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AVERAGE CASE COMPLEXITY 
OF MULTIVARIATE INTEGRATION 

H. W02NIAKOWSKI 

ABSTRACT. We study the average case complexity of multivari­
ate integration for the class of continuous functions of d vari­
ables equipped with the classical Wiener sheet measure. To 
derive the average case complexity one needs to obtain opti­
mal sample points. This optimal design problem has long been 
open. All known designs guaranteeing average case error e lead 
to an exponential number of sample points, roughly 6(e~ ) . 
For d large this makes the problem intractable for even the 
fastest computers. 

Yet good designs have to exist since the average case com-
plexity is bounded by 0(e ) as can be proven by considering 
the Monte-Carlo algorithm. We just did not know how to con­
struct them. 

In this paper we prove that optimal design is closely related 
to discrepancy theory which has been extensively studied for 
many years. Of particular importance for our purpose are pa­
pers by Roth [10, 11], This relation enables us to show that op­
timal sample points can be derived from Hammersley points. 
Extending the result of Roth [10] and using the recent result of 
Wasilkowski [19], we conclude that the average case complexity 
ise(e-l(lne-lf-l)/2). 

1. INTRODUCTION 

The approximate computation of multivariate integrals has been 
extensively studied in many papers, see [5-7, 17] for hundreds 
of references. We assume that multivariate integrals are approx­
imated by evaluating integrands at finitely many sample points 
and by performing arithmetic operations and comparisons on real 
numbers. Assume that the cost of one integrand evaluation is c, 
and that the cost of one arithmetic operation or comparison is 
taken as 1. Usually c > 1. 

Received by the editors September 28, 1989. 
1980 Mathematics Subject Classification (1985 Revision). Primary 65D30,41A55. 
This research was supported in part by the National Science Foundation under 

Contract IRI-89-07215. 

© 1991 American Mathematical Society 
0273-0979/91 $1.00+ $.25 per page 

185 



186 H. WOZNIAKOWSKI 

We seek the computational complexity of multivariate integra­
tion, which is defined as the minimal cost of approximating mul­
tivariate integrals with error at most e for a given class F of 
integrands, see [17]. 

How we define cost and error depends on the setting. In the 
worst case setting, the cost of an approximation is defined as 

suptc^C/l + fl^/)), 

where n{(f) is the number of integrand evaluations and n2(f) is 
the number of arithmetic operations and comparisons needed to 
compute the approximation for ƒ e F. The error of the approxi­
mation is defined as the maximal absolute difference between the 
exact and approximate values of multivariate integrals over the 
class F . The computational complexity in the worst case setting 
is denoted by compwor(e, F) and is known for many classes F . 
For example, if F = Wr

p' is the Sobolev class of real functions 

defined on the ^-dimensional cube D = [0, l]d whose rth dis­
tributional derivatives exist and are bounded in the Lp norm by 

one, then for pr > d we have compwor(e, Wr
p' ) = 6(cs~ 'r), 

see [7] for a recent survey. For d large relative to r, the worst 
case complexity is huge even for moderate e. 

In the average case setting, which is the focus of this paper, the 
cost and error of approximations are defined as the expected cost 
and error with respect to some probability measure on the class 
F. The computational complexity in the average case setting is 
denoted by compavg(e, F). In contrast to the enormous literature 
for the worst case setting, the average case setting for multivariate 
integration has been studied in relatively few papers, see [1-4, 7-9, 
12-20]. 

We report briefly on what is known about compavg(e, F). For 
the scalar case d = 1, let F = Cr be the class of r times contin­
uously differentiate functions equipped with r-fold Wiener mea­
sure. Then 

avg/ ^r^ t -Kl/(r+l) 

comp 6 ( e , C ) - c(ae ) /v , 

where a = J\Blr+2\l(2r + 2)\ and B2r+2 is a Bernoulli number. 
Furthermore, optimal sample points and how to optimally com­
bine the integrand evaluations at these points are known, see [3, 
15, 17]. 
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For the multivariate case, d > 1, assume that F = Cd is the 
class of real continuous functions defined on D = [0, 1] and 
equipped with the classical Wiener sheet measure w . That is, w 
is Gaussian with mean zero and covariance kernel 

r d 

R(s, t) ^ / f(s) f{t) w(df) = min(s, t) ^ J ]min(s . , t.) 

for any vectors s - [s{, . . . , sd] and t = [tx, . . . , td] from D. 
Only upper and lower bounds are known for compavg(e, Cd). 

Papageorgiou [8] established 

(1) 
compa v g(e,Q) = Q(c e ) and compavg(e, Cd) = 0(ce ), 

Md> 1. 

The proof of the upper bound is based on the Monte-Carlo algo­
rithm using randomized sample points. Therefore it does not pro­
vide a constructive way to find deterministic sample points that 
achieve the bound 0(ce~ ) . 

To obtain the average case complexity, one needs to find optimal 
sample points, i.e., sample points which lead to minimal average 
case error. It is known that optimal sample points do not form a 
grid. That is, if one assumes that sample points form a grid 

{[i{h{, . . . , idhd] : ij = 1, . . . , rrij, j = 1, 2 . . . , d} 

with h j = m Jl for some integers m., then Papageorgiou and 

Wasilkowski [8, 9], see also [20], showed that 6(e~ ) grid sample 
points are needed to achieve the average case error e. For d > 
2, this cost is worse than the upper bound in (1). This proves 
that grid points are a poor choice of sample points. Papageorgiou 
[8] slightly improved this result by constructing 9(e"(öf ~d+x)ld) 
sample points for which the average case error is e. For d - 2, 
these sample points reduce to those proposed by Ylvisaker [20]. 
Thus, for d = 2 we have an improved upper bound 

compavg(£, Cd) = <9(ce~ ' ). 

The average case complexity compavg(£, Cd) has been unknown 
due to the difficulty of finding optimal sample points. In the statis­
tical literature this is called the optimal design problem for mul­
tivariate integration, see [20]. Micchelli and Wahba [4] conjec­
tured that Hammersley points (defined below) should lead to an 
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optimal convergence rate n~l(\ogn) _ 1 which would imply that 
compavg(e, Cd) is e ^ e ' ^ l o g e " 1 ) ^ " 1 ) . This form of the aver­
age case complexity has been also conjectured by Papageorgiou 
and Wasilkowski [9], based on their work on the approximation 
problem. 

In this paper we show that the optimal sample points problem 
is related to the L2 discrepancy (defined below). The discrep­
ancy in L2 and other norms has been extensively studied in the 
literature and deep relations with number theory have been estab­
lished. In particular, it is known that Hammersley points lead to 
small discrepancy. The reader is referred to excellent surveys by 
Niederreiter [5, 6], where the background, history and about 500 
references concerning discrepancy may be found. 

The L2 discrepancy has been studied by Roth [10, 11] who 
proved in 1954 that the L2 disrepancy of n points has to be at 
least of order n~l(\o%n){d~x)l2, and in 1980 that this bound is 
sharp. Since the L2 discrepancy is minimized by shifted Ham­
mersley points, we conclude that optimal sample points are re­
lated to Hammersley points and that the average case complexity 
is &(ce~\loge~l){d-l)/2). 

2. MAIN RESULT 

For t = [t{9 . . . , td] e D = [0, l]d, define [0, t) = [0, tx) x 
• • x [0, td). Let X[o t) ^ e the characteristic (indicator) function 

of [ 0 , 0 - For Zj, . . . z„ e D define 

n 

Rn(f9zl9...,zn) =n~l^2x[0,t)(h) ~ hh'-'U 
k=\ 

as the difference between the fraction of the points zt in [0, t) 
and the volume of [0, / ) . The L2 discrepancy of zx, . . . , zn is 
defined as the L2 norm of the function i?(- ; zx, . . . , zn). Roth 
[10, 11] proved that 
(2) 

z inf^ QT R2
n(t; zl9...9zn)dt^ = 6 (n~l (log nf-l)/2) . 

The points z*, . . . , z* with L2 discrepancy of order 
n~{ (logn)( _ 1^2 are related, as indicated below, to Hammersley 
points. As in [5, 11], let p{, p2, . . . , pd_x be the first (d - 1) 
prime numbers. Any integer k > 0 can be uniquely represented 
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as k = E[IO8/C1 aiPj w i t h l e g e r s at e [0, p. - 1]. The radical 
inverse function (f> is given as 

V f c ) = E aiPjl '• 

The sequence {w^} of (of-1) dimensional points for k = 0, ± 1 , 
±2 , . . . is defined by 

uk = [ct>Px(k)^Pi{k)^..,ct>PdJk)], fc = 0, 1, . . . , AT- 1, 

with M = (plp2--pd_l)
ïlogn^ , and by wfc+M = w* > Vfc. Then 

there exists a real number f * such that the d dimensional points 
z*, . . . , z* are obtained by adding one component to the (d - 1) 
dimensional points uk, 

(3) {z;,...,z*} = {[(fc + O*"1,"*] : 0<£ + /*<fl}. 

For f * = 0, they are Hammersley points. Thus, the points z* are 
obtained by adding f /n to the first component of Hammersley 
points. 

We are ready to show how the results on L2 discrepancy can be 
used to derive optimal sample points and average case complexity. 
In what follows, we use the word "optimal" modulo a constant 
which may depend on d but is independent of e . 

Let n = 0(e~l (logs'1 ){d~l)/2) be chosen such that the L2 dis­
crepancy of the function Rn(>, z*, . . . , z*) is at most e . Letting 
1 = [1, 1, . . . , 1], we define 

(4) x*k = Ï- z*k, k = 1 , 2 , . . . , n. 

We approximate the integral of ƒ from Cd by the arithmetic 
mean of its values at xk , 

(5) 1(f) d= [ f(t) dt ~ U(f) ^ n~l £ f(xl), V/ e Cd. 
JD k=\ 

Clearly cost(£/), the cost of computing [/(ƒ), is (c + 1) n . The 
average case error of U is defined as (fc (I(f)-U(f))2w(df))112. 
We summarize the main results as a 

Theorem, (i) compavg(e, Cd) = 6 ( c e - 1 (loge_ 1) ( " ° J, 

(ii) x*, x\ , . . . , x* given by (4) are optimal sample points, 
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(iii) U given by (5) is optimal, i.e., the average case error of 
U is at most e and 

cost(*7) = 0(compavg(e, Cd)). 

Sketch of the proof. An upper bound on compavg(fi, Cd) is cost((7) 
provided we prove that the average case error of U is at most e . 
This will be done by exhibiting the identity which relates the av­
erage case error of U with the L2 discrepancy. 

Lemma 1. 

f (I(f)-U(f)fw(df) = f R2
n(t;z%...,z*n)dt. 

Jcd JD 

To prove Lemma 1, we use 

L i\f)w{df) = rd 

L 
and 

d 

i(f)f(t)w(df) = Y[t((i -*./2), w = [t{,..., g . 

From these formulas we compute the left-hand side (LHS) of 
Lemma 1, 

fc=l 1 = 1 H k,p=\ 

where x*k = [xk {, . . . , x*k d]. The right-hand side (RHS) of 
Lemma 1 can be directly computed, 

RHS= j^-'-tldt-lJ^ jDt{-.-tdX{^t){zl)dt 

1 n f 

n k,p=\JD 

=^-!En^f^En(>—(.;.,.<.,)). 
* = l i = l " fc,p=l/=l 

We complete the proof of Lemma 1 by substituting z*k t= l-xk • 
and noting that 1 - max( 1 - a, 1 - b) = min(a, b). 

Due to the choice of n and the construction of z*, the average 
case error of U is at most e. This completes the proof of the 
upper bound on compavg(e, Cd). 
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To derive a lower bound on compavg(e, Cd), we use a proof 
technique from [17]. First take any nonadaptive sample points 
x{9 ... , xn from D. Since w is Gaussian and the average case 
error is defined in the L2 sense, it is known that the approximation 
U* with minimal average case error is the mean of the conditional 
probability, given f(x{), . . . , f(xn). Since the mean depends lin­
early on ƒ(*.), (7* takes the form [/*(ƒ) = £ L i cj(xk), V / e 
Cd, for some numbers ch. Using similar calculations as in the 
proof of Lemma 1 we get 

Lemma 2. 

L (I(f)-U*(f)fw(df) 

It is possible to extend the proof of Roth [10] to show that the 
lower bound of (2) holds for all ck . More precisely we have 

Lemma 3. There exists a positive number yd such that 

fDyÈ,ckX[o,t)tf-xk) - h'-td) dt z yan~2(log"/-1 

for all n, ck and xk . 

From Lemmas 2 and 3 we conclude that the average case er­
ror of [/* is bounded by e only if n = Q,(e~l (loge_1) (ö f l ) /2) • 
Therefore the cost of approximating 1(f) with average case error 
e must be at least en = Çl(ce~l(\oge~l){ci~l)/2). 

Consider now adaptive sample points xx, x2, . . . , xn^ . That 
is, the choice of xt may depend on the already computed f(xx ), 
• •• > ƒ(*/_!) > and the number n(f) of sample points may also 
be adaptively chosen. For Gaussian measures adaption may help 
only by varying n(f). We now draw on Wasilkowski's theo­
rem, see [19], which states that adaption can help only by a mul­
tiplicative constant if the squares of the minimal average case 
errors rn of n nonadaptive sample points can be bounded by 
two convex sequences an and fin such that an < rn < fin and 
an = Q(fin). In our case, rn = @(n~ (log ft) ~ ) and we can take 
an = c{n~ (log n) _ 1 , fin = c2n~ (log n) _ 1 for some positive 
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constants cx and c2. Thus, adaption does not help much and 

compavg(e, Cd) = Çl(ce-l(\oëe-lf~l)/2). 

This completes the proof of (i) and the rest follows easily from (i). 

3. FINAL REMARKS 

A. The definition (4) of optimal sample points is not fully con­
structive due to the unspecified constant t* in (3). It would be 
interesting to determine the constant f explicitly. On the other 
hand, if one takes the classical Hammersley points 

zk = [/c«_1,(/>Pi(/c), . . . , <l>Pd_x{k)\9 k= 1, . . . , n, 

then Halton proved, see e.g. [5], that even the L^ discrepancy of 
the points zk is of order n~x{\ogn) - 1 . Then the approximation 
U(f) = n~x J2l=\ f(xk) wiïh xk — 1 ~ zk ^ a s average case error 
at most e provided that n = &(e~l(loge~l) _ 1 ) . 

Observe that the definition of xk (as well as x^ in (4)) depends 
on the total number n of samples. Sometimes it is better to use 
an infinite sequence {xk} in which the definition of xk does not 
depend on the specific value of n . For instance xk can be given 
by 

^^l-^^k)^^),.^^^)], fc=l,2,..., 

where p{, . . . , pd are the first d prime numbers. The L2 discrep­
ancy of n points f - xk is at most of order «_1(log«)J , see [5], 
and therefore the approximation £ƒ(ƒ) = n~l J2l=\ ƒ(•**) has the 
average case error at most e provided that n = @(e~l(loge~l) ) . 

In both cases, we see that the use of xk or xk leads to a slight in­
crease in the average case cost. More precisely, instead of the min­
imal average case cost 0(c£ - 1(log£ - 1) ( ~l ) \ we approximate 
multivariate integrals at average case cost 0(ce~ l(loge~ l) ~l) us­
ing the sample points xk , or 0(ce~x(loge~{) ) using the sample 
points xk. 

B. We have shown that the minimal number of sample points 
n(e)toguarantee average case error e isof order e~l(loge-1 )( ~1^2 

with the constant in the © notation dependent only on d. An 
open problem is to ascertain if there exists a constant ad and, if 
so, to find ad such that 

n(e) = a^e"1(loge~1) ( ' /"1 ) / 2(l+o(l) a s e - 0 . 
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C. It would be interesting to extend the results of this paper for 
smoother classes of functions equipped with folded Wiener sheet 
measures. 

D. Do similar relations to the one we have utilized here between 
discrepancy and multivariate integration, hold for other problems 
such as approximation of functions of d variables? 
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