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The author stops short of the Hardy-Littlewood method and its 
powerful application to Waring's problem and other number the­
oretic representation problems. 

Wilf s book is beautifully written. The witty and slightly folksy 
style (one useful technique is called "the Snake Oil Method," be­
cause it has so many applications) hides the real depth of many 
of the results. There are masses of examples either worked out in 
the book or left for the reader. In the latter case the solutions are 
given in the back of the book. Anyone who enjoys combinatorics 
problems, or who likes messing about with power series and seeing 
what identities can be obtained that way, will get much pleasure 
from this book. 
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Computability ; {computable functions, logic, and the foundations of 
mathematics), by Richard L. Epstein and Walter A. Carnielli. 
Wadsworth & Brooks/Cole, Pacific Grove, California, 1989, 
295 pp. ISBN 0-534-10356-1 

Euler knew perfectly well what a function was. It was de­
fined by an expression showing the operations to be performed 
in order to obtain the value for a given argument. These oper­
ations could involve limits, but nevertheless the expressions had 
a clear computational meaning. Indeed, for Euler and his con­
temporaries, integrals and series made it possible to "discover" 
hitherto unknown functions: elliptic integrals, complex exponen­
tials, Bessel functions. But there was a problem with trigonometric 
series. For example, the wave equation 

d2u _ 1 d2u 

dx2 " c2 dt2 

had what appeared to be a general solution as a trigonometric se­
ries, while it was evidently satisfied by 

A ƒ (x + ct) + Bf{x - ct) 
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for an "arbitrary" function ƒ . Clearly an "arbitrary" function 
could not be the sum of periodic functions. When Fourier made it 
plain that arbitrary functions (defined on (-n, n]) could indeed 
be expanded into trigonometric series, it was plain that the no­
tion of function that had served Euler was no longer adequate for 
mathematical analysis. It was in this context that Dirichlet moved 
decisively towards set theory as the foundation for mathematics 
by proposing what has become our standard notion of function: 
an arbitrary correspondence. 

Given this history, it seems entirely appropriate that modern set 
theory began with Canto's investigations of uniqueness conditions 
for trigonometric series. Cantor was led to iterate the process of 
forming the set of limit points of a given set of real numbers: 

£ , £ ' , £ " , . . . . 

Moreover, in the case where this sequence does not eventually be­
come constant, Cantor was led to form their intersection, Eœ, and 
then continue the iteration. Having thus pushed into the transfi-
nite, there was no turning back for Cantor, who proceeded to de­
velop the first coherent mathematical theory of the actual infinite. 
While these developments were embraced by many mathemati­
cians, there were others for whom this departure from the clear 
computational content of the mathematics of Euler was unaccept­
able. Kronecker was the first important mathematician to attack 
Cantor's Mengenlehre but, with the realization that Cantor's meth­
ods seemed to lead to outright contradictions, there were many 
others: Poincaré, Weyl, and most important, Brouwer. Brouwer's 
intuitionism proposed a radical return to a mathematics with a con­
structive computational content, willingly abandoning the transfi-
nite. To Hilbert, this was a call to arms. The proposed expulsion 
from Cantor's "paradise"1 was not to be countenanced. 

Hilbert accepted Brouwer's requirement that ultimately it was 
explicit computational verifiability that was needed for the foun­
dations of mathematics. But Hilbert was prepared to be bound 
by this limitation to finitistic methods only in his proposed proof 
theory. This proof theory was to lead to consistency proofs for 
formal logical systems within which the full strength of Cantorian 
set theory could be formalized, consistency proofs even Brouwer 
would have to accept. From today's perspective it is difficult to 

p. 51 (page references are to "readings" in the book being reviewed). 
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comprehend the vehemence of the discussion as Hubert and 
Brouwer thundered defiance at one another : 
Brouwer: • • • nothing of mathematical value will be attained in this 

manner; a false theory which is not stopped by a contradic­
tion is none the less false, just as a criminal policy unchecked 
by a reprimanding court is none the less criminal. 

Hubert: • • Weyl and Brouwer are... trying to establish math­
ematics by pitching overboard everything that does not suit 
them and setting up an embargo. ... The effect is to dismem­
ber our science and run the risk of losing a large part of our 
most valuable possessions. ... Today the State is thoroughly 
armed through the labors of Frege, Dedekind, and Cantor. 
The efforts of Brouwer and Weyl are foredoomed to futility. 

To the logical positivists of the Vienna Circle meeting in the 
late 1920s, the constructivism apparently accepted by Brouwer and 
Hubert was a necessary defense against meaningless metaphysical 
notions. The young Kurt Gödel attended the meetings of the Vi­
enna Circle, but did not accept their point of view. In attempt­
ing to provide consistency proofs of the kind Hubert was seeking, 
Gödel was led to distinguish the truth of a statement of elementary 
number theory from its provability in a particular formal system, 
a distinction that would have been regarded as meaningless by 
most participants in the Vienna Circle3. Once this distinction was 
clearly made, it was not difficult for Gödel to show that the prov­
able statements in any appropriate formal system can never include 
all true statements of elementary number theory. A further conclu­
sion was that such systems are never strong enough to permit the 
proof of their own consistency. Since Hubert's goal was the proof 
of the consistency of such systems using only very weak finitistic 
methods, GödePs results seemed to destroy Hilbert's program, al­
though Gödel himself held out the possibility that methods could 
be judged finitistic although not formalizable within the systems 
in questioin might be found4. 

Indeed, Hilbert's proof theory continues to flourish. Consis­
tency proofs can be given which use Hilbert's finitistic methods 
augmented only by specific combinatorial principles concerning 

Quoted from E. T. Bell, Development of mathematics, second éd., McGraw-Hill 
1945, pp. 569-570. 

3p. 216. 
4pp. 213-214. 
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whose finitistic character differences of opinion are possible. The 
best known principle of this kind was introduced by Gentzen in 
1936 to prove the consistency of PA, a formalization of elementary 
number theory. The principle in question involves the transfinite 
ordinal number e0 which is the limit of the sequence 

and is therefore the smallest solution of the equation of - x. 
One can readily define a (computable) relation -< which is a well-
ordering of the natural numbers of order type e0. Gentzen's prin­
ciple from which he showed how to prove the consistency of PA is 
simply the principle of transfinite induction for -< : for any condi­
tion which can be formulated in PA, if the condition holding for 
all y -< x implies that it must also hold for x, then it must hold 
for all natural numbers. 

Nevertheless, the truth is that Hubert's program for the founda­
tions of mathematics never really recovered after Gödel's results, 
and the doctrinaire pronouncements of the 1920s concerning foun­
dational issues seem a bit naïve today. Perhaps the most coher­
ent position is the straightforward Platonism espoused by Gödel5, 
which accepted the set theoretic foundation for mathematics and 
insisted the evidence for the "existence" of such abstract entities 
was as compelling as that for physical objects. Probably most work­
ing mathematicians think in Platonic terms, but would, if pressed, 
offer some kind of naïve formalism as their underlying philosophy. 

Meanwhile, Brouwer's student Heyting developed a formal logi­
cal calculus intended to embody the proof methods regarded as in-
tuitionistically acceptable. This meant that intuitionism itself be­
came susceptible to investigation by mathematical methods. A sur­
prising result was that although intuitionistic logic was conceived 
as being narrower than classical logic, there was a sense in which 
classical logic was a sub-theory of intuitionistic logic. Namely a 
logical formula written entirely in terms of -i, A, and V turns 
out to be valid classically if and only if it is valid intuitionistically. 
But, classically all other logical operations are definable in terms 
of these: 

p ^ q = -n(PA -yq) ; (3x) = - i ( V x ) i , 

although of course these definitions are not intuitionistically ac­
ceptable. None of this has prevented intuitionistic logic from be-

5p. 11, pp. 226-227. 
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coming of interest in theoretical computer science. Since an intu-
itionistic proof of the existence of some object is guaranteed to be 
constructive, it is in principle possible to systematically "compile" 
such a proof into a computer program for actually generating the 
object in question. This suggests the very tempting goal of a soft­
ware methodology that automatically produces practical computer 
programs, guaranteed to be correct, from existence proofs. 

Our students remain for the most part blissfully ignorant of all 
of these foundational matters. The book being reviewed attempts 
to do something about this by presenting a smorgasbord of writings 
on the foundations of mathematics from Plato to Gödel. These 
are presented in the context of one of the great triumphs of foun­
dational investigations: computability theory, otherwise known as 
recursion theory. By what Gödel has called "a kind of miracle",6 it 
has turned out to be possible to give a precise mathematical charac­
terization of the class of functions whose values can be calculated 
by means of an algorithm. Moreover, many apparently different 
characterizations turn out to yield the very same class of functions 
(the authors, somewhat hyperbolically, call this "the most amazing 
fact"). The resulting theory has provided a mathematical theory of 
digital computers, and has made it possible to show that various 
mathematical problems (the word problem for groups, Hubert's 
tenth problem) are algorithmically unsolvable. 

The book being reviewed is a kind of sandwich. A textbook 
on computability theory and undecidablity in arithmetic is placed 
between two more philosophical parts. The book begins with a 
discussion of the paradoxes of self-reference and the mathemati­
cal contexts in which they arise, with many readings and exercises, 
and it closes with a presentation of various attitudes towards con-
structivity in mathematics, including those of Brouwer and Bishop, 
in the light of computability theory. Most students will probably 
find the readings rather tough going, and will need the help of a 
patient teacher. But it could be lots of fun. (There is apparently 
an instructor's manual; but I have not seen it.) 

There is a technical error regarding Gentzen's consistency 
proof for first order arithmetic on p. 214. The authors insist that 
Gentzen's induction principle for -< "cannot be formalized" within 
first order arithmetic, saying that " • • • if it could then by adding 
that [sic] further axiom(s) to PA we would have a theory which 

6p. 227. 
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could prove its own consistency." Since -« is arithmetically defin­
able, Gentzen's induction principle can be expressed as a "schema" 
in the language of PA in the same manner as ordinary induction. In 
the system obtained by adding this principle to PA (call it PA+), 
Gentzen's consistency proof for PA can certainly be carried out. 
But this is not an instance of a "theory which could prove its own 
consistency;" the consistency of PA is proved in a different system 
PA+. There is also a misstatement on p. 215: the authors surely 
meant to say that it was clear to Gödel that the primitive recursive 
functions were not "all the computable ones.. . ." 
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Linear operators in spaces with an indefinite metric, by T. Ya. Az-
izov and I. S. Iokhvidov. John Wiley & Sons, 1989, 300 pp., 
$82.95. ISBN 0-471-92129-7 

Let H be a Hilbert space (over the complex numbers), and 
let ƒ be a bounded linear selfadjoint operator on H such that 
J2 = I. Consider the sesquilinear form [•, •] induced by / : 

[x,y] = (Jx9y)9 x,yeH, 

where (•, •) stands for the scalar product in H. The correspond­
ing quadratic form [x, x] is indefinite (unless J = I or / = - ƒ ) , 
in other words, there exist x, y e H for which [x, x] < 0 and 
[y > y] > 0. The space H, together with the sesquilinear form 
[•, •] generated by some / as above, is commonly called a Krein 
space. One can also define the Krein spaces intrinsically, by start­
ing with a topological vector space and a continuous sesquilinear 
form on it, and by imposing suitable completeness and nondegen-
eracy axioms. The reviewed book is devoted to the geometry of 
Krein spaces and the spectral structure and related properties of 
several important classes of bounded and unbounded linear oper­
ators on Krein spaces. 

1. THE SUBJECT 

Why Krein spaces? As with many mathematical disciplines, 
there are two compelling reasons: (1) important applications in 


