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THE CLASSICAL TRILOGARITHM, 
ALGEBRAIC ^-THEORY OF FIELDS, 
AND DEDEKIND ZETA FUNCTIONS 

A. B. GONCHAROV 

ABSTRACT. In this paper we show how to express the values 
of fF(3) for arbitrary number field F in terms of the triloga-
rithms (D. Zagier's conjecture) and how to relate this result to 
algebraic K-theory. 

1. THE CLASSICAL POLYLOGARITHM FUNCTION 

The classical polylogarithm function 
n 

(1.1) Up(z) := ^ ^ ( 2 € C , | 2 | < l , p € N ) 
n-\ 

during the last 200 years was the subject of much research—see [L]. 
Using the inductive formula Li (z) = J^lAp_{(t)t~

xdt, Lij(z) = 
-log(l - z), the /7-logarithm can be analytically continued to a 
multivalued function on C\{0, 1}. However, D. Wigner and S. 
Bloch introduced [Bl] the single-valued cousin of the dilogarithm, 
namely 

(1.2) D2{z) := Im(Li2(z)) + arg(l - z) • log|z|. 

Of course, for Lit such function is - l og | z | . Analogous func
tions D (z) for p > 3 were introduced in [R] and computed 
explicitly in [Z]. Let us consider the slightly modified function 

(1.3) ^ 3 (z ) := Re [Li3(z) - log|z| -Li2(z) + ±log2 \z\ -Li^z)] . 

Such modified functions were considered also for all p by 
D. Zagier, A. A. Beilinson and P. Deligne [Z3, Bel]. ~S^(z) is 
real-analytic on CPl\{0, 1, oo} and continuous on CP{. 

Let F be a field. Let PX
F be the projective line over F, and 

let Z[Pp\0, 1, oo] be the free abelian group generated by symbols 
{x} , where x G Pl

F{Q, 1, oo} . 
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We may consider «5^ as defining a homomorphism 

(1.4) ^ 3 : Z[Pc\0, 1, oo] -• R, ^ 3 : I/i^x,.} ^ I n ^ x , . ) . 

We can do the same for any other real-valued function on 
PQ\{0 , 1, oo} , in particular for D2 . 

2. FORMULA FOR £(3) 

Now let F be an arbitrary algebraic number field, dF the dis
criminant of F , rj and r2 the number of real and complex 
places, a. all possible embeddings F <-> C, 1 < 7 < ^ + 2r2, 
and <7r +^ = crr +r +k . Set ,4Q := A ® Q. Let us consider the 
homomorphism 

A: Q [ P > , 1, 00] -+ (A2F* 0 F % , 

A: {x} H ( 1 - J C ) A X ^ X . 

Theorem 1. Let ÇF(s) be the Dedekind zeta function of F. Then 

there exist yx, ... 9yr+r £ KerA c Q[P^\0, 1, 00] such that 

CF(3) is equal to n^2 • \dF\~1^2 times the (rx + r ^-determinant 

I I ^ W l l •(!<.ƒ <r{+r2). 

For s = 2 a similar result was proved in [Z2]. It also follows 
directly from results of [Bo, Bl, Su]. D. Zagier conjectured that 
an analogous fact should be valid for all integers s > 3 [Z3]. 

To prove Theorem 1 we give an explicit formula expressing the 
Borel regulator r3: K5(C) -+ R by -S^z) , and then use the Borel 
theorem [Bo]. Below we indicate some ingredients of the proof 
which are of independent interest. 

3. GENERIC 3-VARIABLE FUNCTIONAL EQUATION FOR <5^(Z) 

The dilogarithm satisfies a remarkable 2-variable functional 
equation, discovered in the 19th century by W. Spence, N. H. 
Abel and others [L]. Its version for D2(z) is as follows. Let 
r(x{, . . . , x4) be the crossratio of a 4-tuple of different points on 
Pl. For every five different points on Pl set 

K2(XQ , . . . , X4) : = 

( 3 , 1 ) è ( - 1 ) , I r ^ o - - - ^ - - - ^ 4 ) l € Z [ A o , l,cx)]. 
/=0 

Then D2(R2(x0, . . . , x4)) = 0 in the sense of formula (1.4). Note 
that (3.1) depends actually on two variables because of the PGL2-
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invariance of the crossratio. It seems that any other functional 
equation for D2(z) can be deduced formally from this one. 

It turns out that the analogous functional equation for <2f3(z) 
corresponds to a special configuration of seven points in the plane. 
Namely, let x{9 x2, x3 be vertices of a triangle in PF (i.e. these 
points are not on a line); y{9 y2, y3 points on its "sides" xjX[, 
x^xj, and ~x^c[9 and z a point in generic position (see Figure 1). 
Further, denote by (yx \y2, y3, x3, z) the configuration of four 
points on a line obtained by projection of points y2, y3, x3, z 
with center at the point yx. Set 

R3{xn ynz):= {I+T + T2) 

° [{r{y{ \y2 > y 3 > x2 > z)> - ir(y\ l^ > ^ > *3 » z)> 

+ {r(z|x3, y3 , xx, y2)} + M z ^ 9yl9xl9 y2)} 

+ {r(z\yl9x2,xl9y2)} 

+ {r{z\x29x39xl9y2)}-{r(z\ x3 * y\ * X\ * 

+ {r(^i |j>2 >3>3 '
x 2 > x3)} - 3 i !} 

where T: xf. —> xi+x, yf. —• y /+1 (indices modulo 3) (for example, 

I1 ° {K^i l^ ' ^ 3 ' X2' Z)} = M ^ l » ^2' *1 > Z)}) a n d ' by d e f i n i" 
tion, {1} = {x} + {1 - x} + {1 - x - 1 } for any x G F * \ l . As we 
will see below the choice of x is inessential for our purposes. 

Theorem 2. In the case F = C, ^?
3{R3(xi, y., z)) = 0. JVote, f/wtf 

5?3({x}-{x~l}) = 0 and £f3({x} + {l-x} + {l-x~l}) = t;Q(3). 

FIGURE 1 
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A configuration (xx, x2, x3, yx, y2, y3, z) of seven points in 
Pp depends on three parameters. Consider a specialization of 
this configuration, when z lies on the line ~x^y[. It depends on 
two parameters, and the corresponding functional equation coin
cides with the classical Spence-Kemmer functional equation for 
the trilogarithm, discovered by Spence in 1809 [S] and, indepen
dently, by E. Kummer in 1840 [K] (see Chapter VI in [L]). 

It is also possible to deduce the Spence-Kummer equation for
mally from Theorem 2 (as a linear combination of relations 
^f?

3(R3(xi, y., z)) = 0). The validity of the inverse statement is 
an interesting problem. 

Conjecture 1. Any functional equation for Jz^(z) can be formally 
deduced from Theorem 2. 

4. ALGEBRAIC AT-THEORY OF A FIELD 

Now let F be an arbitrary field. Set B2(F) := Z[ /^ \0 , 1, oo] 
/R2, where R2 is generated by elements R2(x0, . . . , x4)—see 

(3.1). Then there is the well-known Bloch complex B2(F) —• 
A2F*, where ô[x] - (1 - x) A x. (It is not hard to prove that 
S(R2) = 0.). Thanks to Matsumoto, we know that CokerJ = 
K2(F)([M]). Using some ideas of S. Bloch [Bl], A. Suslin proved 
that K{*d(F) := Coker(#3

M(F) -> K3(F)) coincides with ker S 
modulo torsion [Su]. 

Note also that KX(F) = F* has an interpretation in the same 
spirit: F* = Z[JPJ.\0, 1, oo]/Rx, where R{ is generated by ex
pressions [x] + [y] - [xy], reminiscent of the functional equation 
for l n | . | . 

Let us define a complex Q(3)^ as follows: 

(4.1) Q[Pl
F\09l9oo]/R3^(B2{F)9F\^{A3F\ 

(the left group placed in degree 1), where ô2[x]®y = {I-x) Ax Ay, 
ô{{x} = [x]®x, and the subgroup i?3 is generated by {x}-{x~ }, 
({*} + {1 - x} + {1 - x~1}) - ({y} + {1 - y} + {1 - y'1}) and 
R3(x(, y., z) (see Equation 3.2). 

Theorem 2 ' . S^RJ = 0 in B2(F) ® F*. 

Hence the complex Q(3)^, is well defined. Recall, that Kn(F) := 
nn(BGL(F)+), where BGL(F)+ is an //-space. Hence, by the 
Milnor-Moore theorem [MM] Kn(F) <8>Q = PrimHn{GL(F), Q) . 
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A. Suslin proved [Su2] that Hn(GLn(F),Z) = Hn(GL{F),Z). 
Therefore Kn(F)®Q = PrimHn(GLn(F), Q). So Im(/fn(GLn_() 

— Hn{GLn)) gives a canonical filtration Kn(F)Q D K{
n
i](F)Q D 

. . . . Set K?\F)Q:=K?\F)Q/K!"+1\F)Q. 

Theorem 3. There are canonical maps 

cx:Kf{F)Q^H\^)^) 

cx:K^{F)Q^H2{Q{7,)£). 

Conjecture 2. cx and c2 are isomorphisms. 

Note, that according to [Su2] 

K?\F)Q = H3(Q(3\,) = K?(F)Q. 

(A. A. Beilinson and S. Lichtenbaum conjectured that there 
should exist complexes Q(j)^ computing all Kn(F)—see [Be2, 
Li].) 

5. THE GROUP B3(F) 

For a G-space X, points of G\X x . . . x X are called configu
rations. Let Z(C6(Pp)) be the free abelian group generated by all 
possible configurations (/0, . . . , /5) of 6 points in P\ . 

Let us define a homomorphism L3: Z[ /^ \0 , 1, oo] -* 
Z[C6(P^)] as follows: L3{x} = (xx, x2, x3, yx, y2, y3), where 
r(y{\x{, x2, y2, y^) = x (this configuration was described in §3). 
The (unique) configuration where yx , y2, y3 are on a line will be 
denoted rç3. 

Definition. i?3(F) is the quotient of the group Z[C6(JP^)]by the 
following relations 

(Rl) (/0, . . . , /5) = 0, if two of the points /. coincide or four 
lie on a line. 

(R2) (The seven-term relation.) For any seven points (/0, . . . , /6) 
in PF 

^ ( - i ) / ( / 0 ? . . . , / ; . , . . . , / 6 ) = o. 
i=0 
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(R3) Let (ra0, . . . , m5) be a configuration of six points in PF , 
such that m2 = m0ml n m3m4 and m5 is in generic 
position—see Fig. 2 . Then if L'3{x} := -L3{x}- 2L3{ 1 - x } , 

(m0, . . . , m5) 
4 

= ï D " 1 ) ' L 3 W w 5 | / w 0 , . . . , m / ? . . . , m4)} + ^ 3 . 
i=0 

Lemma. In the group B3{F) we have 

(i0,...,i5) = (-if](iai0),...,i<7{5)). 

Remark. The configurations from (Rl) are just the unstable ones 
in the sense of D. Mumford. 

Theorem 4. The homomorphism L3: Z[Pl
F\0, 1, oo] -• Z[C6(PF)] 

induces an isomorphism modulo 6-torsion. 

L3: Z[PF\0, 1, oo]/RfiB3(F)®Z. 

(It is easy to check using (R2) and (R3) that L3 is onto; the 7-
term relation for a configuration (xx, x2, x3, yx, y2, y3 , z) then 
coincides with (L3(i?3(x/, y., z)).) 

Let us denote by M3 the inverse homomorphism. Then the 
composition L3 o M3: B3(C) —• Q[ /c \0 , 1, oo] -> R defines a 
measurable function on configurations of six points in CP2, satis-
fying functional relations (Rl) through (R3). So for x e Pc , (L3o 
^ X * , ^ t x , . . . , g5x) is a measurable cocycle. Let us prove that 
its cohomology class lies in Im(H^(GL3(C),R) ->H5(GL3(C) ,R)), 
where H*is(G, R) is continuous cohomology. 

m 4 JS 

m 3 / • 
JT m5 

m2 mj rriQ 

FIGURE 2 
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Consider the complex 

M e a s C ^ t C P " " 1 ) ^ MeasCyCP" - 1 ) dk M e a s C ^ C P " " 1 ) 

where Cm(CPn) is the space of all configurations of m points in 
CPn, Meas(X) is the space of all measurable functions on the 
space X, dm:{lQ9...JJ^^^l)%9...Ji9...9lm) and 
d^ is the induced map. 

Theorem 5. Kerrf^/ Im^2«-i *s canonically isomorphic to the in
decomposable part of H^~l (GLn(C), R). 

For n = 2 this was proved in [Bl]. See also closely related work 
[HM]. 

Conjecture 3. There exists a canonical element in Kerrf^ that 
can be expressed by classical «-logarithm -2^(z) and represents 
the Borel class in H^s~

l(GLn(C), R). 

I would like to thank A. A. Beilinson for stimulating discussions 
and interest and M. L. Kontsevich for useful remarks. 
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