine trying to communicate using these. 
One bump is like any other; there is no beginning and no end. You 
would like to place a marker on a particular bump and say some­
thing like: "A bump with a marker is a dot and one without is a 
dash." This works, but you can see that the sine wave plays no role; 
it is just the marker which sends the signal. In summary, for the 
sake of communication what is useful are localized disturbances 
which remain recognizable after propagation, and which have un­
derstandable laws of motion. Many partial differential equations 
possess such solutions and may be used in communication. 

What distinguishes wave equations, or hyperbolic equations is 
that they possess an infinite variety of such signals, and in particu­
lar signals localized in arbitrarily small regions of space. Thus one 
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need not encode messages digitally, and the density of information 
is, in principal, unlimited. 

For the simple D'Alembert wave equation, the infinity of pos­
sible wave forms is evident from the explicit solution. For more 
complicated equations, for example the wave equation with vari­
able sound speed utt = c2(t, x)uxx with c e c°°(Rt x Rx: R

+), this 
is not so clear. Riemann [7] and then Hadamard [4] realized that 
one way to demonstrate the existence of arbitrarily short signals, 
is to use singular solutions as follows. 

Solve the initial value problem with 

w(0, x) = f(x) ut(0, x) = 0, 

where ƒ e C (R) is piecewise smooth with respect to the parti­
tion -oo < a < +oo of R. Suppose in addition that the third 
derivative of ƒ jumps at a, that is, 

ƒ > + ) - ƒ > - ) 7̂ 0. 
Let r^. (= characteristic curves) be the integral curves of the vec­
tor fields dt±c{t, x)dx which pass through the point (0, a). Sup­
pose, for example, that V, xc is bounded so that these integral 
curves exist globally and partition R, x Rx into four "quadrants." 
Riemann showed that the unique solution of the initial value prob­
lem is piecewise smooth on space-time in the sense that u extends 
from the interior of each quadrant to a smooth function on each 
closed quadrant. The solution is globally C2 and the third deriva­
tives uxxx and uttt jump across the boundaries of the quadrants. 
The points of discontinuity are infinitely localized signals and their 
speeds of propagation are ±c(t, x). This is the most direct way 
to show that the values of c represent speeds of propagation for 
the problem. The usual uniqueness proofs only show that they are 
upper bounds for speeds of propagation. 

The second classical occurrence of singular solutions again dates 
to Riemann. He showed that the value of the solution u to the 
initial value problem solved above is a linear functional of the 
form 

u(t,x) = JR(t,x,0,y)f(y)dy. 

The bounded function R is the initial-value problem analogue of 
Green's function and is called the Riemann function. With the 
wisdom of Distribution Theory it is easy to see that R(t, x, s, y) 
is determined by the initial-value problem in s, y with initial 
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time s = t : 

Rss-(c
2(s,y)R)yy = 0, 

R(t,x, t,y) = 0, Rt(t,x, t, y) = S{x-y). 

Where R is smooth, the solution depends "mildly" on ƒ . It is at 
the singularities of R that the values of ƒ are especially impor­
tant. Riemann showed that R(t, x, •, •) is smooth except at the 
characteristic curves through the point t, x. 

The generalization of these ideas to higher dimensions moti­
vated much of the early work on propagation of singularities for 
linear partial differential equations. To study the singularities of 
solutions with initial data equal to S(x), Lax [5], used the Fourier 
decomposition 

S(x) = const, ƒ elx d£ 

as a superposition of planar oscillations. The contributions from 
£ large govern the singularities. Lax then solved the initial value 
problem with data elx* for £ large and superposed the results. 
This strategy lead to the creation of what are now called Fourier 
Integral Operators. An alternate strategy [3] is to use Radon's 
decomposition 

ô(x) = const, ƒ eirsr ~lô(x -co-s)dœdrds 

as a superposition of ô functions singular across the planes x-co = 
s. The solution of the initial value problem with such initial data 
are singular across the characteristic hypersurfaces in space-time 
which pass through the initial discontinuity surface {x • co = s} . 
They represent travelling waves of singularities. 

The subject of the current book is the nonlinear versions of the 
themes described above. In the late seventies, it was discovered 
that nonlinear interaction of singularities can produce singulari­
ties in places where they would have been absent for linear wave 
equations. At the same time it was observed that these singulari­
ties were normally in higher derivatives than the singularities that 
produced them so that if one were blind to derivatives beyond a 
certain order, the nonlinear case would resemble the linear one. 
The elucidation of these phenomena has been the work of many 
workers during the intervening time, Beals himself being a major 
contributor. Beals' book describes both the "classical" results and 
the state of the art on some still unresolved questions. 
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Why is the nonlinear case different? The key observation comes 
from the microlocal analysis of Hörmander. If u is a function 
or distribution and x is a point in the interior of the domain of 
definition then one can study the local regularity of u near x by 
studying the global regularity of (pu where cp is a smooth function 
with <p(x) ^ 0 and supp(ç>) contained in a very small neighbor­
hood of x . This global regularity can be examined by studying 
the asymptotic behavior of the Fourier transform ^{(pü){^) as 
|£| —• oo. In the same way, the microlocal regularity of u at 
x , £ with <Jf ^ 0 is examined by studying the global regularity of 
V(Ç)&r(<pu) where i// is a smooth cutoff function on R £ \ 0 homo­
geneous of degree zero, supported in a small conic neighborhood of 
<J?, and, nonzero at £ . For example u is said to be in the Sobolev 
space Hs microlocally at x , <Jf, written u e Hs(x, Ç) if there are 
functions ç>, y/ as above with (£)V(£)^(?>W) e L2(Rd). It is 
not hard to show that mth order differential operators, P(x, D), 
with smooth coefficients preserve such regularity in the sense that 

u e Hs(x, Ç) implies Pu e Hs~m(x, Ç). 

This property, called microlocality, is not shared by nonlinear 
operations. It is not true that if u e Hs(x, Ç) then u or sin(w) 
belongs to Hs(x, Ç). For example, in the Fourier transform vari­
ables squaring corresponds to convolution, and slow decay in di­
rections other than r\ can spread to slow decay of the convolution 
in direction r\. The smoother is u, the more rapid is the decay 
of the Fourier transform and the weaker are the effects of spread­
ing. The consequence is that the smoother solutions are, the more 
propagation of singularities resembles the linear case. The quan­
tification of this phenomenon and the construction of examples 
demonstrating that the positive results are sharp is the content of 
Chapters 1 and 2 of Beals' book. 

Chapters 3 and 4 are devoted to the study of solutions with 
conormal singularities. The solutions singular aross characteristic 
hypersurfaces which enter in the description of the Riemann func­
tion are such distributions. If Z is a smooth hypersurface in £2 
and u is a distribution defined on Q, then u is Hs -conormal 
with respect to X if for any finite family of compactly supported 
smooth vector fields Vx, . . . , VN on Q each tangent to Z one has 
Vl--VNu e Hs(Rd). The singular support of such a distribution 
is contained in Z. Furthermore, if x belongs to Z and £ is not 
orthogonal to the tangent space to Z at x then it is easy to show 
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that u € Hk(x, Ç) for all k. Thus microlocally, the singularities 
of such distributions belong to the orthogonal of the tangent space 
to Z. If s > d/2, then conormal distributions are preserved by 
smooth nonlinear maps, that is, if u is //^-conormal with respect 
to Z and s > d/2, then f(u) is if5-conormal too. In particular 
the singularities cannot spread from T(Z)± . This stability is the 
key to the fact that solutions with conormal singularities can be 
described in much greater detail. 

The final two chapters describe singularities and conormal so­
lutions in the presence of boundaries where in addition to prop­
agation in the interior, reflection and diffraction at the boundary 
must be described. 

The book of Beals is engagingly written and does a superb job 
of extracting the essential ideas in a broad variety of results and 
methods. In addition, many published proofs are substantially 
shortened and improved. The exposition is complemented by an 
excellent collection of figures. Unhappily, there are an appreciable 
number of typographical errors. Somewhat disconcertingly, one 
occurs in the first proof of the text on page 6 where integration 
by parts in the integral IN does not yield an expression depending 
on M as advertised. The book is written for people already famil­
iar with the classical calculus of pseudodifferential operators, and 
such persons should be able to repair the argument. A graduate 
student with a brief encounter with Partial Differential Equations 
will likely have difficulty. 

An excellent short exposition with detailed statements is Bony's 
article [1] reviewing work through 1982. The article [6] gives a 
detailed treatment of the one dimensional case (see [2] for the 
shockless quasilinear version). If you want to learn the details of 
the multidimensional theory, I think that Beals' book is the best 
place to look. 
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The ties between holomorphic functions and the distributions 
of Laurent Schwartz originated long before distributions were even 
discovered. According to Daniele Struppa [15] it was Francesco 
Severi who in 1924 suggested to Luigi Fantappiè to study the func­
tional which associates with a function its derivative at some point, 
i.e., what we call now the distributional derivative of the Dirac 
measure. 

Inspired by this suggestion, Fantappiè created the theory of ana­
lytic functional [3]. He considers holomorphic functions ƒ , each 
having as its domain of definition M a region of the Riemann 
sphere Pj(C). It is assumed that M ^ P^C) , and if the point at 
infinity œ belongs to M, then ƒ (œ) = 0. An analytic line is a 
function y(t, z) of two variables, holomorphic in each variable. 
An analytic functional is a map F which associates with each ƒ 
a scalar F[f] such that if F acts on the analytic line y(t, z) 
considered as a function of t, the resulting function F[y(-, z)] 
shall be holomorphic in z . A particular analytic line is given by 
2̂ 7 YZ\ , and Ft[^j-^rt] is called the Fantappiè indicatrix of F. 

The Portuguese mathematician José Sebastiâo e Silva, who stud­
ied in Rome during several years, made the first attempt to apply 


