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A RESTRICTION THEOREM 
FOR THE FOURIER TRANSFORM 

GERD MOCKENHAUPT 

ABSTRACT. In this note we will prove a (L , LP) -restriction 
theorem for certain submanifolds & of codimension / > 1 
in an n— dimensional Euclidean space which arise as orbits 
under the action of a compact group K. As is well known 
such a result can in general only hold for 1 < p < j^y. We 
will show that for the submanifolds under consideration the 
inequality 

^\f(x)\2dKx)<C'\\f\\2
p 

holds for 1 < p < ^ 3 f . Thus we give an answer to a problem 
stated by J. L. Clerc in [CL, p. 58]. 

1. INTRODUCTION 

The initial published restriction theorem dates from 1970 in the 
work of C. Fefferman [Fe] where it is attributed to E. M. Stein. 
In that paper he proved that a (L2, Lp)-restriction theorem for 
the unitsphere in Rn implies sharp results for the Bochner-Riesz 
multiplier. Since that time one has been interested in the question, 
for which submanifolds M of Rn and for which p, q > 1 the a 
priori inequality 

(1.0) f \f(x)\q dfi(x) < C\\f\\l 

holds. Here dju denotes the induced Lebesgue measure on M. 
An idea of A. Knapp (see [To]) shows that the above inequality 
can only hold for 1 < p < fy , p > ^ q, where / = codim M 
and -V + i = 1. The restriction of the p-range comes from the 

fact that the Fourier transform of d/x can be in LP only for 
p > fa. In case of M = Sn~l = {x e Rn\ \x\ = 1} and g = 2, 
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Stein and Tomas have shown an optimal result, that is (1.0) holds 
for 1 < p < 2(|ffi . There is also an optimal result for com­
pact hypersurfaces of nonvanishing Gaussian curvature (see [Gr]). 
The paper of A. Greenleaf [Gr] contains also a result for subman-
ifolds of higher codimension based on the uniform decay in every 
direction of the Fourier transform of the induced measure with 
a prescribed order. In general this assumption does not lead to 
optimal results since radial estimates are inadequate for submani-
folds of higher codimension. In many cases such as curves in R" 
or submanifolds whose dimension divides that of the surround­
ing Euclidean spaces (see [Ch, Pr]) some good results are known, 
however except in the case of curves it is not known whether or 
not these are sharp for q = 2. A reason for this is that no good 
estimates for the Fourier transform of the corresponding induced 
Lebesgue measures are known. If one is interested in the above 
inequality only for q = 2 one has the advantage that a simple com­
putation reduces the matter to the LP - LP boundedness for the 
convolution operator Tf = dfi* f. This can be seen as follows: 

f \f\2dn=f (f*fTdn where/ = / ( - . ) 
JM JM 

= f d/i*fdx 
jRn 

< II ƒ lip 11^ * / Ily 

The proof of the results in [Gr, To] (see also [St]) are based on a 
more or less explicit embedding of the induced Lebesgue measure 
d/u in an analytic family of distributions. In our situation in order 
to obtain optimal results we will construct a suitable analytic fam­
ily of distributions which contains dfi^,. For d/u^ we will use a 
sharp asymptotic estimate which J. L. Clerc has given in [CI] (see 
also [DKV]). Up to the endpoint p = ^ ^ we answer the question 
stated by Clerc [Cl, p. 58] which consists basically in the problem 
whether or not sharp asymptotic estimates for the Fourier trans­
form of induced measures are sufficient to obtain optimal result 
concerning the restriction problem for the homogeneous subman­
ifolds described below. 

2. PRELIMINARIES 

Let G be a connected real simple Lie group of noncompact 
type with finite center, K a maximal compact subgroup, 0 resp. 
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6 their Lie algebras and g = p +1 the corresponding Cartan de­
composition. The restriction of the adjoint action of G, Ad^, on 
K leaves the subspace p invariant. Let B be the Killing form on 
0. Its restriction to p gives us an A -̂invariant scalarproduct on p. 
Let a be a maximal abelian subspace of p, / its dimension and 
Z the root system corresponding to the pair (g, a). For a G Z 
let 0a = {X G g | adH{X) = a{H) X, M H G a} and ma = dim0a . 
Each root a G 2 defines a hyperplane a(H) = 0 in the vectorspace 
a. These hyperplanes divide a into finitely many connected com­
ponents, the Weyl chambers. We fix such a component and call 
it a+ and set I + = {aE 2\<*(H) > 0, \/H e a+}. Let M be 
the centralizer of a in K, M1 the normalizer of a in K. Then 
W = M*IM is finite group, called Weyl group. A point in X e p 
is called regular if its centralizer in p is abelian, the set of regular 
points is a dense open subset p' of p and the map 

p : K/M x a+ 3 (kM9 H) -^AdkHe p' 
defines a diffeomorphism (generalized polar coordinates). Further­
more, if we extend /? in the second variable in a natural way to 
the closure of a+ we obtain a map onto p. Let dX, dH denote 
suitable normalized Euclidean measures on p resp. a and dk a 
Haar measure on K. 
We define the Fourier transform for f e Ll(p) by 

f(X)= [ f(Y)e-iB{x'Y) dY. 
Jp 

It is an easy fact that for a AT-invariant function ƒ G Ll(p) their 
Fourier transform is again Af-invariant and we have 

f(X = AdkH) = f f (Y) J(X, Y) dY 
h 

= j + f(L)J(H,L)co(L)dL, 

where for X, Y e p, 

J(X,Y)= f e-iB{x'K^Y)dk 
JK 

and co is a homogeneous function of degree n - / defined by 
co(L) = f ] a(L)m«. 

The function J(X, Y) is called a generalized Bessel function (see 
[CI], and for the details of the above [Hl, H2]). In [CI] it was 
shown that the following sharp asymptotic estimate holds 
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Proposition 1.1. Let A G a be a regular point. Then the inequality 

holds uniformly for H e a+. Furthermore, the constants CA are 
uniformly bounded if A lies in a compact subset of a+. 

As a consequence of this estimate and the inequality (see [CI]) 

(1.2) \{H£a\\œ(H)\< 1}| < oo 

one obtains 

Corollary 1.3. If A e a+ is regular and p > ^ , n = dimp, / = 
dim a. Then JAeLp{p). 

The Corollary implies that the Fourier transform of an K- in­
variant function in Z/7 (p), 1 < p < ^ is a continuous func­
tion on the set of regular points. If we apply this to the group 
G = SO(n ,1) we get a well-known result for radial functions on 
Rn . Let us remark that for fixed A G a /(A, X) can be consid­
ered as the Fourier transform of the measure dfi^ on the £-orbit 
of A in p, 0K, induced by the Lebesgue measure on the Euclidean 
space p. 

3. THE MAIN RESULT 

We will show the following 

Theorem 1.4. Let A e o + be a regular point and 1 < p < p0 = 
2g+jl. Then for ƒ eLl{p)nLp(p) the inequality 

f \f\2dn^<C\\f\\2
p. 

holds. 

Remark. As mentioned above, up to the endpoint p0 our result is 
sharp. If g has a complex structure the Bessel functions are known 
explicitly and we will see how the endpoint can be managed. 

For the proof of ( 1.4) we have to show that T ƒ = JA * ƒ , where 
JA(X) = /(A, X), is a bounded operator from Is to U for 
1 < P < PQ- First we fix a C°°-function </> on a"1" with compact 
support contained in a small neighborhood of the point A which 
takes the value 1 at A and we extend 0 to a ^-invariant C°°-
function on p denoted again by (/>. Since 0 is identically 1 on 
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the support of dfi^, we have 0 * JA = JA. Now we define the 
following analytic family of distributions 

r z / = ( ^ + ^ 7 ) £ * (i + M ) z / A *ƒ, ^ € C . 

Note that \co(H)\ is a W-invariant function on a and therefore 
it has a natural extension to p as a ^-invariant function (see [He 
2]), hence Tz is a well-defined convolution operator with a .fir-
invariant kernel. We want to show that Tz is bounded from L1 

to L°° for Rez = \ and on L2 for Rez < -7^7. By com­
plex interpolation we get our theorem. Concerning the l) - L°° 
boundedness we only remark that by (1.1) the kernel is in L°° for 
Re z < \ and convolution with the test function $ leaves L°° in­
variant. For the L2-boundedness we have to show that the Fourier 
transform of the kernel of Tz , kz, is in L°° for Rez < - ^ . 
Now, we have for H e a, 

(*) 

\kz(H)\ = C \<f>(H)\ | ( ( l + M ) z / A n # ) l 

= c w#)i I / (i + M£)l)z W W WW rfL 

Since H as well as A are regular, recall that the support of <j> lies 
in a small neighborhood of A, we can use the asymptotic estimate 
(1.1) for JH and JA. Hence (*) can be estimated by 

<C f (l + |co(L)|)Rez dL. 
Jo, 

Using (1.2) a simple homogeneity argument shows that the last 
integral is finite for Rez < -—7 and our theorem follows. 

Let us now see how the endpoint pQ can be reached if Q has a 
complex structure. Under this assumption the generalized Bessel 
functions are given by (see [Ha, H2]), 

T / r T N COnSt. v -^ - ^ iB(A,wH) 

for H,Aea, where U{H) = y/co{H) = ria€z+ a(H) • N o w w e 

plug this nice formula into (*), change to polar coordinates in a, 
use Fubini's theorem and the fact that the Fourier transform of a 
smooth function which behaves at infinity essentially like a homo­
geneous function of degree -1 + ir is essentially a homogeneous 
function of degree -/>, and we see that \k (H)\ is bounded for 
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Rez = - ^ 7 by a constant which increases only polynomially for 
Im z -> oo. As before a complex interpolation gives what we want. 

4. FINAL REMARK 

It is shown in [Mo] that in general a (L2, Lp°) restriction the­
orem for compact submanifolds M of codimension / imply that 
a compactly supported function ma e C°°(Rn \ M) which has a 
singularity of the form dist(x, M)a near M, defines a multiplier 
for Lp if a > n(^ — j) — j and 1 <p<p0- Moreover for the ho­
mogeneous submanifolds discussed above this result is sharp (up 
to cases where ma is a smooth function on p ). 
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